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Laser guided ionic wind
Shengzhe Du1, Tie-Jun Wang1, Zhongbin Zhu1, Yaoxiang Liu1, Na Chen1, Jianhao Zhang1, 
Hao Guo1, Haiyi Sun1, Jingjing Ju1, Cheng Wang1, Jiansheng Liu1, See Leang Chin2, Ruxin Li1 & 
Zhizhan Xu1

We report on a method to experimentally generate ionic wind by coupling an external large electric field 
with an intense femtosecond laser induced air plasma channel. The measured ionic wind velocity could 
be as strong as >4 m/s. It could be optimized by increasing the strength of the applied electric field 
and the volume of the laser induced plasma channel. The experimental observation was qualitatively 
confirmed by a numerical simulation of spatial distribution of the electric field. The ionic wind can be 
generated outside a high-voltage geometry, even at remote distances.

Ionic wind, also called corona wind or electric wind1,2, is an air flow generally driven by the electric field created 
by applying a high voltage to an electrode system. Initially the electrons in the ambient air resulting from ioniza-
tion of air molecules by cosmic rays are accelerated under the large electric field near the electrode and undergo 
inelastic collisions. Consequently, more molecules are ionized in the process of electron avalanche ionization. 
The ions (positive ions in positive corona and negative ions, namely O2

−, in negative corona) resulting from the 
ionization in air are also accelerated by the electric field away from the electrode and transfer their momenta to 
air particles via collisions, initiating a drag of the bulk air which is referred to as the ionic wind. Ionic wind has 
raised great interests and has found applications3–9. Due to their robustness, simplicity, low power consumption, 
and ability for real-time control at high frequency, plasma based actuators have been widely used in aerodynamic 
applications3. As a successful demonstration, Deep Space 1, the first mission of NASA’s New Millennium Program 
propelled by ion thruster engine, was launched on October 24, 19984,5. An ionic wind generator has been sug-
gested for a next-generation cooling device for LEDs and other electronic devices because of its high cooling 
performance, light and compact size, low noise, immune from vibration etc.6. The mobilities of ions from ionic 
wind created by corona discharges has also been used for gas diagnostics, for instance to detect and measure gas 
contaminants through the mobility spectrum of the ions7. In addition, ionic wind could induce precipitations 
such as rain and snow formation in a cloud chamber8,9. Traditionally, an ionic wind generator strictly relies upon 
the configuration design of electrodes, such as needle-to-plate and needle-to-cylinder types3–9. Those setups are 
mostly limited in different kinds of restricted space or fixed location due to the fixed mechanical design of the 
electrodes.

In this work we report on a brand new method to generate ionic wind by coupling a large electric field with an 
intense femtosecond laser ionized air plasma channel, namely filament. Large electric field was efficiently guided 
along the laser ionized air plasma channel resulting in the discharges at the end of the channel for ionic wind 
generation. This method is robust and immune to the specific design of traditional ionic wind generator, which 
also has potential application at a distance, even at remote distances.

Experimental Setup
A schematic of the experimental setup is shown in Fig. 1. Experiments were conducted using a Ti:sapphire 
chirped pulse amplification (CPA) laser system producing pulse energy of up to 6.85 mJ with central wavelength 
of 800 nm at a repetition of 1 kHz. The full-width half-maximum (FWHM) length of each pulse is 25 fs. The 
laser beam was focused by a convex lens with a focal length of 50 cm to create a stable plasma channel into a 
home-made Faraday cage. A spherical copper electrode with a special structure was designed to efficiently couple 
a large electric field to the plasma channel10. The purpose of using the specific electrode is two-fold: one is to try 
to avoid the corona from the electrode itself so that there is no wind blowing out from the electrode; the other 
is to increase the coupling efficiency between the electrode and the plasma channel so that more efficient laser 
guided discharges as well as stronger ionic wind could be expected. The main part of the electrode is a copper ball 

