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Multipartite Entanglement at Finite 
Temperature
Marco Gabbrielli, Augusto Smerzi & Luca Pezzè

The interplay of quantum and thermal fluctuations in the vicinity of a quantum critical point 
characterizes the physics of strongly correlated systems. Here we investigate this interplay from a 
quantum information perspective presenting the universal phase diagram of the quantum Fisher 
information at a quantum phase transition. Different regions in the diagram are identified by 
characteristic scaling laws of the quantum Fisher information with respect to temperature. This feature 
has immediate consequences on the thermal robustness of quantum coherence and multipartite 
entanglement. We support the theoretical predictions with the analysis of paradigmatic spin systems 
showing symmetry-breaking quantum phase transitions and free-fermion models characterized by 
topological phases. In particular we show that topological systems are characterized by the survival of 
large multipartite entanglement, reaching the Heisenberg limit at finite temperature.

A quantum information approach to the study of quantum phase transitions (QPTs)1–3 sheds new light on these 
many-body phenomena4 and pushes our understanding of the puzzling behavior of strongly-correlated systems5–7 
beyond standard methods in statistical mechanics8. Entanglement in the ground state of a many-body 
Hamiltonian ˆ ˆ ˆλ λ= +H H H( ) 0 1 – where Ĥ0 and Ĥ1 are non-commuting operators and λ is a control parameter 
– has been extensively investigated close to a quantum critical point λc

1–3,9–13. Yet, less is known about the survival 
of entanglement at finite temperature9,14, including the peculiar quantum critical region that fans out from λc

4,15,16. 
This regime is particularly interesting due to the competition of thermal and quantum fluctuations4,15,16 and plays 
a key role in interpreting a wide variety of experiments in synthetic matter17–26.

Current studies on entanglement in strongly-correlated systems1–3 have mainly focused on bipartite and pair-
wise entanglement27. This is, however, clearly unsuited to capture the richness of multiparticle correlations and 
hardly accessible experimentally in systems of a large number of particles28 that are the natural targets of quantum 
simulators29,30. Much less attention has been devoted to witnessing multipartite entanglement31–37 and this has 
been mainly limited to spin models. While only few witnesses are known in the literature38, multipartite entangle-
ment up to hundreds/thousands of spins has been successfully detected experimentally in atomic ensembles39. 
Among these witnesses, the quantum Fisher information (QFI) has proved to be especially suitable39–43 and it is 
currently attracting considerable interest37,44–51. The QFI has an appealing operational meaning in terms of statis-
tical speed of quantum states under external parametric transformations44,45, it extends the class of states detect-
able by popular methods such as the spin squeezing40,44,52–54, and it can witness entanglement in spin systems37,47,55 
as well as in free-fermion topological models48,49. Furthermore, the QFI can be extracted experimentally using a 
statistical distance method44,45, or by a weighted integral of the dynamic susceptibility across the full spectrum37. 
Measurable lower bounds to the QFI have been extracted experimentally44,53,54 and proposed theoretically56–58. 
The QFI ˆ ˆρF O[ , ]Q  plays a central role in the theory of quantum coherence59–63: it quantifies the coherent extent of 
a generic state ρ̂ over the eigenstates of the operator Ô, vanishing if and only if ˆ ˆρ =O[ , ] 0. Multipartite entangle-
ment is witnessed when the QFI overcomes certain finite bounds: as discussed below41,42, ˆ ˆρ κ>F O N[ , ]Q  is only 
achievable if ρ̂ contains (κ + 1)-partite entanglement among N parties and Ô is a local operator.

In this manuscript we show that the QFI of a many-body system at thermal equilibrium in the vicinity of a 
quantum critical point λc has the universal behavior shown in Fig. 1. At low temperature, the QFI satisfies the 
inequality
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Here, ρ̂T is the thermal state at temperature T (here and in the following the Boltzmann constant is set to 1), μ 
and ν indicate the degeneracy of the ground state of energy Egs and first excited state of energy Eex, respectively, 
and Δ = Eex − Egs is the first energy gap in the many-body spectrum. Equation (1) is valid for  ΔT  and shows 
that, regardless on the microscopical details of the system, the lower bound to ˆ ˆρF O[ , ]Q T  factorizes in a thermal 
and a quantum contribution. The thermal decaying function on the right side of the inequality (1) only depends 
on the structure of the low-energy spectrum, i.e. the energy gap and the degeneracy of the energy eigenstates. The 
bound is tight for T → 0, where ˆ ˆρF O[ , ]Q 0  is the zero-temperature limit of the QFI and depends whether the 
ground state is degenerate or not.

If the ground state is nondegenerate (μ = 1), given by the pure state |ψ0〉, a Taylor expansion of the right-hand 
side of Eq. (1) gives
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and shows that the QFI is bounded from below by a constant for T Tcross, where Tcross ≈ Δ/log(3 + ν). This 
defines a quantum plateau (QP) where the zero-temperature QFI, ˆψ| 〉F O[ , ]Q 0 , is insensitive to thermal fluctua-
tions, being protected by the finite energy gap Δ. In particular, if |ψ0〉 hosts multipartite entanglement witnessed 
by the QFI, such multipartite entanglement is robust against temperature for T Tcross. In the following we pro-
vide examples of systems characterized by large multipartite entanglement in the ground state (even approaching 
the Heisenberg scaling at finite T, see Sec. IV) that is insensitive to small temperatures.

Whenever the ground state is degenerate (μ > 1), in the limit T → 0 the QFI is given by ˆ ˆρF O[ , ]Q 0 , where ρ̂0 is 
the incoherent mixture of the μ degenerate ground states, see Sec. II. According to Eq. (1),
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Also in this case, the lower bound remains constant for T Tcross, where Tcross ≈ Δ/log(3 + ν/μ). If the ground 
state becomes degenerate only in the thermodynamic limit, this constant value defines a thermal plateau (TP) 
where thermal fluctuations strongly affect the QFI of the (pure) ground state |ψ0〉 outside the thermodynamic 
limit, but not the QFI of the incoherent mixture ρ̂0. In other words, the QFI of the ground state ˆψ| 〉F O[ , ]Q 0  may be 
very high – |ψ0〉 being given for instance by a maximally entangled state – but it exponentially decays with tem-
perature to a much smaller value ˆ ˆρF O[ , ]Q 0  that remains constant up to Tcross. In Fig. 1 we schematically plot the 
case of a typical symmetry-breaking model, where the TP (matching the ordered phase) and the QP (matching 
the disordered phase) are found on different sides of the critical point. Examples of symmetry-breaking models 
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Figure 1. Schematic general behavior of the scaling of the QFI in the vicinity of a critical point. Control 
parameter λ versus temperature T for the QFI of a critical many-body system. We distinguish four regions 
depending on the scaling exponent β = d log FQ/d log T of the QFI with respect to temperature: a quantum 
plateau (QP), a thermal plateau (TP), a critical plateau (CP) and a maximum entropy plateau (MEP). QP 
and TP are defined from the lower bound Eq. (1), showing that the QFI remains at least constant (β ≥ 0) up 
to a crossover temperature Tcross (white solid line) of the order of the first nonvanishing gap Δ in the energy 
spectrum (dashed line). The characteristic feature of the TP region is the degeneracy of the ground state: in the 
thermodynamic limit, the QFI suddenly decreases from its value at T = 0 to the plateau value. In the CP, the 
QFI follows a scaling law controlled by critical exponents of the model, β = −ΔQ/z, according to Eq. (4). For 
temperatures larger than Tmax (dotted line) – approximatively equal to the maximum energy of the spectrum – 
the QFI enters the MEP where β = −2. In the crossover grey regions the thermal decay is non-universal.
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will be discussed in more details in Sec. III. In the absence of ground-state degeneracy, the TP is absent and the 
QP is found on both sides of the critical point. This behavior is found for topological closed chains, as shown in 
Sec. IV.

