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Automatic detection and counting 
of urediniospores of Puccinia 
striiformis f. sp. tritici using spore 
traps and image processing
Yu Lei1,2, Zhifeng Yao1,3 & Dongjian He1,2

The quantitative monitoring of airborne urediniospores of Puccinia striiformis f. sp. tritici (Pst) using 
spore trap devices in wheat fields is an important process for devising strategies early and effectively 
controlling wheat stripe rust. The traditional microscopic spore counting method mainly relies 
on naked-eye observation. Because of the great number of trapped spores, this method is labour 
intensive and time-consuming and has low counting efficiency, sometimes leading to huge errors; 
thus, an alternative method is required. In this paper, a new algorithm was proposed for the automatic 
detection and counting of urediniospores of Pst, based on digital image processing. First, images of 
urediniospores were collected using portable volumetric spore traps in an indoor simulation. Then, 
the urediniospores were automatically detected and counted using a series of image processing 
approaches, including image segmentation using the K-means clustering algorithm, image pre-
processing, the identification of touching urediniospores based on their shape factor and area, and 
touching urediniospore contour segmentation based on concavity and contour segment merging. This 
automatic counting algorithm was compared with the watershed transformation algorithm. The results 
show that the proposed algorithm is efficient and accurate for the automatic detection and counting 
of trapped urediniospores. It can provide technical support for the development of online airborne 
urediniospore monitoring equipment.

Wheat stripe (yellow) rust, which is caused by Puccinia striiformis f. sp. tritici (Pst), is a wheat disease that is prev-
alent across the world, particularly in cool and moist regions1,2. It is one of the most important and devastating 
airborne wheat diseases in China and has caused severe yield reduction, resulting in significant economic loss3. 
Urediniospores of Pst are heteroecious macro-cyclic rust pathogens that require a living host (wheat/grasses, 
Berberis/Mahonia spp.) to complete the asexual and sexual phases of their life cycle4–6. Urediniospores maintain 
the dominant asexual stage of the pathogen population on the primary hosts. This is the main period for the 
wide-scale stripe rust epidemics reported on wheat2. Urediniospores have the capacity for long-distance dis-
persal by wind movement, which may extend to hundreds and perhaps thousands of kilometres from the centre 
of origin of Pst7–9. Urediniospores of Pst infect wheat as a result of urediniospore deposition by dispersed air or 
raindrops on the leaf surface10. Therefore, the aerial dispersal of Pst urediniospores is the main reason for the 
occurrence and prevalence of the disease of wheat stripe rust. The occurrence of the disease is closely related to 
the number of urediniospores in wheat field air. The efficient capturing and quantitative monitoring of uredinio-
spores in the atmosphere of a wheat field can provide critical information for airborne wheat disease prediction.

Because of the improvement and popularization of spore trap devices, airborne fungal spores are commonly 
collected by these devices11–13. Previous studies have often used them for sampling onto microscope slides 
or plastic tape, which were coated with a thin film of petroleum jelly and then examined microscopically at 
hundredfold magnification. The traditional microscopic spore counting method mainly relies on naked-eye 
observation by professional and technical personnel in the laboratory. Because of the great number of trapped 
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spores, this method is labour-intensive and time-consuming and has low efficiency, sometimes leading to huge 
errors. Thus, the timely identification and counting of trapped spores is hindered. Studies on the application of 
molecular-biological techniques to detect and quantify fungus have been reported14–16. However, it is difficult to 
translate the techniques to practical applications because of the high technical requirements and great operational 
complexes.