1State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese 
Academy of Sciences, Shanghai, China. 2Centre d’Optique, Photonique et Laser (COPL) and Département de 
physique, de génie physique et d’optique, Université Laval, Québec, Québec, G1V 0A6, Canada. Shengzhe Du, Tie-
Jun Wang and Zhongbin Zhu contributed equally. Correspondence and requests for materials should be addressed 
to T.-J.W. (email: tiejunwang@siom.ac.cn) or J.L. (email: michaeljs_liu@mail.siom.ac.cn) or Z.X. (email: zzxu@mail.
shcnc.ac.cn)

Received: 17 November 2017

Accepted: 17 August 2018

Published: xx xx xxxx

OPEN

mailto:tiejunwang@siom.ac.cn
mailto:michaeljs_liu@mail.siom.ac.cn
mailto:zzxu@mail.shcnc.ac.cn
mailto:zzxu@mail.shcnc.ac.cn


www.nature.com/scientificreports/

2SCIentIFIC REPORTS |  (2018) 8:13511  | DOI:10.1038/s41598-018-31993-3

with a diameter of approximately 40 mm and there is a cylindrical channel punched through the ball as shown 
as the inset of Fig. 1. The diameter of the cylinder is 4 mm which is wide enough for the plasma channels to get 
through. The spherical copper electrode was connected to a DC high voltage power supply with a maximal output 
of positive 100 kV/1000 W.

Two methods were adapted to monitor the ionic wind velocity. One is based on the imaging of moving par-
ticles as shown in Fig. 1. Coarse particles (CaCO3/CaSO4 powders) were sprayed by hand into the Faraday cage. 
The diameter of these coarse particles is about 20–100 μm. A continuous wave (CW) 532-nm laser beam with 
3.0 W output power after being expanded in diameter and truncated by a 30 mm (length) × 6 mm (width) slit was 
used to illuminate the particles. The slice of the laser beam passed through the horizontal plane where the 800 nm 
Ti: sapphire laser pulses propagated at 90 deg. as shown in Fig. 1. By recording the scattered 532 nm laser from 
moving particles with a digital camera of up to 60 frames per second (Nikon D7200), ionic wind velocity in dif-
ferent regions was estimated. Each particle with a velocity will fly for a distance during the camera exposure time, 
S. As a consequence, a trajectory of the particle’s movement is recorded in one frame for the exposure time. The 
velocity was calculated by simply doing division between the distance of particle trajectory and the exposure time. 
Note that the actual ionic wind velocity should be higher than the measured value, owing to a larger average mass 
of the coarse particles than the air molecules. The second method was based on a hot wire anemometer probe 
(HHF-SD1). The probe was placed 15 cm away from the ionization region around the tip of the plasma channels 
to directly measure the ionic wind in a relatively far and safe area.

Results and Discussion
Applied voltage dependence. The plasma channel passed through the cylindrical hole of the electrode 
(Fig. 2(a)). The applied voltage was tuned from 0 kV to 50 kV. Leader and streamer types of corona discharges 
occurred around the tip and the length of the plasma channels (Fig. 2(a))11. At low applied voltage of <30 kV, only 
leader type of discharges along the laser plasma channel was observed. When the voltage was further increased 
(the voltage is >35 kV in Fig. 2(a)), streamer type of discharges along the laser plasma channel occurred and 
became much more significant. Note that the newly generated streamers of the discharges in Fig. 2(a) are not 
symmetrical along the plasma channel because of the asymmetry of the copper electrode. After spraying coarse 
particles into the cage, asymmetric particle trajectories around the plasma channel driven by ionic wind were 
clearly observed and recorded by the camera. A short video of the movement at the voltage of 20 kV can be seen 
in Supplementary Video S1. The 2D flows of the ionic wind obtained from particle movement images in the 
horizontal plane are shown in Fig. 2(b–d) for the voltages of 10 kV, 35 kV and 50 kV, respectively. The red lines in 
Fig. 2(b–d) are the plasma channel outside the electrode at zero volt. A clear asymmetry of the wind flows is seen.

