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Construction of controlled-NOT 
gate based on microwave-activated 
phase (MAP) gate in two transmon 
system
Taewan Noh1, Gwanyeol Park1,2, Soon-Gul Lee2, Woon Song1 & Yonuk Chong1,3

We experimentally constructed an all-microwave scheme for the controlled-NOT (cNOT) gate between 
two superconducting transmon qubits in a three dimensional cavity. Our cNOT gate is based on the 
microwave-activated phase (MAP) gate, which requires an additional procedure to compensate the 
accumulated phases during the operation of the MAP gate. We applied Z-axis phase gates using 
microwave hyperbolic secant pulse on both qubits with adequate rotation angles systematically 
calibrated by separate measurements. We evaluated the gate performance of the constructed 
cNOT gate by performing two-qubit quantum process tomography (QPT). Finally, we present the 
experimental implementation of the Deutsch-Jozsa algorithm using the cNOT gate.

During the last decades, superconducting qubits coupled to a microwave cavity has been the key building block 
for realizing a scalable quantum processor. Remarkable improvements in qubit coherence, fidelity of qubit opera-
tion and microwave control1–6, have enabled many demonstrations of quantum algorithms7–9 in superconducting 
qubit systems. In order to implement quantum algorithms, a universal quantum gate set is required. Therefore, 
it is essential to realize controlled entagling gates between two qubits with high fidelity and efficient operation. 
Various schemes for entangling gates have been demonstrated, which includes the higher-level resonance induced 
dynamical c-Phase gate7,8,10 and the cross-resonance gate11–14. While the three dimensional (3D) transmon sys-
tem15 has advantage in showing a long coherence time, flexibility in qubit-resonator configuration, and rela-
tively simple fabrication requirements, it is more suitable to fixed-frequency qubits, and only a few entangling 
schemes16–18 for fixed-frequency qubits have been experimentally demonstrated. Meanwhile, all-microwave 
scheme-based gates can be operated with a single high-frequency cable without additional tuning wirings, so 
that they are more hardware-efficient. Therefore, by studying the microwave-activated phase (MAP) gate17 in 
more detail and constructing the controlled-NOT (cNOT) gate in a more efficient way, we hope that this study 
will be helpful for a realizing small-scale quantum processor in circuit QED system based on three dimensional 
microwave cavity.

In this paper, we present an all-microwave scheme for a cNOT gate between two transmons embedded in 
a single three dimensional microwave cavity. The cNOT gate consists of the MAP gate followed by the Z-axis 
phase gate on each qubit with systematically calibrated phases. This combination for the realization of the 
cNOT has advantage over the previous refocusing scheme16 in that the total gate time can be reduced and the 
coherence-time limited gate infidelity can be mitigated. By performing two-qubit quantum process tomography 
(QPT), we obtained the process fidelity of 0.65 for our cNOT gate. Then we applied the cNOT gate to demonstrate 
the two-qubit version of the Deutsch-Josza algorithm.