At finite temperature and for values of λ around the critical point λc, a scaling hypothesis for the dynamical 
susceptibility37 predicts

ˆ ˆρ
∼ −ΔF O

N
T

[ , ]
, (4)

Q T z/Q

Here, N is the total number of parties in the system (e.g. the total number of spins), ΔQ is the exponent37 that 
characterizes the finite-size scaling of the QFI with respect to N at T = 0 and λ = λc, i.e. ψ| 〉 ∼ ΔˆF O N N[ , ]/Q

d
0

/Q , 
and z is the dynamical critical exponent. We thus identify a region of parameters in the vicinity of the critical 
point (T > 0) that we call critical plateau (CP) where the QFI follows the scaling behavior Eq. (4) as a function of 
temperature. In general, we expect that the CP extends for λ λ| − |νT z

c , where ν is the correlation-length 
critical exponent. This region matches a quantum critical regime4,16 where the scaling behavior of a quantum 
coherence measure, the QFI, at finite temperature is controlled by critical exponents of the transition. In Fig. 1 the 
CP is schematically represented as a triangular region. The CP is separated from the TP and QP by a 
model-dependent smooth decay for ≈T Tcross.

Finally, for temperatures of the order of the interaction energy scale of the system, no multipartite entangle-
ment is witnessed by the QFI. Moreover, for temperatures larger than the maximum energy of the spectrum, the 
QFI decays as

ˆ ˆρ ∼ .−F O T[ , ] (5)Q T
2

This defines a fourth plateau that we identify as maximum entropy plateau (MEP). In this regime, all eigen-
states are approximatively equally populated.

It is worth clarifying that the operator Ô in Eqs (1–3) and (5) is arbitrary, while Eq. (4) holds for the order 
parameter of the quantum phase transition.

The manuscript is organized as follows: in Sec. II, we provide a detailed derivation of the equations discussed 
above. In the remaining sections, we draw the finite-temperature phase diagram of the QFI in hallmark systems, 
recovering the schematic behavior shown in Fig. 1. In Sec. III we study symmetry-breaking QPTs, focusing on the 
Ising model and the bosonic Josephson junction, while in Sec. IV we consider topological QPTs, in particular the 
Kitaev chain also with variable range pairing. Finally, discussions and conclusions are reported in Sec. V.

Methods and Results
Quantum Fisher information, multipartite entanglement and quantum coherence. The QFI 
quantifies the distinguishability between nearby quantum states ρ̂ and ρ̂φ

 related by an arbitrary transformation 
depending on the parameter φ. The Uhlmann fidelity64 between ρ̂  and ρ̂φ

 is ρ ρ ρ ρ ρ= 
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 provided that pk + pk′ ≠ 0. The QFI has key math-

ematical properties65–68, that allow the derivation of relevant bounds, see Fig. 2:

 i) Convexity. The QFI is nonnegative and convex in the state:

ˆ ˆ∑ ∑ρ ρ≤φ φF q q F[ ] [ ],
(6)Q

i
i

i

i
i Q

i( ) ( )

for any state ρ̂φ
i( ) and qi ≥ 0.

Figure 2. Bounds of the QFI. For unitary phase-encoding transformations, ˆ ˆρ =F O[ , ] 0Q  if and only if the state 
is incoherent. Among quantum coherent states, ˆ ˆρ >F O[ , ] 0Q , we can find bounds to the QFI depending on the 
entanglement properties of the state: ˆ ˆρ ≤F O b[ , ]Q 1 for separable states [orange region, where b1 is also indicated 
as shot-noise (SN) limit], ˆ ˆρ ≤ κF O b[ , ]Q  for κ-partite entangled states with 1 ≤ κ ≤ N − 1 [green region], and 

ˆ ˆρ ≤F O b[ , ]Q N  for all possible states [where bN is also indicated as Heisenberg limit (HL)]. The bounds bκ 
depend, in general, on the operator Ô.
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 ii) Additivity. The QFI is additive under tensor product:

ˆ ˆ ˆ ˆρ ρ ρ ρ⊗ = + .φ φ φ φF F F[ ] [ ] [ ] (7)Q Q Q
(1) (2) (1) (2)

 iii) Monotonicity. The QFI always decreases under arbitrary parameter-independent completely positive 
trace-preserving map Λ:

ˆ ˆρ ρΛ ≤φ φF F[ ( )] [ ], (8)Q Q

with equality for φ-independent unitary transformations.

In the following we will restrict to unitary transformations, ˆ ˆ
ˆ ˆ

ρ ρ=φ
φ φ−e eO Oi i  where Ô is a generic Hermitian oper-

ator that we will specify below. The unitary transformation only evolves the eigenstates of ρ̂ and leave its eigenval-
ues unchanged. For unitary transformations, the QFI has the following further properties:

 iv) The QFI satisfies

ˆ ˆ ˆ ˆˆ ˆ
ˆρ ρ≡ ≤ Δφ φ
ρ

−F F O O[e e ] [ , ] 4( ) , (9)Q
O O

Q
i i 2

with equality for pure states.
 v) The QFI vanishes if and only if ρ̂ and Ô can be diagonalized simultaneously:

ˆ ˆ ˆ ˆρ ρ= ⇔ = .F O O[ , ] 0 [ , ] 0 (10)Q

QFI and quantum coherence. The coherence of a quantum state ρ̂ is defined from its distinguishability with respect to 
the set of states that are diagonal in a given basis59. Here such a basis is given by the eigenstates of the operator Ô, and 
incoherent states are those satisfying ˆ ˆρ =O[ , ] 0. In addition to the properties (i) and (v), the QFI does not increase 
under operat ions that  conser ve Ô ,  namely ˆ ˆ ˆ ˆρ ρΛ ≤F O F O[ [ ], ] [ , ]Q C Q  for  maps Λ C sat isfying 

ˆ ˆ
ˆ ˆ ˆ ˆ
ρ ρΛ = Λφ φ φ φ− −[e e ] e [ ]eC

O O O
C

Oi i i i . These properties make the QFI a reliable measure of asymmetry60, a broad notion 
of quantum coherence59,61. Physically, the concept of asymmetry quantifies how much a state ρ̂ satisfying ˆ ˆρ ≠O[ , ] 0 
changes when applying the unitary transformation 

ˆφ−e Oi . The changes in the state can be used to estimate the phase φ 
with a nonvanishing sensitivity39,69 ˆ ˆφ ρΔ = F O( ) 1/ [ , ]Q

2  in a sensor implementing the transformation 
ˆφ−e Oi .

QFI and multipartite entanglement. The key property that makes the QFI a multipartite entanglement wit-
ness40–42,45 is the convexity in the state [property (i) above]. We recall that a pure state is κ-partite entangled if it 
can be written as ‐ψ ψ| 〉 = ⊗ | 〉κ j jent

38, where |ψj〉 is a state of Nj ≤ κ parties (with ∑ =N Nj j , N being the total 
number of parties in the system) that does not factorize. In other words, κ-partite entanglement indicates the 
number of parties in the largest nonseparable subset. κ-partite entangled states form a convex set and we can 
indicate with ˆ ‐ ‐ ‐ρ ψ ψ= ∑ | 〉〈 |κ κ κpi i

i i
sep ent

( )
ent

( )  a generic element of the ensemble. As a consequence of Eq. (6), every 
(pure or mixed) κ-partite entangled state satisfies ˆ ‐ ˆρ ≤κ κF b[ ]Q Osep , , where

ˆ
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‐
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2

ent
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The maximization is done over all possible κ-separable pure states and we have used ˆ ˆψ| 〉 = Δ ψ| 〉F O O[ , ] 4( )Q
2 . 