From the recorded images of particles’ movements, maximum velocities of these coarse particles were cal-
culated under different high voltages (Fig. 3). The computed rectangular (9.99 cm × 6.65 cm) area in Fig. 2 was 
set near the front tip of the plasma channel where maximum velocities were observed. The background particles 
(applied voltage = 0 kV) slowly floated around with a velocity of ~0.05 m/s. When large electric field was coupled 

Figure 1. Experimental setup for ionic wind generation by laser guided discharges. The spherical electrode was 
held with an insulated plastic holder. The electrode design is shown in the inset. A good coupling was achieved 
by sending laser air plasma channel through the cylindrical channel which was punched through the spherical 
electrode.
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onto the air plasma channel, there were two regimes of maximum velocity of air flow when the applied voltage 
was increased as shown in Fig. 3: in the first regime from 0 kV to ~30 kV, the velocity was linearly proportional 
to the voltage; the velocity was also linearly proportional to the voltage in the second regime when the voltage 
was above 35 kV, but with a larger slope. This behavior is different from the trend of the ionic wind induced by 
a metallic electrode, in which only one linear dependence was reported12. A maximum velocity of >4 m/s was 
measured at the voltage of 50 kV.

Figure 2. (a) Real-color images of discharges generated along the laser plasma channel in air with applied 
voltages ranging from 0 kV to 50 kV, and (b–d) the 2D flow fields of the ionic wind at the voltages of 10 kV, 
35 kV, and 50 kV, respectively. Clear discharges guided by laser were assigned by the arrows. The recording 
parameters of the camera for (b–d) are S = 1/50 s, F = 4, and ISO = 25600 (b) S = 1/200 s, F = 4, and ISO = 25600 
(c) S = 1/500 s, F = 4, and ISO = 25600 (d), respectively.

Figure 3. The maximum ionic wind velocity as a function of the applied voltage. Squared points are the 
measurement results and the red dashed and blue dashed dot line are the linear fits.
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Air plasma length dependence. By keeping the laser pulse at 1 kHz/25 fs/6.85 mJ and the applied voltage 
at 30 kV where mostly leader type of discharges was observed at the plasma channel tip, the dependence of the 
ionic wind velocity on the air plasma length (which was defined as the length outside the electrode) was investi-
gated by moving the laser plasma channel through the electrode. The evaluation area of wind speed was moved 
together with the plasma channel so that the area was always set near the front tip of the plasma channel where 
maximum velocities were observed. As shown in Fig. 4(a), when the external plasma length was tuned from 
3.61 cm to 7.35 cm, the resultant wind velocity was almost constant. No significant change was observed. Since 
the length of the plasma channel could be controlled by altering a number of different laser parameters, such as 
energy, chirp, numerical aperture etc., from sub-meter to several tens of meters13,14, the air plasma guided ionic 
wind can be potentially generated at a distance from the electrode, even at remote distances.

In another experiment, the volume and the plasma density of the channel were changed by varying the laser 
pulse energy. The high voltage was fixed at 30 kV. When the laser energy was tuned from 2.85 mJ to 6.85 mJ, the 
maximum ionic wind velocity varied from 0.57 m/s up to 1.15 m/s (Fig. 4(b)). Two times increase in ionic wind 
was achieved. This result indicates that the air plasma channel induced ionic wind could be enhanced by improv-
ing the pulse energy. By increasing the laser pulse energy, a larger volume of plasma channel with higher electron 
density (lower impedance)15 may contribute the enhancement of ionic wind.

Angular distribution of the ionic wind. By using a hot wire anemometer probe (HHF-SD1), the ionic 
wind velocity was measured at a radial distance of 15 cm from the tip of the laser plasma channel. We note that 
the hot wire anemometer is a thin metallic wire based sensor, which cannot work at the corona region because of 
the strong electric field. The sensor has to be put at a distance away from the coronas so that it works accurately. 
The flow field further downstream could be measured which can provide the angular distribution information of 
the ionic wind. The detection schematic is shown in Fig. 5(a). Laser propagation direction is defined as angle of 
0 degree. The angle in the clockwise direction is positive. 1 kHz/25 fs/6.85 mJ femtosecond laser pulses were used 
to create plasma channels with a 50 cm focal length lens. The high voltages were fixed at 10 kV, 20 kV and 30 kV, 
respectively. To reduce the influence of large electric field on the anemometer, an electrostatic shielding to the 
probe was done by twining grounded metallic mesh on the surface. As shown in Fig. 5(b), peak velocity occurs at 
0 deg., which is the direction of laser propagation. Higher applied electric field strengths generate more discharges 

Figure 4. Measured ionic wind velocity as a function of (a) air plasma length outside the electrode and (b) the 
laser pulse energy. See more details in the text.