Machine vision techniques have been widely used in the automatic diagnosis and grading of plant diseases in 
recent years. Several algorithms for the digital image process have been used in studies on plant diseases. Image 
recognition of plant diseases17–19 and the automatic classification of disease severity20–22 can be achieved using 
appropriate image processing technologies. Recently, some studies on the automatic counting of fungal spores 
with using micro-image processing have been reported. Li et al.23 proposed a method based on the watershed 
transformation algorithm to count the urediniospores of Pst. However, the results appeared to incorrectly split 
the positions of the spores and demonstrated over-segmentation when the urediniospores had rough boundaries 
or a complicated touching condition. Chesmore et al.24 developed an image analysis system for rapidly discrim-
inating between T. walkerii and T. indica. Principal components analysis was performed on many parameters, 
including the perimeter, surface area, number of spines, spine size, maximum and minimum ray radii, aspect 
ratio and roundness, to obtain a linear separation of species. The analysis system achieved 97% accuracy for 
separating T. walkerii and T. indica. Wang et al.25 proposed a new method based on image processing and arti-
ficial neural network to automatically detect powdery mildew spores. The 63.6% correct rate of testing pictures 
showed that it could achieve the automatic detection and counting of powdery mildew spores. Xu et al.26 used a 
computer-assisted digital image processing method, which obtained the spore image exterior outline character-
istics for spore type analysis and automatic counting. All previous works demonstrated excellent performance. 
However, when the spores largely touched each other or there was no strong gradient existing in the touching 
spores, these studies usually had the problem of over-segmentation or under-segmentation. In reality, in-field 
trapped pathogen spores may touch or even overlap. Under the touching condition, it is difficult to separate the 
touching spores, which may affect the counting accuracy. Therefore, the touching spores in the image need to be 
split into separate spores. A variety of segmentation algorithms for touching objects in images, such as cells27–29, 
fruits30,31, and cereals32–34, have been reported, and there have been some achievements in these fields. However, 
these algorithms are not suitable for the segmentation and counting of spores. Hence, it is necessary and urgent to 
develop a new method for the rapid and accurate identification and quantification of spores.

On the basis of simulating the wheat field environment, this study develops a new algorithm for the automatic 
detection and counting of trapped pathogen urediniospores of Pst. First, the urediniospores are segmented using 
the K-means clustering algorithm and converted into a binary image. Second, to remove noise, pre-processing 
measures, including region filling, small area removal and open operations, are implemented to fill the spores, 
filter noise and smooth the urediniospore edges. Third, a feature combination of shape factor of target contour 
and area is selected as the basis for the discrimination of touching urediniospores. Fourth, the contour of touch-
ing urediniospores is extracted and divided into several contour segments based on concavity. Then, the contour 
segments that belong to the same urediniospores are merged, which is the main issue to solve. In this section, 
the distance measurement is proposed to eliminate the segments that have a low possibility of belonging to the 
same urediniospore. The candidate ellipse is then fitted using the least-squares ellipse fitting algorithm, and the 
deviation error measurement is used to determine its fitness evaluation. If the contour segments satisfy the condi-
tions of the distance and the deviation error measurement, they are merged to create a new segment. Finally, the 
ellipses are fitted with these new segments as the best representative ellipses for the touching urediniospores. The 
objective of this study is to develop a new algorithm for the automatic detection and counting of trapped patho-
gen spores, and to assess the algorithm’s detection accuracy by comparing the automatic counting algorithm with 
the watershed transformation algorithm.

Results
To verify the validity and accuracy of the proposed automatic counting algorithm in this paper, the counting test 
was performed on a total of 120 urediniospore images. To accurately obtain the real number of urediniospores, 
the results of a manual counting method were used as the actual number of urediniospores. The performance of 
the proposed algorithm was compared with that of the watershed transformation algorithm23. A personal com-
puter with a 3.3 GHz processor and 8 GB RAM was used as the hardware part of the computer vision system, and 
all the algorithms were developed in MATLAB R2014a (The MathWorks Inc, Natick, MA, USA). The examples 
are demonstrated below.

A comparison of the results processed by the proposed algorithm and the watershed transformation algorithm 
is shown in Fig. 1. As shown in Fig. 1a, there were not only individual urediniospores but also touching clumps 
and even some occluded urediniospores, which may not have been possible to separate correctly using previous 
techniques. Figure 1b shows the result processed by the watershed transformation algorithm, in which the cases 
of two urediniospore adhesions and several urediniospores connected in series were well separated. However, it 
appeared to be over-segmented when the urediniospores had rough boundaries or under complicated touching/
cluster conditions, and some of the segmentation locations were not accurate, which made the counting accu-
racy low. Figure 1c shows the result processed by the proposed algorithm, in which the cases above were well 
separated. Moreover, the proposed algorithm was robust, because it performed well, even when the contours of 
touching urediniospores were irregular.

To evaluate both methods, the counting accuracy of detection was used, which was the ratio of the number of 
correctly detected urediniospores to the total number of urediniospores in the input image. Comparisons of the 
counting accuracy results are shown in Table 1. The lowest counting accuracy of the proposed method was 92.7%. 
The highest counting accuracy was 100%. The total average counting accuracy was 98.6%, which was an increase 
of 6 percentage points over that of the watershed transformation algorithm (92.6%). The experimental results of 
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the lowest accuracy, highest accuracy and total average accuracy show that the proposed algorithm had better 
validity and correctness than the watershed transformation algorithm for urediniospore image segmentation and 
counting. Therefore, the proposed method is efficient and accurate for the automatic detection and counting of 
trapped urediniospores.