A theoretical challenge is to calculate the multipartite entanglement bounds (11) for a given operator Ô, which 
might be local40–42 or nonlocal45. The choice of the operator involved in the calculation of the QFI leads to differ-
ent entanglement bounds ˆκb O, . While there is no known systematic method to choose the optimal operator Ô (i.e. 
the one that allows the detection of the largest class of states), an “educated guess” based on some knowledge of 
the system allows the corresponding QFI to witness multipartite entanglement close to QPTs for different models. 
For instance, in models showing symmetry-breaking QPTs, the transition is characterized by the divergence of 
fluctuations of a local order parameter. We thus expect a large QFI at criticality when Ô is given by the order 
parameter of the transition37. In spin models such as the Ising and the bosonic Josephson junction models this is 
a collective spin operators (given by the sum of Pauli matrices). In this case we have41,42 ˆ κ κ= + ≈κb s r NO,

2 2 , 
where ⌊ ⌋κ=s N /  is the largest integer smaller or equal than N/κ and r = N − sκ. A QFI larger than this bound 
witnesses (κ + 1)-partite entanglement between spin-1/2 particles. On the contrary, topological QPTs are not 
detected by a local order parameter. In order to witness multipartite entanglement in topological models it is thus 
necessary to calculate the QFI with respect to nonlocal operators. For the one-dimensional short-range Kitaev 
chain discussed below, an optimal choice of operator is suggested by the correspondence, via the Jordan-Wigner 
transformation, to the Ising model. Indeed, the QFI is able to detect multipartite entanglement in a topological 
system48 when choosing, as operator Ô, the Jordan-Wigner transformation of the local order parameter for the 
Ising chain (see below). Furthermore, this choice leads48 to the same multipartite entanglement bounds 

ˆ κ κ= + ≈κb s r NO,
2 2 .
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Quantum Fisher information of thermal states. We consider a generic thermal state at canonical equi-
librium, ˆ

ˆ
ρ = −e /T

H T/ , where Ĥ is the many-body Hamiltonian with eigenenergies En and corresponding eigen-
states |ψn〉, T is the temperature, = −p e /n

E T/n  and  = ∑ −en
E T/n  is the partition function. The QFI of ρ̂T , 

calculated with respect to the operator Ô, is

ˆ ˆ ˆ∑ρ =
−

+
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where ˆ ˆψ ψ= 〈 | | 〉O On m n m, . Notice that ˆ ˆ ˆρ ≤ ΔF O O[ , ] 4( )Q T
2 at all temperatures. Equation (12) can be rewritten as
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Computing the QFI using Eq. (12) or (13) requires the diagonalization of the full Hamiltonian Ĥ. A calcula-
tion using a limited manifold of eigenstates (i.e. in a in a Hilbert space given by the most populated states at tem-
perature T) only leads to approximate results, since the matrix element Ôn m,  may couple to energy eigenstates 
outside the manifold. The calculation of the QFI in a Hilbert subspace (as discussed below for the two-mode 
approximation) leads to accurate results provided that coupling terms between the subspace and the rest of the 
Hilbert space induced by the operators Ô are negligible.

The QFI (12) can also be rewritten in the useful form37

ˆ ˆ  
∫ρ

π
ω ω χ ω=
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T
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2
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(14)Q T O0

where ˆ  χ ω π δ ω ω= ∑ − | | −T p p OIm ( , ) ( ) ( )O n m m n n m n m, ,
2

,  is the imaginary part of the dynamical susceptibility 
χO, and ℏωn,m = En − Em. Using the fluctuation-dissipation relation 


χ ω ω= ω( )T S TIm ( , ) tanh ( , )O T O

1
2

 we can 
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2
,  is the dynamic structure factor, 

ˆ ˆˆ ˆ = −O t O( ) e eHt Hti / i / , and we have used the property  ω ω− =T T( , ) ( , )O O . Equation (15) can thus be rewrit-
ten as

ˆ ˆ ˆ ˆ ˆ
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π
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F O O T t O t O
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which shows that the QFI can be calculated from the knowledge of the time correlation functions ˆ ˆ〈 〉O t O( ) . These 
are known, for instance, in the Ising model for certain operators70 without requiring the full diagonalization of the 
Hamiltonian. In the specific example of the Ising model, the calculation of ˆ ˆ〈 〉O t O( )  is time consuming as it 
requires the computation of the Pfaffian of a N × N matrix but avoids memory limitations required by full diago-
nalization. Time-dependent two-spin correlators ˆ ˆσ σ〈 〉t( )x

i
x

j( ) ( )  are exactly known in the free-fermion representa-
tion71 via the Wick-Bloch-de Dominicis theorem70. They can be efficiently computed up to N ≈ 100 exploiting a 
numerical algorithm72. A system of size N 100 is hard to access due to severe computational cost.

Zero-temperature case. At zero temperature, the QFI becomes

ˆ ˆ ˆ ˆ∑ ∑ρ
μ

ψ ψ=
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d
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in case the ground state has a degeneracy μ (we have indicated as ψ| 〉d
0
( )  the degenerate eigenstates, with d = 1, … 

μ), such that ρ̂ ψ ψ= ∑ | 〉〈 |
μ

μ
=d

d d
0

1
1 0

( )
0
( ) , and reduces to ˆ ˆψ| 〉 = Δ ψ| 〉F O O[ , ] 4( )Q 0

2
0

 in absence of degeneracy (μ = 1).

Low-temperature limit and two-mode approximation. Here we demonstrate the inequality (1). Let us consider, 
for simplicity, a nondegenerate spectrum: the equations that we will obtain in this section can be straightfor-
wardly extended to the degenerate case. At low temperature  ΔT , we can neglect the population of high-energy 
eigenstates (i.e. taking pn = 0 for n ≥ 2). In this case, using the completeness relation ψ ψ∑ | 〉〈 | =n n n �, Eq. (12) 
becomes
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Notice that the second and third terms in Eq. (18) are always positive (at all temperatures), which implies
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We thus obtain the inequality (1) from which we derive Eqs (2) and (3). The inequality is tight in the limit T → 0, 
when p1 = 0. It is also tight at all temperature if and only if ˆ ˆ| | | | =O O, 0m m0, 1,  for all m ≥ 2, i.e. when the operator 
Ô only couples the ground and the first excited state.

Quantum critical scaling. The scaling behavior in Eq. (4) follows from a standard scaling hypothesis for the 
dynamical susceptibility73,74:

χ ω χ ϕ ω ξ= ΔT T T LIm ( , ) ( / , / , / ), (20)O O

where χ is the static susceptibility of the operator Ô with respect to a coupled field, ϕ0 is a suitable scaling func-
tion, ξ is the correlation length and L = N1/d is the linear system size, being d the system dimension. Inserting Eq. 
(20) into Eq. (14) we obtain

ρ χ ξ= Δ Δˆ ˆF O N g T L[ , ] ( / , / ), (21)Q T

where ∫ ϕ=
ξ π ξΔ Δ

+∞

Δ( ) ( )( )g dx x, tanh , ,T L T x
O

T L4
0 2

. We now take into account that, close enough to the critical 

point, Δ ~ δzν, ξ ~ δ−ν and χ ~ δ−γ, where δ = |λ − λc| and z, ν and γ are critical exponents. Under coarse-graining 
transformation on the system, lengths scale as l → l′ = b−1l (b > 1), while N → N′ = b−dN. A dimensional analysis 
reveals that Δ → Δ′ = bzΔ and δ → δ′ = b1/νδ, whereas the scaling function g only depends on adimensional vari-
ables and does not scale under length rescaling. Thus, under coarse graining the QFI transforms according to

ρ δ= γ ν ν− −ˆ ˆF O N b h b b T b L[ , ]/ ( , , ), (22)Q T
z z/ 1/ 1

with h a suitable scaling function. The behavior of the QFI with respect to relevant quantities can be extracted by 
setting the dominant rescaling factor b up to which the scale invariance of the system is preserved.