Figure 5. (a) The schematic of directional angle measurement of ionic wind. The electrode was held by an 
insulated plastic holder as shown in the figure. (b) The measured maximum ionic wind velocity as a function 
of detection angle. 1 kHz/25 fs/6.85 mJ femtosecond laser pulse was used to create plasma channel with a 50 cm 
focal length lens. The high voltage was fixed at 10 kV, 20 kV and 30 kV, respectively.
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that, in turn, increase the flow speed. The flow field is asymmetrical because of the asymmetry of discharges which 
agree with the observation in Fig. 2(b–d).

Numerical consideration and discussions. In order to have a spatial distribution of the electric field E 
around the air plasma channel, the following Poisson equation and Maxwell equation were solved through finite 
element analysis:

∇ ⋅ ε ⋅ ε ∇Φ = −ρ( ) (1)r 0 V

= −∇ΦE (2)

where εr is the relative dielectric constant, ε0 the permittivity of vacuum, Φ the electric scalar potential, and ρV the den-
sity of volume charges. Under a fixed applied voltage at 50 kV, the distributions of electric field intensity E around the 
spherical electrode (radius of curvature 20 mm) with and without an artificial plasma channel are presented in Fig. 6. 
In the simulation, the artificial filament was regarded as a uniform plasma cylinder with a length of 6.75 cm (the radius 
of curvature r of the plasma channel was set at 0.05 mm and the electrical conductivity of the channel was assumed 100 
siemens/s according to ref.16. When applying the high voltage of 50 kV to the spherical electrode only, the maximum 
electric field strength on the surface of the electrode in Fig. 6(a) is about 2 × 106 V/m which is below the electric field 
threshold of (Er)sphere = 4.5 × 106 V/m for a streamer corona to occur, according to ref.17. This means there won’t be any 
streamer coronas with the spherical electrode alone. When the laser plasma channel was employed to couple with the 
high electric field in the current configuration (Fig. 6(b)), the resultant electric field along the artificial laser plasma 
channel is ~6.2 × 107 V/m which is well above the threshold ((Er)laser = 1.66 × 107 V/m) for streamer coronas generation 
according to ref.18. Note that the calculated electric field threshold for streamer generation with laser plasma channel 
((Er)laser) is higher than that of spherical electrode ((Er)sphere) under the same applied voltage. This may be due to the 
low conductivity of laser plasma channel as compared to metallic wire although laser plasma channel has sharp ends15. 
Strong electric field around the tip of plasma channel leads to discharges generation through avalanche ionization. 
Indeed, no streamer was observed in the absence of plasma channel in the experiment at 50 kV. But clear streamers 
were generated and observed along the plasma channel when the laser air plasma channel was added (Fig. 2(a)). These 
discharges are the sources of ionic wind. The numerical predication on the electric field distribution along laser plasma 
channel end (Figs 6 and 7) shows the electric field is large enough to generate corona discharges. As a consequence, 
clear wind flows were experimentally observed in Fig. 2(b–d). Therefore, the ionic wind in our experiment only origi-
nated from the laser guided discharges, not from the spherical electrode because of a low electric field from it. Indeed, 
no clear wind was observed from the spherical electrode.

In Fig. 6(b), there is weak field regime (near zero field) not far away from the exit of the electrode hole. When 
a large positive electric field is applied onto the electrode, the free electrons inside the plasma column will be 
pushed into the metallic electrode quickly leaving behind a channel of positive ions. The positive ions inside 
the plasma channel but outside the electrode will be pushed towards the tip of the channel. As a consequence, 
more and more positive ions will accumulate around the tip of the plasma channel. Such an accumulation will 
create a back electric field pointing towards the electrode along the plasma channel. At the same time, there is 
an electric field pointing outward along the plasma channel due to the positive charges inside the opening of the 
electrode. The two opposing fields will balance each other at some position resulting in a weak field regime as the 

