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Dirac fermions duality in graphene: 
Ripples and fractional dimensions 
as function of temperature
J. C. Flores1 & L. Palma-Chilla2

Graphene consists of coupled direct/dual fermionic sub-systems and, consequently, the thermal 
properties of both are intrinsically correlated. The dual is characterized by negative temperatures, 
and its free energy keeps opposite sign concerning the direct. The growth of ripples in graphene 
becomes related to temperature rises with fractional spatial dimension ~2.19 at 300 °K. An analytical, 
and suitable, expression for ripples dimension as a function of temperature is presented. Further, 
internal energy, entropy, specific heat and free energy are evaluated as a function of temperature 
and dimension for both sub-systems. Free energy supports a simple, functional expression inversely 
proportional to ripples dimension.

For a normal direct system with non decreasing frequency ω
→
k( ) its dual of frequency ω′ (behaving usually as a 

metamaterial) is characterized through a functional relationship1–5. Particularly, we consider the relationship:

ω ω ω′
→

+
→

=k k( ) ( ) 2 (1)o

ωo being an intrinsic parameter. Equation (1) can be found in a large variety of systems like electric circuits, 
electron/hole, and others. Indeed, massless fermions in graphene, which have two bands in the range of dis-
cussion, justly satisfied Eq. (1) with ωo = 0, assumed in this article. Additionally, the dual system properties will 
always be indexed with a prime (like ω′).

If we designate U as the internal thermodynamic energy per particle, from Eq. (1), entropy S′ of the dual sys-
tem becomes related to entropy S of the direct by

′ = − .S U S U( ) ( ) (2)

This way, and formally, all thermodynamic properties of the dual system are obtained from the direct system 
via Eq. (2). Particularly, temperature6–8 T = ∂U/∂S turns negative for the dual.

At first order in the wave vector expansion, for a graphene sheet or carbon monolayer, the “massless” electrons 
spectrum is given by9–12

 ω =
→

v k (3)F

vF ~ 106 (m/s) being the Fermi velocity and  the Planck constant. Formally, Eq. (3) defines a hypersphere in the 
wavevector space. This becomes useful for calculating the number of states at fixed energy. Additionally, for rip-
pleless graphene the spatial dimension is exactly D = 2.

On the other hand, relationships (1) and (3) define the dual system which consequently has a dispersion 
relationship

ω′ = −
→

v k (4)F 

actually corresponding to the graphene lower band.
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In this paper, non-integer spatial dimension is mainly considered since a graphene sheet with aleatory broken 
bonds, ribbons, ripples, or others, can be modeled by a fractional dimension D ~ 2. We shall consider thermody-
namic aspects and, particularly, the fractional dimension due to ripples related to finite temperature11,13.

Section II establishes the entropy function for the massless electrons in the upper band. In section III, employ-
ing the direct and dual entropy relationship Eq. (2), all thermodynamic quantities for the corresponding Dirac 
fermions are calculated. They are expressed explicitly as a function of dimension and temperature. Main results 
appear in section IV where we evaluate an analytical expression for the spatial ripples dimension of graphene as a 
function of temperature. The last section offers the conclusions.

Direct System: Electrons in Graphene
As long as Fermi energy is zero for fermions in graphene14, from the hypersphere defined by Eq. (3), at low tem-
perature the internal energy for electrons can be expressed as

σ=

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where Uo = ℏvF/a ~ 7.4296 × 10−19 (J), k is the Boltzmann constant and the length a ~ 1.42 (A) corresponds to the 
approximate distance between carbon atoms in the hexagonal cell14. σ is a function of spatial dimension D with 
spin-degeneration two and given by
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Figure 1 exhibits a numerical calculation of σ as function of D. At dimension D = 2 its value corresponds to 
σ = 5.659. This function will be used to evaluate thermodynamic properties around D ~ 2.

The entropy as a function of the internal energy can be obtained as follows. From Eq. (5) and the usual defini-
tion for temperature6–8 (∂S/∂U = 1/T) the differential equation
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is attained. We put total derivative since the volume is assumed constant. The solution of this differential equation, 
with the appropriate initial condition S = 0 when U = 0 allows to determine the entropy per particle for the direct 
system as
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where, as mentioned, Uo = ℏvF/a for graphene. In Eq. (8) we use a instead of total size to avoid Gibbs paradox.

Figure 1.  Entropy S/k, per particle, for direct and dual systems in graphene as function of dimension D at 
T = ±300 °K. Inset, the parameter σ as function of spatial dimension D. It allows to evaluate thermodynamic 
properties around D = 2 where σ = 5.659.
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Thermodynamic Relationships for Direct/Dual Dirac Fermions and Dimension 
Dependences
From Eq. (2) and the entropy Eq. (8) the main properties can be calculated for both interrelated systems as a 
function of dimension and temperature. They appear in Table 1, showing internal energy U, entropy S, specific 
heat C and free energy F.

Note that temperature turns negative in the dual system. Moreover, free energy F = U − TS can be re-written 
in both cases as a function of internal energy and dimension simply as

= − .F U
D (9)

Both direct/dual free energy F have opposite sign because of U. Likewise, the free-energy-cost parameter 
∂F/∂D = U/D2 (U fixed).