Experimental Results
Realization of the MAP gate. The MAP gate demonstrated by J. Chow et al.17 takes advantage of the 
always-on interaction between two non-computational states. When the energy levels of those states are aligned, 
the interaction is given via a common cavity mode capacitively coupled to each qubit. Because the gate speed is 
proportional to the coupling, the alignment of two states is important in order to maximize their coupling. In our 
experiment, instead of using two pre-selected fixed-frequency qubits as in ref.17, we used a tunable-frequency 
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qubit for one of the qubits so that we are able to tune the qubit frequency in-situ to an optimal value. In order to 
apply magnetic flux for frequency tuning, we used a copper cavity, in which two (one tunable and one fixed) 
transmon qubits fabricated on separate silicon substrates were mounted, as shown in the top left panel of Fig. 1(a). 
If we label the tunable-frequency qubit as Q1 and the fixed-frequency qubit as Q2 for the rest of this paper, |12〉 
and |03〉 states (where the first (second) number in the bracket stands for the state of Q1 (Q2)) are two specific 
states that need to be aligned in the MAP gate scheme. By performing the three-tone microwave spectroscopy, we 
carefully tune the magnetic flux bias through the tunable qubit (Q1) to align these two states, as plotted in 
Fig. 1(a). Two continuous wave (CW) microwave tones with the frequencies respectively corresponding to ω01 
and ω12 of Q2 populates |02〉 state, while the third tone is swept to observe the transitions from |02〉 to |12〉 and 
|03〉 states by monitoring the |02〉 state population. At the magnetic flux value optimally aligning |12〉 and |03〉 
states, the resonant frequencies ω01 of each qubit are ω01(Q1) = 5.6498 GHz and ω01(Q2) = 6.2903 GHz, respec-
tively. In addition, the resonant frequencies between the first and the second excited states ω12 are 
ω12(Q1) = 5.3336 GHz and ω12(Q2) = 5.9852 GHz, respectively. Therefore the anharmonicities of each qubit are 
α(Q1) = −316 MHz and α(Q2) = −305 MHz. The coherence times are measured to be T1 = 21 μs, ⁎T2  = 5 μs for Q1 
and T1 = 15 μs, ⁎T2  = 11 μs for Q2. Since the resonant frequencies of both qubits are far detuned from that of the 
cavity, ωr = 7.16207 GHz, and the detuning is larger compared to the coupling g (which was estimated to be 
122 MHz from a separate measurement), our system lies in the dispersive-coupling regime. We used the low-
power dispersive readout to monitor the qubit states.

Here we briefly explain the MAP gate. As depicted in Fig. 1(a), when |12〉 and |03〉 states are aligned, the split-
ting between these states occurs due to the interaction of two qubits. The magnitude δ of the splitting is measured 
to be 15 MHz for the present experiment, as shown in Fig. 1(a). We denote the frequency difference between 
|01〉 and |02〉 states as ε (which is basically the frequency difference ω12 between the first excited state |1〉 and the 
second excited state |2〉 of Q2), while the frequency difference between |11〉 and |12〉 states as ε′ = ε − δ/2. If we 
apply a microwave tone (Stark tone) with a frequency close to ε (thus close to ε′ at the same time), the ac-Stark 
shifts of the energy levels occur to the states including two of the computational states, |01〉 and |11〉. For the data 
presented in this paper, we set the frequency of the Stark tone as 6.0152 GHz, which is detuned from ω12(Q2) by 
30 MHz. It should be noted that the amount of the ac Stark shifts δε for |01〉 state and δε′ for |11〉 state are differ-
ent, i.e., δε ≠ δε′, since the detuning of the Stark tone is different due to the existence of the splitting δ. This is the 
basic principle of the MAP gate. The amount of the energy shift induced by the Stark tone can be observed by 
a Ramsey experiment. With the state of Q1 at |0〉, the Ramsey experiment on Q2 exhibits the oscillation of the 

Figure 1. (a) Top left: Scanning electron microscope image of two qubits (scale bar is 1 μm) with schematic 
diagram of the three dimensional circuit QED system configuration. Top right: Energy diagram of the two-qubit 
system. Four states inside the green solid box compose the computational states. The states |12〉 and |03〉 are 
tuned in situ by adjusting the magnetic flux bias through Q1. Bottom Left: The experimental result of three-
tone microwave spectroscopy. The color plot shows the |02〉 population. |12〉 and |03〉 states are aligned at the 
current bias value of −6.48 mA. Bottom right: Schematic representation of transitions induced by three-tone 
microwave spectroscopy. Orange (purple) dashed line corresponds to the transition from |02〉 to |12〉 (from 
|02〉 to |03〉). Due to the avoided crossing of two transitions, solid black lines are observed in the experiment. 
The straight line in between appears due to the transition from |00〉 to |10〉 and from |01〉 to |11〉, to which the 
reduction of the population at |02〉 state is attributed. (b) Top: Illustration of the pulse sequence of the MAP 
gate. With the π pulse for Q1 on (off), the Ramsey fringe between |00〉 and |01〉 (|10〉 and |11〉) is induced by a 
Stark tone. Bottom: Experimental result of the Stark tone-induced Ramsey fringe. Here the |00〉 state population 
is measured for |00〉–|01〉 Ramsey, and the |10〉 state population for |10〉–|11〉 Ramsey. The oscillation period 
is determined by the amount of the shift δε for the state |01〉 (δε′ for |11〉) as shown in (a). At tg = 1070 ns, two 
traces are completely out-of-phase.
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population between the states |00〉 and |01〉 with the oscillation frequency given by δε. On the other hand, with 
the state of Q1 in |1〉, the oscillation occurs between the states |10〉 and |11〉 but now the oscillation frequency 
is δε′. Due to the difference between δε and δε′, two traces of the Ramsey experiment would be completely 
out-of-phase at a certain time tg. As we increase the power of the Stark tone or make the frequency of the Stark 
tone closer to ω12 of Q2, the Ramsey oscillation becomes faster and tg becomes shorter. Short tg is advantageous 
considering the finite coherence time of the qubits. However, the leakage to higher non-computational states due 
to the strong Stark drive tone develops at the same time, hence there exists a trade-off between the time tg and the 
infidelity caused by the leakage.