At small temperatures ΔT , no significant length scale is induced by temperature. Sufficiently far from 
criticality, ξ  L and scale invariance is preserved up to b ~ ξ. Equation (22) then implies37 ˆ ˆρ δ∼ ν γ−F O[ , ]Q T

z  for 
δ ν

T z . Conversely, at the critical point δ ν−
 L 1/ , the constituents of the system are correlated on a scale ξ  L: 

the system experiences finite-size effects and it remains scale invariant up to b ~ L. Equation (22) gives37 the scal-
ing of the QFI with N for −

T L z: ρ ∼ Δˆ ˆF O N N[ , ]/Q T
d/Q , where we have used the Fisher relation γ/ν = 2 − η and 

defined ΔQ = 2 − η − z.
On the contrary, thermal fluctuations dictate a dominant length scale if ξ− −

T L ,z1/ 1 1. Scale invariance is 
expected to be broken at the scale b ~ T−1/z. Thus, Eq. (22) provides the scaling of the QFI with temperature valid 
for ΔT : ˆ ˆρ ∼ −ΔF O T[ , ]Q T

z/Q , namely Eq. (4).

High-temperature limit. For very large temperature,  =T T Emaxn nmax , we can expand ≈ − +− E Te 1 /E T
n

/n

 E T( / )n
2. Equation (12) becomes

ˆ ˆ ˆ∑ρ ∝ − | |F O
T

E E O[ , ] 1 ( ) ,
(23)

Q T
n m

n m n m2
,

2
,

2

which predicts a universal 1/T2 scaling. In the limit T → ∞ we have ρ ∝ˆT �: it commutes with Ô and we find 
ˆ ˆρ =F O[ , ] 0Q T .

Thermalization in a subspace of the full Hamiltonian. All the above equations and the analysis in the following 
sections implicitly assumes thermal equilibrium in the full Hilbert space. However, it might be possible to have a 
thermalization only in a Hilbert subspace generated, for instance, by a finite subset of the eigenstates of the full 
Hamiltonian. This scenario may arise from a metastable equilibrium due to different thermalization time scales 
of different Hilbert subspaces. In this case, ρ̂ ψ ψ= ∑ | 〉〈 |qT n n n n , where qn ≠ 0 if ∈ ′n  and qn = 0 otherwise, where 
′ is a subspace of the full Hilbert space  with a basis given by the states |ψn〉. In this case, the QFI writes

ˆ ˆ ˆ ˆ
 

∑ ∑ρ = Δ −
+

| | .ψ
∈ ′

| 〉
∈ ′

≠

F O q O
q q

q q
O[ , ] 4 ( ) 8

(24)
Q T

n
n

n m
n m

n m

n m
n m

2

,
,

2
n

Interestingly, the second term in Eq. (24) can vanishes. This occurs when ˆ| | =O 0n m,  ∀ ∈ ′n m, , i.e. when 
the operator Ô does not couple states within the subspace ′. Notice that Ô may couple states in ′ with states 
outside this subspace, but the latter are not populated before the phase-encoding transformation and do not enter 
into Eq. (24). In this case, the QFI reduces to

ˆ ˆ ˆ


∑ρ ψ ψ= 〈 | | 〉.
∈ ′

F O q O[ , ] 4
(25)

Q T
n

n n n
2
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This equation predicts results that are completely different from the ones discussed above. For instance, if the 
excited states are characterized by values of ˆψ ψ〈 | | 〉On n

2
 that are larger than those for the low-lying states, then 

ˆ ˆρF O[ , ]Q T  may increase with temperature. Furthermore, in the large-T limit, taking ρ ∝ˆT �, we obtain that the QFI 
saturates a finite constant value, ˆ ˆ ˆ

ρ ψ ψ∝ ∑ 〈 | | 〉∈ ′F O O[ , ]Q T n n n
2

. In other words, we may have, in this case, that 
multipartite entanglement increases with temperature and remains large even at high temperature, as recently 
noticed in a spin-1 system75.

Applications: Symmetry Breaking QPTs
In the following we witness multipartite entanglement at finite temperature in two paradigmatic models exhib-
iting a symmetry-breaking QPT. We first discuss the bosonic Josephson junction (BJJ) model, as it allows for 
analytical calculations of the QFI at zero as well as finite temperature for large particle numbers. We then focus 
on the Ising model in a transverse field, which is a common testbed of quantum criticality. The BJJ model can be 
used to describe a Bose gas in two hyperfine levels coupled by a microwave field44,76 or in a double-well potential 
in the tunneling regime77–80, whereas the Ising model has been realized experimentally with ultracold atoms in an 
optical lattice81, trapped ions82–85 and solid-state platforms22,23,86.

BJJ model. The BJJ consists of N interacting bosonic particles occupying two weakly-coupled modes39,87,88 |a〉 
and |b〉, e.g. two internal levels of an atom or two wells of an external trapping potential. The system is described 
by the Hamiltonian

ˆ
ˆ ˆ


λ λ= − +

H
N

S S1 cos sin
(26)z x

BJJ 2

where ˆ ˆ ˆ ˆ ˆ† †
= +S a b b a( )/2x , ˆ ˆ ˆ ˆ ˆ† †

= −S a b b a( )/2iy  and ˆ ˆ ˆ ˆ ˆ† †
= −S a a b b( )/2z  satisfy SU(2) commutation relations, â 

and b̂ (ˆ†a  and ˆ
†

b ) are bosonic annihilation (creation) operators for the |a〉 and |b〉 modes, respectively. The coeffi-
cient   denotes the characteristic energy scale of the system. The control parameter λ ∈ [0, π/2] rules the inter-
play between particle-particle interaction, described by Ŝz

2
, and the linear coupling term, given by Ŝx. In the 

thermodynamic limit N → ∞, and for T = 0, Eq. (26) exhibits a QPT at λc = π/4 between a quantum paramag-
netic phase (for λc < λ ≤ π/2) and a ferromagnetic long-range ordered phase89,90 (for 0 ≤ λ < λc). Equation (25) is 
a special case of a family of models first introduced by Lipkin, Meshkov and Glick in nuclear physics89,91. However, 
while the Lipkin-Meshkov-Glick model consists of N distinguishable spin-1/2 particles and the full 
2N-dimensional Hilbert space is populated at finite temperature, here we restrict to the N + 1-dimensional Hilbert 
subspace given by all states symmetric under particle exchange, even at finite temperature.

In the following, we calculate the QFI for a thermal state ρ̂T  and optimize with respect to the operators 
ˆ ˆ=O Sx y z, , . The optimization procedure consists in taking the maximum eigenvalue, ˆ ˆρ ρ=F [ ] maxeigval [ ]Q T Q T , 
of the matrix

 ˆ ˆ ˆ∑ρ ψ ψ ψ ψ=
−

+
〈 | | 〉〈 | | 〉

p p
p p

S S[ ] 2
( )

(27)
Q
kl

T
n m

n m

n m
n k m m l n

,

2

with k, l = x, y, z92. In the large-N limit, we find that, for any λ at T = 0 and for λ π< ≤atan(1/ 2 ) /2 at T > 0, the 
optimal operator is the order parameter of the model, ˆ ˆ=O Sz, while for λ≤ ≤0 atan(1/ 2 ) at T > 0 it is given 
by the transverse field, ˆ ˆ=O Sx.

Figure 3 shows the phase diagram of the QFI in the λ-T plane. The diagram has the characteristic V-shape 
illustrated in Fig. 1. Figure 3(a) plots ˆ ˆρ ρF F[ ]/ [ ]Q T Q 0 . The crossover temperature Tcross(λ) (solid white line) can be 
identified by the inflection points ∂2FQ/∂T2 = 0 and it follows the energy gap Δ (dashed line) apart a constant 
multiplication factor, Δ/Tcross(λ) ≈ 2.4. Figure 3(b) plots the logarithmic derivative of the QFI with respect to 
temperature, ˆβ ρ≡ d F d Tlog [ ]/ logQ T , giving the scaling exponent for the thermal decay of ρ̂F [ ]Q T . We clearly 
distinguish regions characterized by constant values of β and corresponding to the different plateaus of Fig. 1: 
β = 0 in the TP and QP, β = −1 in the CT and, finally, β = −2 in the MEP.