The graphic for the graphene entropy as a function of the dimension appears in Fig. 1 at fixed temperature 
(T = ±300 °K.). It is a decreasing function since dimensionless temperature kTa/ℏvF ~ 5.5749 × 10−3 (powered at 
D, Table 1) is a small number.

Spatial Dimension as Function of Temperature: Ripples in Graphene
Graphene seems to be a real two-dimensional system11,12,15. Yet, this spatial dimension varies slightly depending 
for instance on imperfections like bad bonds, rugosity or others11,16,17. In fact, distortions affect transport proper-
ties like electronic mobility17–20. Specifically, transport becomes affected by rising temperature21,22. Additionally, 
decoherence effects, due to temperature, also affect conduction.

For example, Giordanelli et al.13 consider ripples for graphene sheets and find a fractional dimension at the 
order of 1.16 for islands in an iso-height plane at the percolation threshold. Since it corresponds to the intersec-
tion of a plane with the rippled graphene, fractional dimension D is at that point given by equation: 2 + D = 3 + 
1.16. Namely, D ~ 2.16.

Ripples are associated with soft structures particularly with instabilities at dimension two23 where they range 
between 2 ≤ D ≤ 3. These structure distortions can be related to thermal processes23–26 among other causes11. The 
microscopic relationships (3–4) define two hyperspheres in the phase-space. Consequently, their volume ~ UD 
and necessarily T ~ U in the microcanonical ensemble for direct and dual fermions. As long as the number of 
states becomes proportional to the volume6–8 and, consequently, to TD, the relationship between thermodynamic 
averaged-dimension 〈D〉 and temperature T becomes.
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Its analytic solution is
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The formal limit 〈D〉 → 2 requires T → 0. Conversely, when T → ±∞ necessarily 〈D〉 → 3. In fact, these limits 
are governed by the slow logarithm function as 〈D〉 ~ 2 − 1/ln|T| and 〈D〉 ~ 3 − 1/ln|T| respectively.

Figure 2 shows the average dimension 〈D〉 as function of the dimensionless temperature kTa/ℏvF for 
graphene around T = 300 (°K). In fact, the dimension of ripples distortion grows with temperature (Fig. 2 inset). 
Additionally, as long as broken bonds, ribbons, and ripples are manifestations of disorder (loss of translation 
invariance) they can be related, when exist, to general entropy concepts. Consequently, these inhomogeneous 
structures become correlated to a fractal dimension.

An explicit calculation at T = 300 (°K), gives the estimation for dimensionless temperature kTa/ℏvF ~ 0.0056 
and, consequently, from11 the averaged dimension (Fig. 2):

∼ . = °D T2 1872 (at 300 K) (12)
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Table 1.  Thermal properties of direct (electrons) and dual (holes) massless fermions in graphene at arbitrary 
dimension and temperature. Internal energy, entropy, specific heat and free energy, are showed.
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firmly in line with Giordanelli et al.13 for graphene island intersected with iso-height plane (2.1872 − 1). The value 
of 300 °K corresponds to 28 °C (room temperature) and the above result Eq. (12) corresponds to an independent 
prediction. Prospectus to measure ripples for a broad range of temperatures were considered by Braghin and 
Hasselmann27.

Dimension fluctuations are evaluated directly. From Eq. (11) around T = 300 (°K) we have Δ ∼ × . ΔD 6 0 0056 T
T

. 
Interestingly, for temperature ranges |ΔT| = 300 (°K) there are small variations ΔD ~ 0.0336 and not contradictory 
with Giordanelli et al.13.

Finally, note that Hurst’s exponent is related to the existence of different degrees of correlations in a given 
“roughness” structure. Indeed there is, with certain assumptions, a direct relation between this exponent and 
the fractal dimension18,28,29. From this point of view, as long as the fractional dimension can be calculated from 
thermodynamics, the Hurst’s exponent, eventually, can also be computed. On the other hand, quantities like cur-
vature13, averaged height and disorder30, among others, also characterize the graphene structure and topology. 
Like as occur with Hurst’s exponent, these quantities are expected to be also correlated with temperature.

Conclusions
Duality is quantitatively associated with graphene through the upper and lower bands (Eq. (1)). In this way, the 
internal energy, entropy, specific heat and free energy for direct/dual Dirac fermions were obtained as a function 
of the spatial dimension and temperature (Table 1). Remarkably, free energy supports a simple functional expres-
sion depending only on dimension and internal energy Eq. (9). Note that the dual and direct, related to upper and 
lower band, have different temperature sign. Then, they cannot be in equilibrium without external forces or con-
straints. They must be deeply related to collapse of pair electron-hole. As an interesting remark, both structures, 
dual and direct, admit T = 0 as commune point of equilibrium.

The dual system becomes characterized by negative temperatures and its free energy possesses opposite sign 
concerning the direct one. Moreover, at fixed temperature T = ±300 °K, the entropy decreases with dimensions 
augmentation since the effective temperature |kTa/ℏvF| (powered at D) becomes a small number.

Regarding ripples, our analytical expression for dimension Eq. (10) as function of temperature allows esti-
mating a non-integer dimension around 2.1872 and small fluctuations ΔD ~ 0.0336 at T = 300 °K. This fractional 
dimension augments as temperature rises.

Additionally, bilayered graphene model by putting ωo ≠ 0 in Eq. (1) can be studied by using the direct-dual 
concepts31.
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