Implementation of Z-axis phase gate based on hyperbolic secant pulse. Applying the MAP gate for 
tg results in a conditional operation depending on the state of Q1, but at the same time, a certain amount of the 
additional phase accumulation occurs during the operation which depends on the initial state. For example, the 
four initial states |00〉, |01〉, |10〉, and |11〉 are transformed to | 〉φe 00i 00 , | 〉φe 01i 01 , | 〉φe 11i 10 , and | 〉φe 10i 11 , respectively. 
We only need to take into account the relative phase accumulation by setting the global phase φ00 = 0, and then by 
rewriting phases as φ = φ01, φ′ = φ10, and φ + φ′ = φ11, the matrix representation of the MAP gate can be written as

=













φ

φ φ

φ

+ ′

′

U e
e

e

1 0 0 0
0 0 0
0 0 0
0 0 0 (1)

i

i

i

MAP ( )

in |00〉, |01〉, |10〉, and |11〉 basis. In order to construct the cNOT gate out of the MAP gate, the phases φ and 
φ′ need to be compensated. The compensation of the phases has been realized in the experiments by the cur-
rent pulse-based Z-gate7,8 or the refocusing method16. While the current pulse method is only applicable to 
dynamically-tunable qubit systems, the refocusing method can be applied to fixed-frequency qubits. Although 
our system includes a tunable-frequency qubit, our qubits are operated as fixed-frequency qubits once we fix the 
flux bias at its optimal value. Since the refocusing method requires application of at least two conditional gates, 
there is a limit in gate fidelity improvement due to the long operation time, especially when the coherence time 
is not long enough (which is usually the case). This would be more prominent as the number of qubits in the 
system increases. Therefore, we adopt a different scheme for compensating unwanted phases. The Z-axis phase 
gate recently reported by H. Ku et al.19 takes advantage of the unique property of the hyperbolic secant pulse20. 
Unlike other frequently used pulse shapes such as square or Gaussian, hyperbolic secant shape envelop on a 
microwave tone with frequency ωD can drive Rabi oscillations of a two-level system with the oscillation period 
independent of the detuning of microwave frequency Δ = ωD − ω01 as shown in Fig. 2(a). Therefore, regardless of 
the drive frequency ωD, an arbitrary initial state |Ψ〉 = a|0〉 + b|1〉 should maintain the probability of being at the 
ground state (excited state) as |a|2 (|b|2) after a 2π cyclic evolution driven by hyperbolic secant pulse. This leads 
the wavefunction to a|0〉 + eiφb|1〉 with φ being determined by the detuning Δ. This is the principle of the Z-axis 
phase gate with a single parameter Δ.

