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Sub-wavelength terahertz imaging 
through optical rectification
Federico Sanjuan1, Gwenaël Gaborit1,2 & Jean-Louis Coutaz1

We record a sub-wavelength terahertz image of a caster sugar grain thanks to optical rectification in 
the sample excited with a femtosecond laser beam. The lateral spatial resolution of this technique is 
given by the laser spot size at the sample and here its measured value is 50 μm, i.e. ~λ/12. We give an 
estimation of the ultimate resolution that could be achieved with this method.

Production of images in the terahertz (THz) spectral range with a sub-wavelength resolution is nowadays com-
monly achieved through near-field techniques1,2. Most of the setups employ time-domain methods with femto-
second laser excitation of the THz emitting devices, but images have also been obtained with continuous THz 
sources like QCL3 or even with synchrotron radiation4, allowing the study of biological tissues5. Such techniques 
are extremely efficient and permit to observe nanometer details6,7. On the other hand, they require dedicated 
instrumentation and know-how, which are not available in every laboratory.

Another solution is to generate, by optical means, the THz signal at the surface of the studied sample. This 
has been greatly demonstrated for years8,9 by Japanese teams, who have produced THz pulses by exciting elec-
tronic integrated circuits with a femtosecond laser. Carriers are photo-excited in the semiconductor substrate 
by the laser pulses and then are accelerated by any electric field along interconnections and components of the 
integrated circuit. These accelerated free carriers radiate a THz signal, which allows one to map the electric field 
at the studied device and for example, to detect any failure in the electronic circuit. Here the spatial resolution 
of this mapping is limited either by the distance over which carriers accelerate or by the laser spot size. Typically 
this technique, called laser THz emission microscopy (LTEM), exhibits a micron spatial resolution7. It allows also 
evaluating the surface state of semiconductors10,11 or the electrical properties of semiconductor components12. 
A related technique was employed to produce THz sub-wavelength images by Lecaque et al.13. The sample is 
put on the surface of a nonlinear crystal. The laser pump beam is focused in the nonlinear crystal in which it 
produces a THz signal by optical rectification (OR) and the OR-generated THz pulse goes through the sample 
before reaching the receiver. Thus the recorded THz intensity is modulated by the near-field transmittance of the 
sample. The image is obtained by scanning the laser beam over the sample and a λ/10 (30 μm) lateral resolution 
is demonstrated after a numerical deconvolution of the image. A method inverse to that of Lecaque et al.13 was 
published by Blanchard et al.14: here the sample is put over an electro-optic crystal that is illuminated by a wide 
THz beam. The THz field, which is scattered and diffracted by the sample, is read by the probe laser beam that 
is tightly focused at the surface of the crystal. Thus, the THz transmission of the sample is measured in the near 
field and the authors report a λ/30 (14 μm) lateral resolution. Thanks to a very powerful THz beam generated by 
tilted-pulse-front excitation in LiNbO3, images of 370 × 740 μm2 samples are captured at a rate of 35 frames per 
second.