These results can be fully understood analytically in the large-N limit via an Holstein-Primakoff approach93,94. 
An expansion in powers of 1/N allows to rewrite Eq. (26) as95–97

ˆ


λ=






−

∂
∂

−
∂
∂

+





.λ

H N
N z

z
z

V z
2

sin 2 1 ( )
(28)

BJJ
2

2

Here, z = (Na − Nb)/N ∈ [−1, 1] where Na,b is the number of particles in the mode |a〉 and |b〉, respectively. 
λ= − − −λV z z( ) cot 1z

2
22
 is an effective Ginzburg-Landau potential79, whose profile has a major role in 

determining the ground-state structure. Due to the term N−2 in the kinetic energy, the ground state and 
low-energy excited states are sharply localized around the minima z0 of the potential Vλ(z). Thus, for large N we 
can Taylor expand the Hamiltonian (28) around z0 and retain only the quadratic terms in z − z0.

Paramagnetic phase, λ > λc. In this case, Eq. (28) reduces to the Hamiltonian of an effective harmonic oscillator 
centered at z0 = 0,
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ˆ


λ λ

=




−

∂
∂

+
− 





H N
N z

z
2

sin 2 1 cot
2

,
(29)

BJJ
2

2

2
2

with gap  λ λΔ = − = −E E 1 cot sin1 1 0  in the particle spectrum. Equation (29) provides a careful descrip-
tion of the system for energies and temperatures  λ λ−E T N, sin (2 cot )/4n , such that the populated eigen-
states are only those strongly localized around z0 = 0 and negligible at the boundaries z ≈ ±1.

At T = 0, only the ground state of the harmonic oscillator is populated and ˆψ λ| 〉 = Δ = −F S N[ ] 4( ) / 1 cotQ z0
2 39,55. 

Notice that this variance diverges in the limit λ → λc where the potential Vλ(z) is no longer harmonic. The QFI is exten-
sive: it linearly grows with the system size N. In particular, at λ = π/2 we have FQ[|ψ0〉] = N, consistently with the fact that 
the ground state is separable and given by the coherent spin-polarized state | 〉 + | 〉 ⊗a b( ) /2N N /2. Furthermore, we have 
squeezing of the spin fluctuation ˆ λΔ = − <S N N( ) 1 coty

2  below the projection-noise limit and sufficiently high 
ˆ〈 〉Sx  such that the state is also spin squeezed ˆ ˆξ λ= Δ 〈 〉 = − <N S S( ) / 1 cot 1y x

2 2 2 39,55, where ξ2 is the Wineland 
spin-squeezing parameter98,99. The QFI and the spin-squeezing parameter at zero temperature are shown in Fig. 4(a).

At finite temperature we calculate ρ̂F [ ]Q T  taking into account the first k harmonic oscillator modes and using 
ˆψ ψ σ δ δ|〈 | | 〉| = + ++ −S n n[ ( 1) ]n z m n m n m

2 2
, 1 , 1  with σ λ= − −(1 cot )N2

4
1/2:

ρ̂

ψ| 〉
=





Δ 

 ×






−
−

−





.

Δ

Δ

F
F T

k
[ ]

[ ]
tanh

2
1 e 1

e 1 (30)
Q T

Q

T

k T
0

1
/

/

1

1

For k = 2 we recover the two-mode approximation leading to Eq. (1), which agrees with the case k > 2 when 
−Δ

e 1T/1 . In fact, for low temperatures ΔT , the QFI can be expanded in powers of the small quantity e−Δ/T. For 
k = 2 we obtain ρ̂ ψ| 〉 = − +−Δ −ΔF F O[ ]/ [ ] 1 4e (e )Q T Q

T T
0

/ / 2. For k > 2, the result ρ̂ ψ| 〉 = − −ΔF F[ ]/ [ ] 1 2eQ T Q
T

0
/  

+ −ΔO(e )T/ 2 is independent on k. Only in the limit T → 0 the two-mode approximation agrees with this expansion. A 
calculation of Eq. (30) for k → ∞ gives

ρ̂

ψ| 〉
=





Δ 



F
F T

[ ]
[ ]

tanh
2

,
(31)

Q T

Q 0

1

which is in very good agreement with the numerical results of ρ̂F [ ]Q T  in the temperature range of interest, as 
shown in Fig.  4(b). The Fisher matrix Eq. (27) reads  ρ̂ λ λ= − − ×N[ ]/ diag(0, 1 cot , 1/ 1 cot )Q T  

Δ Ttanh( /2 )1 . Thus, the optimal operator is Ŝz  for all T. For ΔT 1 we find ρ̂ ∼F T[ ] 1/Q T  at any value of λ. 
However, Eq. (31) is valid for all T only in the thermodynamic limit: for a finite system size, at ∝T E Nmaxn n  
we recover the MEP regime, where ρ̂ ∼F T[ ] 1/Q T

2.

Criticality, λ = λc. At T = 0 the QFI is superextensive: it scales more rapidly than the system size. A scaling 
ansatz37, with critical exponents ΔQ = 1/3 and z = 1/3, reveals that FQ/N ~ N1/3 as a function of N37,39,55, which is 
confirmed by numerical calculations. Notice also that the spin squeezing is93,100 ξ−2 ~ FQ/N. We recall that the 
energy gap Δ1 vanishes as N−z. At finite temperature ΔT 1, we have FQ/N ~ T−1 according to Eq. (4).

Figure 3. Phase diagram of the BJJ model. (a) QFI normalized to its low-temperature value, ˆ ˆρ ρF F[ ]/ [ ]Q T Q 0  
(color scale) as a function of λ and T. The region where the low-temperature behavior survives is highlighted by 
the orange color. The black dotted line at λ ≈ atan(1/ 2 ) separates the regions where the optimal parameter is 
Ŝx (on the left) and Ŝz (on the right). (b) Scaling coefficient ˆβ ρ= d F d Tlog [ ]/ logQ T  (color scale) as a function of 
λ and T. The dotted line is the upper bound of the spectrum, Emaxn n. The inset shows β as a function of T at 
λ/π = 0.4: the different plateaus are clearly visible. In both panels N = 2000, the solid white curve is the crossover 
temperature Tcross(λ) following the energy gaps Δ1 (dashed blue line) and Δ2 (dashed red line).
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Ferromagnetic phase, λ < λc. For sufficiently large N, we can calculate the QFI using the semiclassical model of 
Eq. (28). The effective potential Vλ(z) has a symmetric double-well profile96 with two minima located at 

λ= ± −z 1 tan0
2 . Equation (28) takes the form

ˆ


λ
λ

λ
λ

=




−

∂
∂

+
−

−






H N
N z

z z
2

sin
cos

2 1 tan
2tan

( )
(32)

BJJ
2

2

2

2

2

4 0
2

when locally approximating each well as a harmonic oscillator.
At T = 0 the QFI, calculated for the ground state of Eq. (32), is superextensive39,96, ψ λ| 〉 = −F N N[ ]/ (1 tan )Q 0

2 , 
see Fig. 4(a). In particular, in the limit λ → 0, the ground state is the NOON state | 〉 + | 〉⊗ ⊗a b( )/ 2N N , given by a 
coherent symmetric superposition of N particles in mode |a〉 and |b〉, that has the highest possible value of the 
QFI40, FQ[|ψ0〉]/N = N.