Experimental demonstration and calibration of the Z-axis phase gate was conducted as illustrated in the inset 
of the Fig. 2(b): (i) Rotate the initial state |0〉 by π/2 along Y axis. (ii) Apply a hyperbolic secant pulse correspond-
ing to 2π rotation. (iii) Perform single-qubit quantum state tomography (QST) to estimate the expectation value 
of 〈X〉, 〈Y〉, and 〈Z〉 of the resulting quantum state on the Bloch sphere. (iv) Repeat from (i) to (iii) by varying the 
frequency of the microwave ωD applied with the hyperbolic secant pulse in (ii). The plot in Fig. 2(b) exhibits the 
result of the Z-axis phase gate implemented on Q1 of our system for three different pulse lengths 200 ns, 300 ns, 
and 400 ns (2π cyclic rotation). The envelope of hyperbolic secant pulse extends over ±4σ where σ is the standard 
deviation. For all cases, while the polar angle θ with respect to Z-axis remains constant at π/2, azimuthal angle φ is 
rotated around Z-axis as a function of the detuning Δ. The dependence of φ on the detuning Δ shows good agree-
ment with the expected relation, φ = 4 arctan(Δ/ρ), where the bandwidth ρ is related to the standard deviation of 
the hyperbolic secant pulse σ by σ = π/(2ρ)19. The fidelity of the quantum state at each value of the detuning can 
be extracted by using the formula F = Tr[ρtheρexp], where ρthe and ρexp are the theoretical and experimental density 
matrix of the target quantum state respectively. The estimated fidelity is shown in Fig. 2(c) for the range of the 
detuning −5 MHz ≤ Δ ≤ 5 MHz for both Q1 and Q2, which exhibits the average of the state fidelity roughly 0.95 
for Q1 and 0.97 for Q2.

Now we implement the Z-axis phase gate in our system to compensate the phases accumulated during the 
MAP gate. The combination of the pulse length of Z-axis phase gate and the corresponding detuning for a specific 
rotation angle can be chosen arbitrarily. However, according to Ku et al.19, large detuning can cause infidelity. 
Thus, we have chosen 400 ns as the pulse length with which wan can produce larger angle rotation with smaller 
detuning, while the fidelity remains the same as the shorter pulse length cases. We then attempt first to compen-
sate the phase φ in the matrix UMAP shown above, which can be observed by applying the MAP gate on an initial 
state | 〉 + | 〉( 00 01 )1

2
, resulting in | 〉 + | 〉φe( 00 01 )i1

2
. Adding Z-axis phase gate on Q2 (Z2 gate), after the MAP 

gate permits us to control φ with the detuning Δ2 of the microwave frequency for the Z2 gate. Then the final state 
can be estimated by performing two-qubit QST at each value of Δ2. By this procedure we are able to determine 
the value of Δ2 for compensating φ. However, the large number of measurements required to run the entire 
two-qubit QST protocol is a big overhead. Instead, we used only a few measurements which are sensitive to the 
modulation of φ. For example, as shown in the top left plot in Fig. 3(a), among 36 over-complete set of pre-pulses 

⊗π π π π π π± ± ± ±I X X Y I X X Y{ , , , } { , , , }/2 /2 /2 /2  prior to the readout of two-qubit QST, the one with I ⊗ I pre-pulse 
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is insensitive to the evolution of the state | 〉 + | 〉φe( 00 01 )i1
2

 when the phase φ is modulated (black open circle). 
In contrast, the one with different pre-pulses such as ⊗π πX X/2 /2 (orange open triangle) or ⊗π πY Y/2 /2 (navy 
open square) is sensitive. The theoretical estimation is based on the actual calibration of the joint two-qubit read-
out measurement operator21,22, M = βIIII + βZIZI + βIZIZ + βZZZZ with βII = 2.72, βZI = 1.1, βIZ = 0.86, and 
βZZ = 0.44 in our specific measurement setup. While we measure the population of the state being at |00〉, there is 
a finite contribution to the readout from other computational states, |01〉, |10〉, and |11〉, which are represented as 
the β parameters and are calibrated from the experiment for the configuration of our readout pulse. For example, 
in case of applying ⊗I I , ⊗π πX X/2 /2 and ⊗π πY Y/2 /2 pre-pulses, the readouts of the final state are represented as 
βII + βZI, βII + βIZ · sin φ and βII + βIZ · cos φ, respectively. Therefore, the readout of the final state exhibits the min-
imum value at φ = 0 and the maximum at φ = ±π when ⊗π πY Y/2 /2 pre-pulse is applied, which corresponds to 

| 〉 + | 〉( 00 01 )1
2

 and | 〉 − | 〉( 00 01 )1
2

, as shown in the left plot in Fig. 3(a). In the experiment, we measured the 
evolution of the state | 〉 + | 〉φe( 00 01 )i1