These two techniques, i.e. photo-carriers acceleration in semiconductors and nonlinear effects in crystals, 
differ notably because, in the first one, the sample serves as a source of THz radiation, while in the second one, the 
sample perturbs the emission or detection of THz waves in a nonlinear crystal. Here we propose to benefit from 
the advantages of both techniques, i.e. to employ optical rectification (OR) through or at the surface of the sample 
in view of getting a THz image with a sub-wavelength resolution. Thus the technique is not limited to semicon-
ductor devices and it can be applied to the characterization of dielectric samples, as soon as they show a nonlinear 
optical response. As compared to the techniques by Lecaque et al.13 or by Blanchard et al.14, which deliver a signal 
proportional to the transmission of the sample at THz frequencies, here the recorded signal depends on both 
the sample absorption at visible and THz frequencies and on sample crystallinity through the nonlinear tensor. 
Indeed, when the sample material is not centro-symmetric, focusing a powerful beam at its surface induces sec-
ond order optical nonlinear phenomena in the enlightened region, i.e. second harmonic generation (SHG) and 
OR. The SHG technique is widely spread in laboratory and hospitals and it delivers superb images that render for 
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the sample crystalline inhomogeneity15. For example, membranes of biological cells are highly symmetrical due 
to the preferred orientation of their molecules and thus membranes produce a rather strong SHG signal that also 
depend on the membrane potential16, while some inner parts of the cells are liquid and thus are almost amor-
phous, leading to no SHG signal or at least to a weak one. Thus the proposed method is complementary to SHG 
imaging, since a THz photon is produced any time a SHG photon is. However, the efficiencies of OR and SHG 
are different, as recorded signals depend not only on the nonlinear tensor, but also on the susceptibility of the 
material respectively in the THz and visible ranges. Therefore, the two techniques should bring complementary 
information on the sample. It should be also noted that, even if the number of generated THz and SHG photons 
at the molecular level are the same and even without taking into account propagation and absorption effects, the 
THz beam should be weaker than the SHG one, because the energy of THz photons is about 1000 smaller than 
those of visible ones. In fact, OR was already used to study biological materials (bacteriorhodopsin)17: the intense 
impulse polarization excitation leads to a strong resonant infrared (IR) radiation from the molecules. Such IR 
light, whose wavelength is about 10 μm, is easier to detect than the THz one, because the IR photons are about 
25 times more energetic than the THz ones. However, this result by Groma and colleagues17 demonstrates that 
OR could deliver information on the molecular response of the samples, even if the imaging purpose was not 
addressed in their work.

In this paper, we demonstrate the proof of concept of this technique by recording for first time a THz–OR 
image of a grain of caster sugar, taken from a packet of caster cane sugar (brown sugar) bought in a grocery. Sugar 
presents the advantage of being an efficient and very cheap nonlinear material, which has already been used for 
SHG18–21. Moreover, caster cane sugar grain are highly crystalline, with almost cleaved faces, even if they are not 
single crystals and contain impurities. Furthermore, we give the ultimate performance in terms of spatial resolu-
tion of this technique.

To our knowledge, the idea of THz imaging through OR was only published by a Japanese team22–24, in view of 
observing ferroelectric domains and especially domain walls in supramolecular ferroelectrics. Impressive images 
were obtained, but microscopy was not the main goal of this study. As compared to their work, we address here 
for first time any kind of material with the aim of mapping the crystalline structure of the sample through its non-
linearity and we discuss about the limitations (especially the spatial resolution) of this technique.

Results
Figure 1 shows a typical THz waveform and its spectrum obtained with a rather big grain (thickness ~0.8 mm). 
The mean laser power is =Plaser 3.65 mW (3.65 μJ per pulse), corresponding to a peak power density 

. ×~D 2 8 10laser
12 W/cm2. The spectrum is maximum around 0.495 THz and spreads up to 5~6 THz where it 

reaches the noise level (about −50 dB). Some strong dips are seen around 0.9 and 1.7 THz. As sugar does not 
present absorption peaks at these frequencies, they may be due to water vapor absorption lines25,26 or to tiny 
rebounds of the laser pulse in the rubber tape where the sugar grain was stick.

Let us notice that the sample is almost transparent at the pumping laser wavelength and that we didn’t observe 
any two-photon absorption effect: therefore THz emission by photo-generated carriers can be ignored. However, 
to definitively demonstrate that the observed THz signal is originating from OR, we performed measurements of 
the polarization state of the generated THz beam. As expected, we found an angle dependency between the rela-
tive positions of the sugar crystal with regards to the pump laser polarization angle, which is the signature of OR.