Discussion
It is inevitable that overlap will arise while capturing the urediniospores of wheat stripe rust. As shown in the 
red boxes in Fig. 1a and c, the urediniospore in the upper part of the occluded urediniospores is blurred, because 
of the shallow depth of field under high optical magnification. In this case, the concave point may be lost at the 
contour of the concave object (Fig. 2a), which leads to a segmentation fault and affects the accuracy of automatic 
counting. From Fig. 2b, two urediniospores are misdivided into one urediniospore by the ellipse fitting algorithm. 
Thus, further research is needed to solve the problem of the segmentation count for overlapping urediniospores.

Figure 1.  Segmentation and counting results of the part of test images: (a) original digital image of 
urediospores; (b) segmentation effect and counting results based on the watershed segmentation algorithm;  
(c) segmentation effect and counting results based on the proposed algorithm.

Range of spores 
in one image

Number 
of samples

Watershed transformation algorithm Proposed algorithm

Lowest 
accuracy/%

Highest 
accuracy/%

Average 
accuracy/%

Lowest 
accuracy/%

Highest 
accuracy/%

Average 
accuracy/%

9 ~ 59 48 81.3 106 95.3 95.5 100 99.5

60 ~ 110 37 85.9 101 94.7 94.9 100 98.9

111 ~ 161 22 84.2 100 92.1 93.2 100 98.2

162 ~ 177 13 82.7 97.2 88.4 92.7 100 97.7

Total 120 83.5 101 92.6 93.6 100 98.6

Table 1.  Comparisons of counting accuracy of two different segmentation algorithms.
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Currently, we mainly focus on the automatic detection and counting of pathogenic urediniospores of Pst 
that are trapped using a spore trap device via an indoor simulation. The scenarios are more complicated in a 
wheat field environment. Some atmospheric particles, such as pollen and other fungal spores, may also affect the 
accuracy of the automatic counting of urediniospores. Thus, further work is required to improve the counting 
accuracy of urediniospores that are collected in an actual farmland environment.

Materials and Methods
Materials.  Fresh urediniospores of Pst were selected as the experimental objects and obtained from the 
College of Plant Protection at Northwest A&F University, Yangling, Shaanxi, China. The other materials and 
instruments included petroleum jelly, microscope slides, an aurilave, portable volumetric spore traps (TPBZ3, 
Zhejiang Top Instrument Co., Ltd, China), microscope (BX52, Olympus, Japan) and a desktop computer.

Image acquisition.  The experiment was conducted in the laboratory of the College of Mechanical and 
Electronic Engineering at Northwest A&F University, Yangling, Shaanxi, China. The collection of airborne fungal 
urediniospores was conducted by simulating the wheat field environment. Portable volumetric spore traps were 
used to collect airborne urediniospores of Pst. In the laboratory, an aurilave was used first to slowly and continu-
ously blow the urediniospores above the trap to spread them into the air. Airborne particles were then deposited 
onto microscope slides that were uniformly coated with a thin film of petroleum jelly. To obtain different densities 
of urediniospores on the slides, urediniospores were collected continuously for 5, 10 or 15 mins and repeated 10 
times to obtain 30 slides containing different urediniospore densities. The fungal urediniospores on the slides 
were observed and photographed at the genus level with the aid of a light microscope under ×200 magnifica-
tion. All the 150 experimental images (4,140 × 3,096 pixels) of urediniospores (five points each slide under the 
microscope were randomly selected to take images) were acquired for the validation of the proposed algorithm 
using a digital imaging system (DP72, Olympus, Japan) of 72 dpi at 24 bits using the RGB model. Thirty images 
were randomly selected for algorithm training, and the remaining 120 images were used for testing. Partial orig-
inal images are shown in Fig. 3. The urediniospores were broadly ellipsoidal to broadly obovoid, with a mean of 
24.5 × 21.6 μm, and yellow to orange. A large number of urediniospores in the images touched each other, which 
made it difficult to automatically count them.