2
 as we modulate the phase φ with the gate Z2(Δ2) by applying two of the 

QST protocols including the pre-pulses ⊗π πX X/2 /2 and ⊗π πY Y/2 /2, as shown in the right plot in Fig. 3(a). The 
dotted lines are the theoretical estimations borrowed from the left plot with the conversion between the phase φ 
and the detuning Δ2 obtained from a separate measurement in Fig. 2(b). Qualitative agreement of the measured 
data with the theoretical estimation is observed in the plot. The discrepancy arises mainly due to the decoherence 

Figure 2. (a) Left: Detuning map of Rabi oscillation of Q1 driven by a microwave tone with hyperbolic secant 
pulse. Right: Rabi oscillations (taken from the left) with four different values of detuning Δ, 0 MHz, 3 MHz, 
6 MHz, and 9 MHz. Here the pulse length was fixed to be 400 ns. (b) Demonstration of the Z-axis phase gate on 
Q1 based on hyperbolic secant pulse. The schematic sequence to perform a single-qubit QST after applying a 
Z-axis phase gate is illustrated above the plot. The results of the polar angle θ (red circle, square, and triangle) 
and the azimuthal angle φ (black circle, square, and triangle) for three different pulse lengths 200 ns, 300 ns, 
and 400 ns of 2π cyclic rotation in the range of detuning −5 MHz ≤ Δ ≤ 5 MHz are shown in the figure. (c) 
Estimated state fidelity for each quantum state constructed in (b) by performing single-qubit QST for Q1 (upper 
panel) and Q2 (lower panel).
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caused by the long operation time of the MAP gate, compared to the coherence times of both Q1 and Q2, before 
applying any set of prepulses. Then we performed the entire protocols of two-qubit QST for specific values of 
Δ2 = −0.2 MHz (near 0 in terms of the rotation angle induced by the Z2) and 3.0 MHz (near π). We confirmed 
that the density matrix of the state indeed appeared as the one for | 〉 + | 〉( 00 01 )1

2
 and | 〉 − | 〉( 00 01 )1

2
 respec-

tively, as shown in the right side of Fig. 3(a). The state fidelity of the resulting quantum state is 0.75 for both 
detunings according to the estimation by QST. It should be noted that the resulting angle φ after applying the 
MAP gate on the state | 〉 + | 〉( 00 01 )1

2
 is very close to zero only for this specific choice of the power of the Stark 

tone, but this should not be always the case. We determine the optimal value of Δ2 for compensating the phase φ 
as −0.2 MHz for the current setup of the experiment.

The phase φ′ can be compensated in a similar manner. By preparing an initial state | 〉 + | 〉( 00 10 )1
2

 and apply-
ing the MAP gate, we generate | 〉 + | 〉φ′e( 00 11 )i1

2
. In addition to the Z2 gate with the detuning fixed at the opti-

mal value Δ2 = −0.2 MHz, the Z-axis phase gate on Q1, namely Z1 gate, is applied after the MAP gate together 
with the Z2 gate. Because our goal is to compensate the total accumulated phase in the end, this sequence of 
compensating the phase of each qubit one by one on top of other qubit’s compensation guarantees that 
n-measurements will complete the calibration for n-qubit case in general. In order to find the optimal value for 
Δ1, we perform two-qubit QST with the pre-pulses ⊗π πX X/2 /2 and ⊗π πY Y/2 /2 as we modulate the phase φ′ with 
the Z1(Δ1) gate. Theoretically, in case of applying ⊗I I , ⊗π πX X/2 /2 and ⊗π πY Y/2 /2 pre-pulses, the readouts of 

Figure 3. (a) Left: Theoretical estimation of applying protocols of three different pre-pulses, ⊗I I  (black open 
circle), ⊗π πX X/2 /2 (orange open triangle) and ⊗π πY Y/2 /2 (navy open square) on the state | 〉 + | 〉φe( 00 01 )i1

2
. 