At T > 0 it is important to distinguish the case of finite N, where the energy gap Δ1 ∝ exp(−N|1 − cot λ|4/3) 
damps exponentially, and the thermodynamic limit N → ∞, where Δ1 = 0. In the latter case, the ground state is 
doubly-degenerate (μ = 2) and separated from the doubly-degenerate first excited state (ν = 2) by the energy gap 

 λ λΔ = − = −E E 1 tan cos2 2 1
2 . For arbitrary small but finite temperatures, < ΔT0 2, the system is 

described by the incoherent mixture ρ̂ ψ ψ ψ ψ= | 〉〈 | + | 〉〈 |( )/20 0 0 1 1 . Its QFI is

ρ̂
λ λ λ

λ

λ
λ λ λ

= ×











− ≤ ≤

−
< <

F N[ ]
1 tan for 0

tan

1 tan
for

,

(33)

Q

z

z
0

2

2

2 c

where λ = atan(1/ 2 )z  arises from the optimization of the operator: ˆ ˆ=O Sx for λ ≤ λz, while ˆ ˆ=O Sz for λ > λz. 
We can calculate the QFI using a k-mode approximation (i.e. taking the first k states in each harmonic well). By 
means of ˆψ ψ δ σ δ δ|〈 | | 〉| = + + +− −

+ −∼ ∼ ∼
+

 

  

S z n n{ [ ( 1) ]}n z m n m n m n m
2 1 ( 1)

2 0
2

,
2

, 1 , 1
n m

, where = 



n n

2
 and σ = tanN2

4
2

λ λ−/ 1 tan2 , we can evaluate the QFI in Eq. (12), obtaining

ˆ
ˆ

ρ

ρ
=




Δ 









−
−

−






Δ

Δ

F
F T

k[ ]
[ ]

tanh
2

1
2

e 1
e 1

,
(34)

Q T

Q

T

k T
0

2
/

/2

2

2

that becomes

Figure 4. QFI for the BJJ model. (a) Fisher density FQ[|ψ0〉]/N (blue line) and inverse spin-squeezing parameter 
1/ξ2 (orange line) as a function of λ for the ground state of Eq. (26). The two lines superpose for λ λc. The 
vertical dashed line signals the critical point λc = π/4. Panels (b and c) show the Fisher density ρ̂F N[ ]/Q T  (dots) 
as a function of T for (b) λ = 0.3π > λc and (c) λ = 0.24π < λc. Solid lines are analytical curves, Eqs (30) and 
(34), for different values of the cutoff k. The vertical dashed lines indicates T = Δ1,2. In panels (a–c) the shaded 
area indicates multipartite entanglement FQ/N > 1. (d) Fisher density ρ̂F N[ ]/Q T  (color scale) in the λ-T phase 
diagram. Multipartite entanglement is witnessed at nonzero temperature in the colored region, where 

ρ̂ >F N[ ]/ 1Q T , while ρ̂ ≤F N[ ]/ 1Q T  corresponds to the white region. The dashed line is the analytical boundary 
of ρ̂ =F N[ ]Q T  in the thermodynamic limit, given by Eq. (36) for λ > λc and Eq. (37) for λ < λc. In all the panels, 
numerical data are obtained for N = 2000.



www.nature.com/scientificreports/

1 0Scientific REPORTS |  (2018) 8:15663  | DOI:10.1038/s41598-018-31761-3

ˆ
ˆ

ρ

ρ
=




Δ 




F
F T

[ ]
[ ]

tanh
2

,
(35)

Q T

Q 0

2

when taking the limit k → ∞. It should be noticed that Eq. (33) is a factor N smaller than the zero-temperature 
value FQ[|ψ0〉]. For large but finite N, the rapid decay from FQ[|ψ0〉] to ρ̂F [ ]Q 0  is described by the decaying function 

Δ Ttanh ( /2 )2
1  [see Fig. 4(c)], as predicted by Eq. (1) for a purely two-mode approximation. In the thermodynamic 

limit we have that Δ1 → 0 and we thus find a discontinuous jump of the QFI from its T = 0 value and the plateau 
described by Eq. (35). This behavior characterizes the TP of Fig. 1.

The QFI in the different regimes is illustrated in Fig. 4(c), where we show a very good agreement between the 
analytical predictions and the numerical results. Also in this case, for large enough temperature ΔT 2 we 
recover ρ̂ ∼F T[ ] 1/Q T  as the leading term in the Taylor expansion of the tanh function.

Multipartite entanglement. In Fig. 4(d) we plot ρ̂F N[ ]/Q T  in the λ-T plane. Multipartite entanglement witnessed 
by the QFI is found in the colored region that is bounded by the separability condition ρ̂ =F N[ ]/ 1Q T . It is worth 
pointing out that multipartite entanglement is considered here among distinguishable spin-1/2 particles restricted 
to occupy permutationally symmetric quantum states. In practical realizations, such as a Bose-Einstein conden-
sate in double-well trap, these spin-1/2 particles are not addressable. In the limit N → ∞, κ-partite entanglement 
witnessed by the QFI is found at temperatures

 λ λ
κ λ

<
−

−
T 1 cot sin

2atanh( 1 cot ) (36)

for λ > λc, as obtained from Eq. (31), and at

 λ λ

κ λ λ
<

−

−
T cot 1 sin

2atanh( cot cot 1 ) (37)

2

2

for λ < λc, following Eq. (35). Equations (36) and (37) are shown as dashed lines in Fig. 4(d). In particular, as 
noticed above, multipartite entanglement in the ground state of the ferromegnetic phase is extremely fragile to 
temperature. Moreover, in the thermodynamic limit, we find that no entanglement is witnessed by the QFI at 
T > 0 for λ ≤ λ*, where

⁎ λ =
+

+ .−Ncot 1 5
2

( )
(38)

1

Remarkably, at finite temperature, the QFI detects the same amount of entanglement detected by the 
spin-squeezing parameter: 1/ξ2 = FQ/N for T > 0 in the limit N 1: thermal noise is responsible for a loss of 
coherence entailing a spread of spin fluctuations in any direction. In particular, λ* is the point at which the spin 
squeezing ceases to detect entanglement (ξ2 = 1) even at T = 0 because of the vanishing ˆ〈 〉Sx . When maximizing 
Eqs (36) and (37) over λ, we obtain that entanglement detected by the QFI survives up to  ≈ .T / 0 4, see Fig. 2(d).

One-dimensional Ising model in a transverse field. The one-dimensional quantum Ising chain in a 
transverse field101,102,

ˆ
ˆ ˆ ˆ

 ∑ ∑λ σ σ λ σ= − +
=

−
+

=

H cos sin ,
(39)i

N

z
i

z
i

i

N

x
iTFI

1

1
( ) ( 1)

1

( )

describes N distinguishable spin-1/2 particles interacting via a nearest-neighbor exchange energy  λsin  (open 
boundaries are assumed) and subject to a transverse magnetic field of strength  λcos , with λ ∈ [0, π/2]. The 
interaction term favors ferromagnetic ordering (with all spins aligned along ±z), while the transverse field favors 
polarization (with all spins aligned along −x). In the thermodynamic limit N → ∞ and for T = 0, Eq. (39) exhibits 
a QPT at λc = π/4 between a paramagnetic phase (for λc < λ ≤ π/2) and a ferromagnetic phase (for 0 ≤ λ < λc). 
The Ising model in a transverse field is a testbed of quantum criticality4.

Phase diagram. Figure 5 shows the phase diagram of the QFI in the λ-T plane, where the QFI is optimized with 
respect to the collective operator ˆ σ̂= ∑ =O i

N
x y z

1
2 1 , , . In particular, the black line in Fig. 5(a) marks a region where 

the optimal operator is ˆ σ̂= ∑ =O i
N

x
1
2 1  (on the left side of the line) and the one where the optimal operator is the 

order parameter of the transition, ˆ σ̂= ∑ =O i
N

z
1
2 1  (on the right side of the line). The diagram displays the charac-

teristic V-shaped structure radiating from the critical point, as in Fig. 1. In Fig. 5(a) we can recognize the CP (for 
λ > λc) and the TP (for λ < λc). Therein, the QFI ρ̂F [ ]Q T  is approximatively constant as a function of temperature 
and equal to its low-temperature value ρ̂F [ ]Q 0  – we recall that ρ̂0 is given by the ground state |ψ0〉 in the CP and by 
the incoherent superposition of the two lowest energy eigenstates in the TP. We also see that Tcross (solid white 
line) follows the energy gap Δ (dashed line). The finite jump discontinuity of Tcross that is visible in the figure is 
due to the sudden change of optimal operator Ô and prominently manifests only for small N. In Fig. 5(b) we plot 
the logarithmic derivative ˆβ ρ= d F d Tlog [ ]/ logQ T  in the vicinity of the critical point, which provides the scaling 
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of the QFI with temperature. According to the scaling ansatz (see Sec. II), using ΔQ = 3/4 and z = 137, we find 
ρ̂ ∝ −F T[ ]Q T

3/4 in the QP. Numerical results are plagued by finite size effects and we do not observe a clear plateau 
for β. We argue (supported by a finite-size study, yet limited to N 100) that the CP, where β = −0.75, approxi-
matively coincides with the green region in the figure, which highlights values of β ∈ [−0.78, −0.72].