Segmentation of the urediniospore images using the K-means clustering algorithm.  Image 
segmentation from the background is an important step in the image processing technique. Urediniospore target 
segmentation can be viewed as a clustering problem in the case in which the classification of the pixel points is 
unknown and the image can be divided into several regions based on the characteristic value of the pixel points. 
The K-means clustering algorithm is an unsupervised partitioning algorithm that divides data into a predeter-
mined class k to minimise the error function and is widely used in image segmentation fields35,36. It is accurate 
and highly efficient for largescale data processing, which makes it more suitable to segmenting urediniospore 
images in this work. Because only the urediniospore region was required in this research, k = 2 was used, and the 
original image was divided into two classes: the urediniospore region and the background region.

The size of images we acquired was large, and it was time consuming to process and segment them. First, we 
resized them to 911 × 682 pixels. The colour space was transformed from the RGB colour space to the L*a*b* 
colour space. The Kmeans clustering algorithm was then used to cluster the urediniospore images into two classi-
fications based on the a* and b* colour components. Figure 3c is the original image. Figure 4a shows the process-
ing results of K-means clustering, demonstrating that it could be applied for image segmentation. Figure 4b is the 
binary image of Fig. 4a using the fixed-threshold algorithm based on the threshold of 0.2. From Fig. 4b, we can 
observe that it contained noise, such as holes and spurs, which affected the accuracy of the subsequent contour 
detection and urediniospore count. Therefore, further processing was needed.

Figure 2.  Example of overlapping urediniospore segmentation: (a) contour segments; (b) separation result.
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Pre-processing of the urediniospore image.  To remove noise, pre-processing measures, including 
region filling, small-area removal and open operations, were implemented to fill the spores, filter noise and 
smooth the spore edges. First, the holes in the urediniospores were filled using the operation of region filling. 
Second, the areas of less than 190 pixels, that is, small particles, were removed using the area opening operation. 
At the moment when the areas of the urediniospores on the boundary of the image were less than 190 pixels, 
the urediniospores were removed from the binary image and counted as the urediniospores of the other images. 
Finally, the morphological opening operation with a ‘disk’-shaped structural element with a radius of 5 pixels 
was performed to remove spurs and smooth the urediniospore contour. As a result, the processed image (Fig. 4c) 
showed no noise and the contour became smoother, which was helpful in subsequent processing.

The identification of touching urediniospores based on the shape factor and area.  Figure 4c 
shows that the binary image included not only individual urediniospores but also two or more touching uredini-
ospores. The regional contour of the touching urediniospores was more complex and larger than that of the indi-
vidual urediniospores. Thus, a feature combination of the shape factor of the target contour and area was selected 
as the basis for the discrimination of touching urediniospores. The shape factor (SF) formulas37 can be defined as

π=SF S L4 / , (1)2

where S is the area pixel value of a connected region and L is the perimeter pixel value of a connected region.
The contour of the touching urediniospores was larger and more complicated than that of the individ-

ual urediniospores after sampling statistics because it was concave, and the shape factor was smaller. When 
0.9080 < SF < 1.0912 and 200 < S < 523, the objects were identified as individual urediniospores. When 
0.2625 < SF < 0.7606 and 600 < S < 2301, the objects were identified as touching urediniospores. Thus, SF and S 
were set to be 0.8 and 560 according to various tests. Let i be a connected region. If

> < .SF SF S S& (2)i i0 max

is satisfied, region i is assessed to be an individual urediniospore, otherwise it is assessed to be touching ured-
iniospores. Figure 5 shows the result of touching urediniospore identification for Fig. 4c, where the individual 
urediniospores and touching urediniospores were correctly discriminated.

Touching urediniospore contour segmentation based on concavity.  From the above processing 
step, if the region was identified as an individual urediniospore in the binary image, then the ellipse number was 

Figure 3.  Original RGB images for different capture times: (a) image after capturing for 5 min; (b) image after 
capturing for 10 min; (c) image after capturing for 15 min.

Figure 4.  Results of the urediniospore image after the Kmeans algorithm and preprocessing: (a) extracted 
image of urediniospores after the K-means algorithm with k = 2; (b) binary image of the extracted 
urediniospores using the fixed threshold algorithm; (c) binary image after morphology preprocessing.
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directly counted by the least-squares ellipse fitting method. To automatically count the spores precisely, these 
touching urediniospores must be separated, which is the main contribution of this work.