Middle: Experimental result of applying protocols of pre-pulses ⊗π πX X/2 /2 (orange cross square) and 
⊗π πY Y/2 /2 (navy cross circle). Dotted lines are borrowed from the left. Right: The reconstructed density matrix 

by two-qubt QST. Δ2 = −0.2 MHz (top) and 3.0 MHz (bottom). (See the main text for the detailed explanation) 
(b) Left: Theoretical estimation of applying protocols of three different pre-pulses, ⊗I I  (black open circle), 

⊗π πX X/2 /2 (pink open triangle) and ⊗π πY Y/2 /2 (green open square) on the state | 〉 + | 〉φ′e( 00 11 )i1
2

. Middle: 
Experimental result of applying protocols of pre-pulses ⊗π πX X/2 /2 (pink cross square) and ⊗π πY Y/2 /2 (green 
cross circle). Dotted lines are borrowed from the left. Right: The reconstructed density matrix by two-qubt QST. 
Δ1 = 2.8 MHz for the top and −0.8 MHz for the bottom with Δ2 is fixed at −0.2 MHz as determined above. (See 
the main text for the detail).
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the final state are represented as βII + βZZ, βII − βZZ · cos φ′ and βII + βZZ · cos φ′, respectively. Therefore, the readout 
of the final state exhibits the minimum value at φ′ = 0 and the maximum at φ′ = ±π when ⊗π πX X/2 /2 pre-pulse 
is applied, which corresponds to | 〉 + | 〉( 00 11 )1

2
 and | 〉 − | 〉( 00 11 )1

2
. On the other hand, the maximum value 

appears at φ′ = 0 and minimum appears at φ = ±π when ⊗π πY Y/2 /2 pre-pulse is applied, which is shown in the 
left plot in Fig. 3(b). The right plot shows the experimental results which exhibits a qualitative agreement with the 
theoretical expectation. With Δ1 fixed at 2.8 MHz (0.85π in terms of the rotation angle) and −0.8 MHz (−0.15π) 
respectively, which correspond to the maximum and the minimum of the trace obtained in case of ⊗π πY Y/2 /2 
pre-pulses, we perform the entire protocol of two-qubit QST. The reconstructed density matrix represents 

| 〉 + | 〉( 00 11 )1
2

 and | 〉 − | 〉( 00 11 )1
2

 as expected. Here the state fidelities are estimated to be 0.75 from the QST 
result. This leads us to determine the optimal value of Δ1 as 2.8 MHz for compensating the phase φ′. As the final 
check, we apply the MAP gate to an initial state | 〉 + | 〉( 01 11 )1

2
 and observe that the final state results in 

| 〉 + | 〉( 01 10 )1
2

 by the addition of the Z1 and Z2 gates with the optimal detuning values Δ1 = 2.8 MHZ and 
Δ2 = −0.2 MHz. This confirms the cancellation of the phase factor ei(φ+φ′) in the matrix UMAP.

Evaluation of the cNOT gate and demonstration of the Deutsch-Jozsa algorithm. Now we will 
confirm that we constructed the cNOT gate based on the MAP gate, and estimate the process fidelity of the Z-gate 
and the cNOT gate. Quantum process tomography (QPT) is a protocol for such purpose, which is used to analyze 
any arbitrary gate in the system. We adopted the protocol used in ref.23 where the Pauli transfer matrix R mapping 
the input Pauli state vector →pin in the basis of two-qubit Pauli operator into the output Pauli state vector →pout, i.e., 
→ = →Rp pout in, is extracted. QPT consists of preparation of initial state, application of the gate of interest, and QST 
in order to tomographically reconstruct the final state by 36 over-complete set of pre-pulses prior to the readout 
pulse. Since we utilize the same 36 pre-pulses to prepare the initial states, QPT for a single gate of interest is 
accomplished by running 36 × 36 = 1296 measurements. Then the experimental Pauli transfer matrix R is esti-
mated via maximum-likelihood estimation in which R should take the form of a physical matrix that satisfies the 
conditions of trace preserving and complete positivity.