The recorded spectra obtained with grains of different thicknesses or for different pump powers present simi-
lar results. This is shown in Fig. 2 where the THz power spectral density (log scale, with a dynamic range normal-
ized to 1), is plotted for the largest and weakest recorded signals, generated with = .P 3 65laser  mW 
( . ×~D 2 8 10laser

12 W/cm2) and = .P 0 056laser  mW ( . ×~D 0 043 10laser
12 W/cm2) respectively.

The weakest THz pulse energy is thus about 4200 smaller than the largest one. The spectra are rather similar, 
but the weakest one is of course noisier.

This allows us to record only the peak amplitude of the THz waveforms, which makes the image recording 
time much shorter. Therefore, the effective experimental frequency is the one of the maximum of the THz spec-
trum, i.e. ~0.5 THz. The OR-THz image of a sugar grain is depicted on Fig. 3. Points are recorded every 10 μm in 
both directions. At the center of the grain, the OR-THz signal magnitude is almost constant, while it decreases 
strongly at the crystal border.

Figure 4 presents a photography of the grain (left) and the superposition of the sugar crystal outline from pho-
tography (black dashed line) with the OR-THz 2D plot extracted from Fig. 3 (right). The THz signal is generated 

Figure 1.  THz waveform (left) and corresponding power spectrum (right) generated by OR in a sugar grain.
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Figure 2.  Normalized power spectra generated by OR in a sugar grain (red continuous line 
. ×~D 2 8 10laser

12 W/cm2, blue dashed line ×~D 43 10laser
10 W/cm2). Both spectra are normalized to a 

dynamic range equal to 1.

Figure 3.  3-D surface plot of the recorded THz OR image.

Figure 4.  Image (left side): Photography of the studied caster sugar grain. Image (right side): THz OR image. 
The border of the grain sugar deduced from the photography, is shown as a black dashed line.
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only by the sugar grain and thus the OR-THz map resembles the grain shape. However, the OR-THz image reveals 
details at the crystal border that are not seen on the photography and that could be attributed to the sides of the 
grain that are not sharp or vertical, for example because of slivers. Moreover, nearby the top of the sample, the 
decrease of the THz signal does not follow the sample border: this could be due to impurities, to a lack of crystal-
linity or to the presence of water at these locations. Since we are making an imaging proof-of-concept, we don’t go 
further in this analysis. However, this new information about the crystal could be useful to test its quality.

The decrease of the THz signal at the grain border depends on the shape of the grain side, but also on the waist 
of the laser beam and on the diffraction of both laser and THz beams by the sample edge and thus it reveals the 
lateral spatial resolution of the measurement. To determine this spatial resolution, we have measured the waist of 
the laser beam at the grain surface location using a razor blade technique. The measured data (Fig. 5 left) are well 
fitted with a complementary error function, which attests that the laser beam is Gaussian and permits us to deter-
mine the laser beam waist (radius) equal to wlaser = 30 μm (the Gaussian shape of the laser beam is plotted as a 
dashed line in Fig. 5 left). We have also applied the razor blade technique to the generated THz signal. The data 
are almost superimposed with the laser ones, i.e. wlaser = wTHz which proves that the THz signal is only generated 
by the illuminated part of the sugar grain and that the THz beam is also Gaussian. This is confirmed by similar 
data (see Fig. 5 left) recorded using a perfectly flat ZnTe wafer, for which scattering and diffraction effects do not 
perturb the THz beam shape. Therefore, following the Rayleigh criterion, the lateral resolution of our record is 
δ = =w2 ln(2) 50THz THz  μm.

Figure 5 right depicts the profile of the OR-THz signal versus the position along a line that crosses the grain s(a 
horizontal line roughly at the center of the grain shown in Fig. 5). As already seen in Fig. 3, the THz signal is prac-
tically constant at the center of the grain, which reveals that the grain thickness as well as the grain homogeneity 
are also regular. The decrease of the OR signal at the grain border occurs over a distance of 300~400 μm. This is 
not due to the spatial resolution of the experiment, since both laser and THz beams are much narrower (see con-
tinuous red line on Fig. 5 right): this is validated by performing the deconvolution of the OR profile, which does 
not show noticeable differences with the profile plotted here. This smooth decrease is thus attributed to the shape 
of the sugar grain and thus to a reduction of the grain thickness nearby its borders.