As an example, the contour of the touching urediniospores in the red rectangular box in Fig. 5b was extracted 
by the canny edge detector, which is shown after enlargement in Fig. 6b, and the contour points were stored in an 
ordered list. The following detection method for the concavity was used.

Let pt(xt, yt) be a contour point, and the angle between the vectors ptpt−h and ptpt+h be defined as the concavity 
of pt, where pt−h and pt+h denote the hth adjacent contour points of pt; h was set to 3 according to the pretest. The 
formula for concavity can be expressed as

= =
⋅

|| || ⋅ || ||− +
− +

− +

p p p p

p p p p
p p p p, ,concavity ( ) angle ( ) arccos

(3)
t t h t t h

t t h t t h

t t h t t h

If the point is determined to be the concave point, then it needs to meet the following two conditions (Fig. 6c): 
concavity(pt) is in the range angle(δ1,δ2); line 

− +p pt h t h does not traverse the touching urediniospores.
With 30 urediniospore image samples for statistical analyses, the angles of the concave point pt between the 

vectors ptpt−h and ptpt + h were in the range of 50° to 150°. Thus, the values of δ1 and δ2 were set to 50° and 150°, 
respectively.

With these concave points, the contour (C) of the touching urediniospores was divided into N contour seg-
ments and K concave points (Fig. 4d):

= + … + + … + + + … + + … +C CS CS CS cp cp cp (4)i N j K1 1

The contours of the touching urediniospores were stored in an ordered cell structure using the 8-connected 
boundary tracking method and then used for subsequent urediniospore contour segment merging.

Touching urediniospore contour segment merging.  After segmentation in the above processing step, 
one contour of the same urediniospores may be divided into several contour segments. The aim of this subsection 
is to merge the contour segments that belong to the same urediniospores. First, several measurements and the 
ellipse fitting algorithm are proposed, and then the merging steps are explained.

Distance measurement between contour segments.  If the distance between two contour segments is large, then 
the possibility that these two segments belong to the same urediniospore is low and vice versa. Thus, according to 
this theory, a method based on the distance measurement is used to express the relevance between these contour 
segments to eliminate the segments that had a low probability of belonging to the same urediniospore. The dis-
tance between two contour segments can be described by as

=
+ + + +

DM CS CS
d p p d p p d p p d p p d p p

,
, , , , ,

( )
[ ( ) ( ) ( ) ( ) ( )]

5
, (5)i j

i j i jM im jm iM j iM jM1 1 1 1j i j i i j

where d(pi1,pj1), d p p,( )i jM1 j
, d p p,( )iM j1i

, and d p p,( )iM jMi j
 are the Euclidian distances between the end points  

of contours CSi and CSj, and d p p,( )im jmi j
 is the Euclidian distance between the middle points of contours CSi 

and CSj.

Figure 5.  Binary images of individual and touching urediniospores: (a) binary image of individual 
urediniospores; (b) binary image of touching urediniospores.
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Ellipse fitting.  Because the urediniospores in the image resembled an ellipsoidal shape, to separate the touching 
urediniospores, the least-squares ellipse fitting algorithm proposed by Fitzgibbon et al.38 was implemented to fit 
the contour of the urediniospores. A general ellipse can be described by an implicit second-order polynomial:

α α= ⋅ = + + + + + =X XF ax bxy cy dx ey f( , ) 0, (6)2 2

with an ellipse constraint:

− =ac b4 1, (7)2

where =X x xy y x y[ 1]2 2  and α = a b c d e f[ ]T are the coefficients of the ellipse, and x and y are 
coordinates of sample points lying on it.

Equation (7) can be represented in vector form:

α α =C 1, (8)T

Figure 6.  Processing example of the proposed algorithm: (a) binary image after pre-processing; (b) contour of 
touching urediniospores; (c) red concave points on the contour; (d) contour segments; (e) candidate ellipses; (f) 
best representative ellipse of one urediniospores; (g) final separation result.
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where the constraint matrix C is of size 6 × 6, and

=













−












.C

0 0 2 0 0 0
0 1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 (9)

Polynomial F(α, Xi) is called the algebraic distance of data point (xi, yi) to ellipse F(xi, yi) = 0. Because of 
sample point errors, the deviation resulted in F(xi, yi) ≠ 0. The fitting problem of the ellipse can be resolved by 
minimising the sum of the squared algebraic distances of the set of N data points to the ellipse:

∑=
=

E F x y,( ) ,
(10)i

m

i i
1

2

which can be reformulated in vector form:

α=E D , (11)2

where the design matrix D of size N × 6 is

=





























.
     