We implemented the protocols for two-qubit QPT in our system and tested several gates including single-qubit 
gates and two-qubit gates. For example, in addition to the rotation gate along X and Y axes, we performed QPT 
for the Z1(Δ1) and the Z2(Δ2) gate. These gates play crucial roles in constructing the cNOT gate in our experi-
ment, therefore, the fidelities of those Z-phase gates are to be estimated. Figure 4(a) shows the Pauli transfer 
matrix R extracted for the special cases of Δ1 and Δ2 corresponding to the gate ⊗πZ I/2  (left) and ⊗ πI Z /2 
(right). The ideal matrices R are shown together for comparison. For this example, we chose the pulse length of 
both Z1 and Z2 gates as 300 ns with the detuning Δ1 = 1.85 MHz for Z1 gate and Δ2 = 1.65 MHz for Z2 gate (rota-
tion angle = π/2). The process fidelity defined as = + +†F R R d d d(Tr[ ] )/( )g ideal exp

2 23 with d = 4 for two-qubit 
system is estimated to be 0.90 for both ⊗πZ I/2  and ⊗ πI Z /2. Based on the experimental results of the state fidel-
ity shown in Fig. 2(c), we expect the process fidelity to be more or less the same for different pulse lengths 200 ns, 
300 ns, and 400 ns. It should be noted that the fidelity estimation by QPT gives lower value compared to QST 
results. We think that the difference of QPT and QST estimation of fidelity can be attributed to possible drift in 
the system or intermittent noise during the long pulse sequence of the entire protocol of QPT, which includes over 
thousand measurements. To be more specific, running the protocol of QST usually takes less than 10 minutes in 
our system whereas it takes more than 4 hours to run the entire protocol of QPT. For the two-qubit gate, the sche-
matic pulse sequence of two-qubit QPT when the gate of interest is the cNOT gate is illustrated in the top panel of 
Fig. 4(b). As we explained above, the cNOT gate consists of the MAP gate with the gate time tg of 1070 ns followed 
by the Z-phase gate of 400 ns gate time on each qubit with Δ1 = 2.8 MHz and Δ2 = −0.2 MHz for the phase com-
pensation. The bottom panel of Fig. 4(b) reveals the Pauli transfer matrix R reconstructed from the experimental 
data. By comparing the experimental R with the R shown on the right side, we obtained the process fidelity of 0.65 
for our cNOT gate by QPT.

As a further demonstration of the cNOT gate we constructed, we applied it to the Deutsch-Jozsa algorithm24. 
In the simplest form of the Deutsch–Jozsa algorithm, one can determine whether an unknown function is a con-
stant function or a balanced function by doing a single query. We implemented two-qubit version of the algo-
rithm, where there are two constant functions (f0(x) = 0 and f1(x) = 1) and two balanced functions (f2(x) = x and 
f3(x) = 1 − x). Figure 5(a) describes the gate sequence for running the Deutsch-Jozsa algorithm. The encoding 
unitaries Ui for four functions are = ⊗U I I0 , = ⊗ πU I X1  U2 = cNOT, and = ⊗ ⊗π π−U Y I Y I( )cNOT( )3 . The 
results of the Deutsch-Jozsa algorithm are summarized in Fig. 5(b) as the density matrices of the output states. 
Although the contrast for the balanced functions f2 and f3 are lower than those of the constant functions f0 and f1 
due to the infidelity of the cNOT gate, the result is consistent with the theoretical prediction. This again confirms 
correct function of the constructed cNOT gate with the combination of the Z-axis phase gates and the MAP gate.