Discussion
Let us evaluate the limit of the spatial resolution in the OR imaging technique. We suppose that OR occurs at the 
surface of the sample and thus phase-matching effect may be neglected (in the present case, the sample thickness 
is more or less equal to the THz wavelengths, which justifies that propagation effects -phase-matching- may be 
ignored). As well, because we only derive order of magnitude, thus we forget about the tensorial behavior of the 
nonlinear phenomenon (the nonlinear susceptibility tensor χ↔ is simply written as a scalar χ). It follows that the 
magnitude ETHz of the THz field is proportional to the pump laser field power Plaser:

χ χ χ∝ ↔ →
⋅

→
∝ ∝ .E E E E P

S
:

(1)THz laser laser laser
laser

laser

2

Here Elaser is the laser field magnitude (note that we use here only peak values of either the laser or THz pulses and 
not averaged values) and ∝S wlaser laser

2  is the laser spot surface at the sample surface. The radiated THz power PTHz 
is given by:
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S (2)THz THz THz laser THz

laser

laser

2 2 2
2

To derive this expression, we state that, at the sample surface, the THz spot size is the same as the laser one, i.e. 
Slaser = STHz since the THz signal is generated by the illuminated area of the sample. Because this illuminated area 

Figure 5.  Left: Razor blade signal of the laser beam (red circles) and of the OR THz beam, either generated by a 
sugar grain (green squares) or by a ZnTe wafer (blue triangles), together with a complementary error function fit 
(continuous line, wlaser = wTHz = 30 μm) (the corresponding Gaussian profile is plotted as a dashed line); Right: 
OR THz signal profile versus the distance along the sugar grain (blue circles and dashed line). The continuous 
red line represents the laser or THz beam profile at the sample, given by the razor blade experiment.
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is much smaller than the THz wavelength, the radiated THz field is almost a spherical wave. This wave is collected 
by a lens of section Slens located at distance r from the sample. The collected THz is then focused onto the receiver. 
The THz power PTHz,d impinging the receiver is:

χ χ∝ ∝ ∝ Ω .P S
P
r

S
r

P
S

S D
(3)THz d lens

THz lens laser

laser
lens laser laser, 2

2
2

2
2 2

Ωlens is the solid angle subtended at the sample source by the entrance aperture of the THz optical system 
and Dlaser is the laser power density at the sample surface. It follows that the laser waist wlaser at the sample can be 
expressed as a function of PTHz,d, the nonlinearity χ and Dlaser:

χ
∝

Ω
.w

P
D

1
(4)

laser
THz d

lens laser

,

Two limits are imposed in the OR experiment: (1) the power PTHz,d at the receiver must be larger than the 
noise equivalent power NEP and (2) the power density Dlaser must be smaller than the sample material damage 
threshold Ddamage. Therefore, in this OR experiment, the laser beam can be focused to a minimum waist given by 
the following expression:

χ
∝

Ω
.

� ��� ��� � ���� ����
w NEP

D
1

(5)

laser min
lens damage

,

setup sample

Because the THz light is generated in the sample area illuminated by the laser, the THz lateral resolution δTHz 
is proportional to the minimum laser waist wlaser,min. As expected, when Ddamage is high, the laser beam can be 
strongly focused while keeping the laser power constant, resulting in a better THz resolution (δTHz decreases). As 
well, using highly sensitive THz detectors (NEP small) like superconducting devices (hot electron bolometers, 
kinetic inductance detectors, etc.) may improve the THz signal detection threshold by 2 ~ 4 orders of magnitude27 
and thus it would lead either to a sub-micron resolution, or to the study of fragile samples, like biologic tissues. 
However, because of the square root in Eq. (5), the resolution depends more on the sample damage threshold. 
Also, if the sample is highly nonlinear (large χ), the resolution is better. It follows from relation (5) that the spatial 
resolution depends on both the sample (Ddamage, χ) and the setup (NEP, Ωlens). In the present experiment, we 
observe damage in the sugar sample for . ×~D 3 2 10laser