The behavior of the QFI is further inspected in Fig. 6. In panel (a) we show the QFI (blue line) for the ground 
state of Eq. (39) and compare it to the spin squeezing ˆ ˆξ = Δ 〈 〉N S S( ) /y x

2 2 2 (orange line). Similarly to the BJJ 
model, for λ > λc the QFI is larger than N – signaling multipartite entanglement – but extensive, i.e. the Fisher 
density FQ[|ψ0〉]/N does not scale with N47. For λ ≤ λc, the QFI is superextensive. It scales as FQ[|ψ0〉]/N ~ N for 
λ < λc

47 and as FQ[|ψ0〉]/N ~ N3/4 at λ = λc
37. While the spin squeezing agrees with the QFI close to λ = π/2, it 

sharply decays at λc. Indeed, a numerical study as a function of N (up to N = 500) for λ = λc reveals that ξ2 = 1 and 
in particular it does not scale with N, see also refs47,100. This is in sharp contrast to the results of the BJJ model 
where the QFI and the spin-squeezing parameters for the ground state have the same scaling at the critical point, 
see Fig. 4(a). The typical behavior of ρ̂F [ ]Q T  as a function of temperature for λ > λc is shown in Fig. 6(b). The solid 
line is ˆ ˆρ ρ = ΔF F T[ ]/ [ ] tanh ( /2 )Q T Q 0

2
1 , namely Eq. (1) with μ = ν = 1. For λ < λc, the ground state becomes doubly 

degenerate (μ = 2) in the thermodynamic limit N → ∞, and so does the first excited state. For finite N the gap Δ1 
is exponentially small: a finite-size analysis extended to = ÷N 10 103 reveals that the energy gap vanishes expo-
nentially Δ ∝ − Δe N n

1
/  for λ < λc, with nΔ = a|1 − cot λ|b (a ≈ 1.5, b ≈ −0.85). The behavior of ρ̂F [ ]Q T  as a function 

of temperature is shown in Fig. 6(c): the decay from the zero-temperature value occurs around a finite 

Figure 5. Phase diagram of the Ising model in transverse field. (a) QFI normalized to its low-temperature value, 
ˆ ˆρ ρF F[ ]/ [ ]Q T Q 0  (color scale), in the λ-T phase diagram. (b) Scaling coefficient ˆβ ρ= d F d Tlog [ ]/ logQ T  in the 

vicinity of the critical point. In both panels, the white solid line is the crossover temperature Tcross(λ). The blue 
and red dashed lines indicate Δ1 and Δ2, respectively. In both panels, N = 50.

Figure 6. QFI for the Ising model in transverse field. (a) Fisher density FQ[|ψ0〉]/N (blue line) and inverse spin 
squeezing (orange line) for the ground state of Eq. (39) as a function of λ. The vertical dashed line signals the 
critical point λc. Panels (b and c) show the typical decay of the Fisher density ρ̂F N[ ]/Q T  as a function of T in the 
paramagnetic (b) and ferromagnetic (c) phase. The solid lines are Δ Ttanh ( /2 )2

1  or Δ Ttanh ( /2 )2
2 . In panels (a–c) 

the shaded area indicates multipartite entanglement. (d) Fisher density ρ̂F N[ ]/Q T  (color scale) in the λ-T phase 
diagram. The dashed line is the spin-squeezing boundary ξ2 = 1. In all panels N = 50.
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(exponentially small in N) temperature  ΔT 1, while a slower decay takes place for ΔT 2. The constant pla-
teau ˆ ˆρ ρ≈F F[ ] [ ]Q T Q 0  found for Δ Δ T1 2 defines the TP.

Multipartite entanglement. The multipartite entanglement between spin-1/2 particles detected by the QFI sur-
vives at finite temperature in the colored region of Fig. 6(d), bounded by ρ̂ =F N[ ]/ 1Q T . This region fans out from 
the zero-temperature noninteracting λ = π/2 corner, where the ground state of Eq. (39) is separable and 

ρ̂ =F N[ ]/ 1Q 0 . We can compare the condition ρ̂ =F N[ ]/ 1Q T  with the spin-squeezing coefficient ξ2 = 1 (dashed 
line)100. The loss of spin squeezing follows the loss of thermal entanglement only for λ ≈ π/2, while around λc we 
have entangled states recognized by the QFI that are not spin squeezed. Furthermore, the multipartite entangle-
ment region in Fig. 6(d) reaches a maximum extension  ≈ .T / 0 6 at λ = 0.4π. Notice that this threshold temper-
ature is higher than the one for the BJJ model. Interestingly, the threshold  ≈ .T / 0 3 at λ = λc is consistent with 
the temperature up to which other thermal signatures of criticality persists6,23. Finally, for λ π.0 2  multipartite 
entanglement is no more witnessed by the QFI at any T > 0.

Applications: Topological QPTs
In the following we study the one-dimensional Kitaev model103,104 for spinless fermions hopping in a tight-binding 
lattice with p-wave superconducting pairing. With respect to the original model103, we consider variable range for 
the pairing105,106. The Hamiltonian is

ˆ ˆ ˆ ˆ ˆ ˆ†∑ ∑ ∑ ∑μ= − + . . −
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where ˆ †ai  is a fermionic creation operator at i-th site (satisfying the anticommutation relation ˆ ˆ† δ=a a{ , }i j i j, ) and 
ˆ ˆ ˆ†=n a ai i i counts the number of fermions in the i-th site. The amplitude of the hopping between different lattice 
sites is J and the chemical potential of the chain is μ. The superconducting pairing has strength Ω and range spec-
ified by α



d , where 


d  is a site-to-site distance and α > 0: α → ∞ corresponds to nearest-neighbor pairing, while 
α = 0 accounts for infinite-range pairing. For a closed ring, = 



d  ( = − 



d N ) if ≤ N /2 ( > N /2). In Eq. (40) 
we consider antiperiodic boundary conditions (ˆ ˆ= −+a aN 1 1).

The Hamiltonian (40) can be diagonalized exactly by a Bogoliubov transformation71 for any α. The quasipar-
ticle spectrum reads105

 μ= + + Ω αJ k f k( cos ) ( ( )/2) , (41)k
2 2

where π= +( )k n N2 /1
2

 are the quasimomenta of the excitations (n = 0, 1, …, N − 1) and = ∑α
α

=
−






f k k d( ) sin( )/N
1
1 . 

The first energy gap in the many-body spectrum Δ = mink k corresponds to the energy necessary to create one ele-
mentary excitation. The ground state of the Kitaev chain Eq. (40) reads ˆ ˆ† †ψ| 〉 = ∏ − | 〉π

θ θ
< < −( )a acos isin 0k k k0 0 2 2

k k , 
with θ = −Ω αf ksin ( )/(2 )k k , θ μ= − +J kcos ( cos )/k k, ˆ ˆ† †= ∑ =

−a e ak N i
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i
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1
i  being the Fourier transform of ˆ †ai  

and |0〉 denoting the vacuum of quasiparticles. The ground state hosts different topological phases that can be charac-
terized by the winding number ∫=

π

π θW kd
k

1
2 0

2 d
d

k . At zero temperature, the mean number of fermions in the system 
is given by ˆ∑ 〈 〉 = ∑ ≤θn Nsini i k

2
2
k .