Discussion
In summary, we constructed the cNOT gate between two fixed-frequency transmon qubits embedded in a three 
dimensional microwave cavity. The cNOT gate is based on the MAP gate which is an all-microwave entangling 
gate scheme. We used in-situ tuning of one of two qubits in order to optimally align the energy levels between two 
transmons. The tunability is a requirement for the optimal MAP gate operation and also enables detailed study 
of the MAP gate. Then the cNOT gate is realized by adding the sech-pulse based Z-axis phase gate on each qubit 
with an appropriate rotation angle. This compensates the accumulated phase on the computational states during 
the operation of the MAP gate. We adopted a protocol for the calibration of the accumulated phases from the 
MAP gate which works for any entangling c-phase gate in general. This method of adding Z-axis phase gate pro-
vides a better phase compensation scheme compared to the refocusing method used in previous studies, in that 
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this scheme can benefit from reduction of the number of pulses and the total gate time. We performed two-qubit 
QPT on our cNOT gate and we extracted the Pauli transfer matrix with the process fidelity of 0.65. As an appli-
cation to a real algorithm, we experimentally demonstrated the Deutch-Jozsa algorithm using the cNOT gate.

We observe errors in the cNOT gate from the fidelity measurement. We speculate that the infidelity can be 
attributed to (1) the decoherence during the long operation time of the cNOT gate, and (2) the leakage of the 
population into higher non-computational states mediated by the strong Stark tone. As a simple, conservative 
estimation of the decoherence induced infidelity, we consider our cNOT gate time of 1.47 μs (1.07 μs for the MAP 
gate plus 400 ns for Z-gate) compared to the worst ⁎T2  of 5 μs in Q1. In this case, we would lose about 25% 
(~exp[−1.47/5]) of contrast of the Ramsey fringe after the total gate time of the cNOT gate. Alternatively, since 
our Z-gate has quite high fidelity (>0.95 including SPAM), we may be able to include only the MAP gate time of 
1.07 μs for major dephasing process, which gives about 20% (~exp[−1.07/5]) loss of contrast after the MAP gate. 
These estimations roughly explain the majority of the infidelity we observed, but not all. We also need to note that 
the strong Stark tone we applied for the MAP gate also induces loss of Ramsey contrast, compared to a weak Stark 
tone drive. We infer this Stark-tone induced infidelity is due to the leakage of the population to the higher 
non-computational states. (In addition to shifting levels, the Stark tone drives transition from |01〉 and |11〉 states 
to |02〉 and |12〉 states non-resonantly). One obvious strategy to overcome both of these problems is to increase 
the coherence time of the qubits with the same setup, which is always possible. An alternative strategy is to 
enhance the vacuum Rabi coupling g, hence to increase the interaction between two qubits and the splitting 
between |12〉 and |03〉 states. Then a Stark tone with a lower power can lead to a reasonably shorter MAP gate time 
tg compared to the available coherence time without such a large leakage to higher states.

Figure 4. (a) Pauli transfer matrix R of the single-qubit gate ⊗πZ I/2  and ⊗ πI Z /2 by two-qubit QPT. For each 
gate, ideal R is represented along with the experimental R for comparison. (b) Pauli transfer matrix R of the 
cNOT gate reconstructed from experimental data (left) along with the ideal matrix (right). (c) Schematic 
diagram of the pulse sequence for two-qubit QPT in case of the cNOT gate.
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Methods
The Al/AlOx/Al tunnel junction was fabricated on a high-resistivity Si substrate by electron beam lithography 
followed by two- angle shadow mask deposition. The samples are mounted inside a 3D copper cavity, and the 
package is cooled down to 7 mK in the cryogen-free dilution refrigerator. For qubit control, pulse sequences are 
generated by an arbitrary waveform generator (AWG) and the microwave signal is controlled by IQ modulation. 
For qubit readout, the microwave signal is amplified by a cryogenic HEMT amplifier and then a series of room 
temperature amplifiers. We used low power dispersive readout of qubits.
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