Figure 6. Electric field distribution around the spherical electrode when a high voltage of 50 kV was used (a) 
without laser plasma channel and (b) with laser plasma channel.
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simulation shows in Fig. 6(b). In reality, both temporal and spatial jitters of the pulses would smear out the near 
zero point because of its high repetition rate of 1 kHz. Even so, one can see this effect in the experiment; i.e. for 
a short distance outside the hole, there is no streamer at very high voltage (for example 50 kV in Fig. 2(a)) while 
after this short distance, streamers come out almost continuously along the plasma channel till its end tip. When 
the applied voltage is kept at 50 kV and the channel length is chosen from 40 mm to 70 mm, the simulated elec-
tric field distribution around the plasma channel end is shown in Fig. 7(a). The peak amplitude of electric field 
fluctuates almost at a constant value. The maximum electric field will generate maximum intensity of discharges 
leading to the maximum wind velocity being measured. The simulation agrees with the experimental observation 
in Fig. 4(a). By keeping the plasma channel length at 60 mm, the calculated peak electric field is linearly propor-
tional to applied voltage as shown in Fig. 7(b) which can nicely explain the first linear region in Fig. 3. The air 
plasma channel19–22 created by femtosecond laser pulses through multiphoton/tunneling ionization can serve as 
a long conductor like a conducting wire offering early free electrons. When applying positive high voltage to the 
spherical copper electrode, the free electrons inside the external part of the plasma channel would be accelerated 
towards the electrode and positive ions are pushed towards the tip of the channel. In the early stage of increasing 
the applied voltage (<30 kV), the weak electric field at the tip of the filament resulted in a weak avalanche ioni-
zation for leader type of discharge generation, which may be responsible for the weak ionic wind generation in 
the first linear regime observed in Fig. 3 and simulated in Fig. 7(b). As the applied voltage keeps increasing, the 
positive ions at the sharp end of the plasma channel produce much higher positive electric field, as a consequence, 
significantly stronger leaders and streamers are generated leading to much stronger ionic wind generation at 
the high voltage in the second linear regime of Fig. 3. The simulation in Fig. 7(a) is based on the static field and 
plasma effect is not included. As shown in Fig. 7(c), the calculated electric field distribution in the direction per-
pendicular to the filament propagation predicts asymmetrical distribution of electric field at three positions of 
1 mm, 5 mm and 10 mm before the plasma channel end. At the side (negative position value) where the electrode 
was connected to the power supply (shown in Figs 1 and 5(a)), the electric field is weaker. As a consequence, 
weaker discharges should be generated which agrees with the observation in Fig. 2(a). This may be the reason why 
an asymmetry of the ionic wind flows was observed (Figs 2(b–d) and 5(b)).

The ionic wind originates from the discharges from the laser air plasma channel (Fig. 5); hence, it can be 
generated at a distance (Fig. 4(a)) and optimized by shaping the laser induce plasma volume (Fig. 4(b)) and the 
external electric field10.

Figure 7. simulated electric field around the laser plasma channel end: (a) electric field distribution around 
the laser plasma channel end under different filament lengths of 40 mm, 50 mm, 60 mm, and 70 mm. The 
applied voltage was 50 kV; (b) the peak electric field around the end of 60 mm long plasma channel as a function 
of applied voltage. (c) the electric field distribution in the direction perpendicular to the laser propagation 
direction at three positions of 1 mm, 5 mm and 10 mm before the filament ends. The laser plasma channel 
position is defined as 0 and the negative transverse position is the side where the electrode was connected to the 
power supply (See Figs 1 and 5a).
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Conclusion
We experimentally demonstrated that a strong ionic wind (>4 m/s) can be generated by coupling an external 
large electric field with a femtosecond laser-induced air plasma channel. The ionic wind relies upon the discharges 
along the plasma channel when an external high electric filed is applied. The dependence of the ionic wind veloc-
ity on the applied high voltages, plasma channel and laser characteristics have been systematically investigated. 
The experimental results are qualitatively understood with a numerical simulation. The approach reported in the 
work paves a way to optically generate ionic wind at a distance, even remotely.
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