     

D

x x y y x y

x x y y x y

x x y y x y

1

1

1 (12)

i i i i i i

m m m m m m

1
2

1 1 1
2

1 1

2 2

2 2

Vector α can be calculated using the Lagrange coefficient and differential based on Equations (8) and (11), 
which leads to the following:

α α
α α

λ




=
=

C
C

W
1

,
(13)T

where W is the scatter matrix of size 6 × 6, and λ is an eigenvalue for W:

= .W D D (14)T

Equation (13) is a generalised eigenvector system. According to the generalised eigenvalue, the solution 
method can derive the following:

α
λ

=











=











u Cu
u

u Su
u1 ,

(15)
i

i
T

i
i

i

i
T

i
i

where λi and ui are the eigenvalue and eigenvector for Equation (13).
The sum of the squared algebraic distances of the points to the ellipse can be derived as

α α α α α α αλ λ= = = = = .D D D W CE (16)T T T T2

Thus, the chosen eigenvector αi (i is the eigenvector number) that corresponds to the minimal positive eigen-
value λi represents the best-fit ellipse for the given set of points.

Deviation error measurement from the contour segments to the fitted ellipse.  When elliptical fitting is conducted 
using the candidate contour segments, the fitting degree between the candidate contour segments and fitted 
ellipse is not considered, which will result in a great deviation from the actual ellipse. In this work, to exclude the 
wrong candidate contour segments, the deviation error measurement is proposed to determine its fitness evalua-
tion from the contour segments to the fitted ellipse. Thus, the deviation error measurement can be represented as

λ= =DEM CS CE E M M,( ) / / , (17)# # #

where CS# denotes the data points of given contour segments, CE is the candidate ellipse, E is the sum of the 
least-squares algebraic distances of the data points to the ellipse and M# is the total number of points on CS#.

If the value of the deviation error is less than the threshold, then the contour segment belongs to the contour 
of the same urediniospore; otherwise, it does not.

Steps of contour segment merging.  Fig. 6d shows an example that illustrates the merging steps. As shown in 
Fig. 6d, the contour of the touching urediniospores was divided into eight contour segments. The merging steps 
of the contour segments of the touching urediniospores are as follows:
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•	 Step 1: Select the longest segment of these contour segments CS8.
•	 Step 2: Set a distance measurement threshold ωDM and measure the distance between the selected segment CS8 

and each of the remaining segments CSi. Build a set CS* if DM(CS8,CSi) < ωDM is satisfied; that is,

ω= < = … .⁎CS CS CS CS i k,{ DM( ) , 1, 2, , } (18)i i8 DM

Thus, a set CS* is constructed with CS4, CS5, CS6 and CS7 because their distance measurements are smaller than 
ωDM.
•	 Step 3: Fit ellipses with CS8 and each segment in CS* using the least-squares ellipse fitting algorithm, which is 

shown as the ellipses in Fig. 6e. Calculate the DEMs between these two contour segments (CS8 and CS4, CS8 
and CS5, CS8 and CS6, and CS8 and CS7) and their corresponding fitted ellipses. Merge CS8 with all CSi whose 
DEMs are smaller than σDEM to create CSnew, which can be represented as

σ= + < = … .CS CS CS CS CS i k, , , , ,{ DEM( ) 1 2 } (19)i inew 8 8 DEM

Because there are no segments to satisfy the condition, CS8 is merged as a new contour segment.

•	 Step 4: Fit the ellipse with this new segment CSnew as the correct ellipse for one of the touching urediniospores 
shown as Fig. 6f, where the number of urediniospores is Num + 1, and delete CSnew.

•	 Step 5: Delete CSnew from the contour segment list CSN. Check if all CSN are deleted. If so, output all correct 
ellipses and end the program. If not, go back to Step 1, and the steps are iterated until all the contour segments 
are selected to fit the best representative ellipses (Fig. 6g).

With 30 urediniospore image samples for statistical analyses, when the parameter ωDM was less than 40, all 
contour segments of the same spore were included in CS*, and when the parameter σDEM was less than 95, the 
wrong candidate contour segments were excluded. Thus, ωDM and σDEM were set to 40 and 95, respectively. The 
results of the proposed algorithm for segmenting and counting the image in Fig. 3 are shown in Fig. 7. This shows 
that the touching urediniospores were well divided.
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