12 W/cm2 and we measure both the OR profile and the 
THz beam waist with . ×~D 2 8 10laser

12 W/cm2. We selected this pump power density in order to have a large 
measurement dynamics and actually the generated THz signal (power) was about 1600 times larger than NEP. 
Therefore, the reported 50-μm resolution could have been decreased by a factor =1600 40, i.e. down to a few 
μm, at the expense of a strong lack of dynamics.

About the depth resolution of the technique for a bulk sample (d ≫ λ), we can simply estimate it from 
Gaussian optics. Typically, when using a focused pump beam, the nonlinear signal is generated in a material 
region whose thickness is equal to the Rayleigh length ZR ( π λ=Z w n /R laser laser

2 )28, where nlaser is the refractive 
index of the nonlinear material. For thin samples, the depth resolution is the minimum among ZR and the crystal 
thickness. In the present work, ZR ~ 5 mm, therefore the depth resolution is equal to the crystal thickness. It is why 
the profile given in Fig. 5 right is directly proportional to the sugar grain thickness profile, assuming the material 
is homogeneous.

In conclusion, we have demonstrated that sub wavelength THz images can be obtained by OR in the sample. 
Here, while testing a sugar grain, we achieve a λ/12 lateral resolution. We also give an estimation of the limits 
of this technique, in terms of spatial resolution which is determined by both the sample (damage threshold and 
nonlinearity) and the setup (collecting optics and detector sensitivity).

Methods
The studied grains are taken in a packet of commercial caster cane sugar (brown sugar). Caster cane sugar is made 
at 85–90% of sucrose and the rest (10–15%) includes fructose, glucose and impurities29. Sucrose belongs to the 
space group P21 (monoclinic)30. The size of the sugar grains is typically of the order of millimeters. We chose 
grains that exhibit as flat as possible upper and lower faces, which appear as if they have been cleaved. The studied 
sugar grains are stick on a transparent rubber tape. In the laser beam, the tape is located before the grain. Thus, 
the generated THz beam does not propagate through the tape. We have checked that the tape does not produce 
a noticeable THz signal when illuminated by the laser. The experimental THz set up is similar to a classical THz 
time-domain system, in which the emitting antenna has been substituted by the nonlinear sample, i.e. the sugar 
grain stick on the rubber tape (Fig. 6). The setup includes an amplified femtosecond laser system (Coherent Libra) 
that delivers 5 mJ pulses of 50 fs duration at a repetition rate of 1 kHz. The central wavelength of the laser pulses is 
λ = 800 nm. The power of the pumping beam is adjusted with a half-wave plate (HWP) and a polarizer. In front of 
the sample, a second HWP permits to rotate the laser polarization. The detection of the THz signal produced by 
the sample is recorded with an electro-optic antenna, which consists of a 200 μm thick [111] ZnTe crystal, a HWP, 
a Wollaston prism and a balanced photodiode system. The parabolic mirrors used to collect the THz wave have 
a 2″ (~5.1 cm) diameter. The one close to the sample has a reflected focal length of 6″ (~15.2 cm) and the other 
ones 4″ (~10.2 cm). The THz signal was recorded with a lock-in amplifier (time constant: 1 s). We performed the 
measurements with spatial steps of 10 microns, taking in average 1 minute for each point. The total recording time 
of the whole image was around 3.5 hours.
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Since all the sugar crystal axes directions are unknown, we changed the pump beam polarization angle by 
rotating the HWP situated in front of the sample, in order to maximize the detected signal. Then, we optimized 
the signal by rotating the HWP close to the balanced photodiodes. This allows to put the detection axis in the 
same direction of the THz electric field. Because the detecting ZnTe crystal is [111] cut, there is no need to rotate 
it to maximize the detected signal31.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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