Here, we study the QFI calculated with respect to the nonlocal operators (ρ = x, y)
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, 
that relates fermionic creation and annihilation operators to the Pauli ladder operators σ̂+ and σ̂− of spin-1/2 
particles71. Via Jordan-Wigner trasformation, the nearest-neighbor Kitaev chain (α = ∞) maps into the XY 
model in a transverse field71,107 ˆ ˆ ˆσ σ− ∑ + Ω +=

− +H J[( )Y i
N
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4 1
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lective rotation σ̂− ∑
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4 1  permits to recover Eq. (39) for the fully-anisotropic case J = Ω. Within the 
Jordan-Wigner transformation, the operators in Eqs. (42) and (43) become the local collective spin operators 
ˆ σ̂= ∑ ±ρ ρ

±
=O ( 1)i

N i i( ) 1
2 1

( ), being ˆ ˆ ˆσ σ σ= + −ρ
δ δ
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( ) 1
2 1 . By mean of this 

transformation, each lattice site maps into an effective spin-1/2 particle: the z component of the spin is local in the 
site (the empty lattice corresponding to spin-down, the filled lattice to spin-up), the other x and y components are 
nonlocal. We can then use the bound discussed above40–42 to witness κ-particle entanglement between the N 
effective spin-1/2. Specifically, ρ̂ κ>F N[ ]/Q T  signals (κ + 1)-partite entanglement. Recently, operators ρ̂

±
O

( )
 have 

been used to demonstrate the superextensivity of the QFI at zero temperature in the different phases of the Kitaev 
model (40), for both short-range and long-range pairing48.
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In the following, we set equal pairing and hopping strengths Ω = J and take  λ=J 2 cos  and μ λ= 2 sin  in 
order to describe the whole phase diagram through a bounded control parameter λ ∈ [−π/2, π/2]. The 
Hamiltonian (40) thus rewrites as

ˆ
ˆ ˆ ˆ ˆ ˆ†

 ∑ ∑ ∑ ∑λ λ λ= − + . . −
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Kitaev model with short-range pairing. We consider the case α = ∞ where pairing occurs only within 
nearest-neighbor lattice sites. In this case fα(k) = 2 sin k. As shown by Eq. (41), the energy gap between the ground 
state and the first excited state vanishes as Δ ~ N−1 in the thermodynamic limit at λc = ±π/4 (for k = π and k = 0, 
respectively). These quantum critical points separate a different nontrivial phase with W = 1 (for |λ| < π/4) from 
a trivial phase with W = 0 (for |λ| > π/4). This behavior is common for short-range pairing48,105, α > 1.

Phase diagram. As expected, the results of our study are very similar to the case of the quantum Ising model 
discussed in Sec. III. There is a major difference though: in the Kitaev model the energy gap Δ = E1 − E0 remains 
finite for every λ ≠ λc, i.e. away from the critical points. Therefore, the system does not host a gapless phase, dif-
ferently from the ferromagnetic phase of the Ising model. This is a direct consequence of the fact that the Kitaev 
model is studied here in the closed chain. In the open chain, the Kitaev model hosts a gapless phase for |λ| < π/4, 
related to the presence of Majorana edge modes.

In Fig. 7(a) we plot the λ-T phase diagram for ρ̂ ψ| 〉F F[ ]/ [ ]Q T Q 0 . The optimal operator maximizing the QFI is found 
to be ˆ +

Ox
( )

 for any λ and T. We recognize the presence of plateaus at low temperature and the characteristic V-structure 
around the critical points. Only QPs are present, due to the nondegenerate nature of the ground state. The phase dia-
gram is invariant under change of sign of the chemical potential λ → −λ, as expected from the particle-hole symmetry 
of the Hamiltonian104. The crossover temperature Tcross(λ) (solid white line) follows the energy gap (dashed line) for 
|λ| > π/4, with Δ/Tcross ≈ 2.7. In the region |λ| < π/4, Tcross is instead smoothed, due to the quasi-degeneracy of the 
excited states. In Fig. 7(b) we plot the logarithmic derivative ˆβ ρ= d F d Tlog [ ]/ logQ T  around the critical point λ = π/4. 
The QPT is characterized by the same critical exponents as the Ising model, ΔQ = 3/4 and z = 1, and we thus expect a 
thermal decay ρ̂ ∼ −F T[ ]Q T

3/4, according to Eq. (4). The region where β ∈ [−0.8, −0.7] is highlighted in the figure.

Multipartite entanglement. Figure 8 illustrates the multipartite entanglement witnessed by the QFI. Panel (a) 
shows the QFI of the ground state, FQ[|ψ0〉]/N, as a function of λ. The trivial phase |λ| > π/4 is characterized by an 
extensive scaling of the QFI for increasing system size N. At λ = +π/2 (λ = −π/2), we find FQ[|ψ0〉] = N, accord-
ing to the fact that the ground state is a separable state of occupied (empty) sites ψ| 〉 = | 〉⊗1 N

0  ( ψ| 〉 = | 〉⊗0 N
0 ), 

where {|n〉i} is the occupation basis and n ∈ {0, 1} is the occupation number at the i-th site. Divergence of multi-
partiteness FQ/N ~ N is instead observed in the phase with nonzero winding number (|λ| < π/4)48. In particular, 
FQ/N = N at λ = 0. The QPT at λc is signalled by a sudden change in the scaling FQ/N ~ N3/4, that is associated to 
the specific algebraic asymptotic decay observed for the two-site correlation functions48.

Figure 8(b) shows the witnessed multipartite entanglement at finite temperature. Within the region |λ| < π/4, 
superextensive multipartite entanglement in the ground state survives at finite temperature. This robustness is due 
to the nondegenerate nature of the ground state for any λ ≠ λc and it is in sharp contrast with the ferromagnetic 
phase of the BJJ and Ising model, where a superextensive QFI decays exponentially with N at finite temperature. 
In particular, at λ = 0, where the first excited state is N-fold degenerate, Eq. (1) predicts for low temperature

ˆ  



ρ
≥









+
+

−

−

F
N T N

[ ]
tanh 1 e

1 e
,

(45)
Q T

T

T2
2

2 /

2 /

Figure 7. Phase diagram of the Kitaev chain with short-range pairing. (a) QFI normalized to its low-
temperature value, ρ̂ ψ| 〉F F[ ]/ [ ]Q T Q 0  (color scale), in the λ-T phase diagram. (b) Scaling coefficient 

ˆβ ρ= d F d Tlog [ ]/ logQ T  as a function of λ and T. In both panels the white line is Tcross and the blue dashed line 
is the energy gap Δ. Here N = 50 and α = 100.
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where we have used FQ[|ψ0〉] = N2, Δ = 2 , μ = 1 and ν = N. For large N the right-hand side of Eq. (45) can be 
well approximated by + −N1/(1 e )T2 /  that shows a plateau up to temperatures  ≈T N/ 2/ log . The thermal 
decay of the QFI is at most logarithmic in N. This behavior is confirmed in Fig. 8(c) where, for a fixed tempera-
ture, we plot FQ/N as a function of N. We see that the Heisenberg scaling FQ/N ~ N survives at finite temperature 
up to 

N e T2 / . For larger system size, temperature is responsible for a softening of the power-law scaling. It is 
worth noticing that this effect is not related to a vanishing gap, as in the ferromagnetic phase of the Ising model, 
but it is rather due to the diverging degeneracy of the first excited state. As emphasized in Eq. (1), the robustness 
of the QFI to temperature depends indeed on this degeneracy.

Kitaev model with long-range pairing. We study the Kiteav model with α = 0 where pairing involves 
fermions in arbitrarily-distant sites. In this case fα(k) = cot(k/2), which diverges at k = 0. The energy gap vanishes 
as Δ ~ N−1 at λc = π/4 (for k = π). The winding number is48,105 W = +1/2 for λ < λc, and W = −1/2 for λ > λc. The 
symmetry under λ → −λ is lost, due to the loss of particle-hole symmetry.

In Figs 9 and 10 we plot the QFI phase diagram and the witnessed multipartite entanglement, respectively. The 
operator that maximizes the QFI of the ground state is found to be ˆ +

Ox
( )

 for λ ≤ λc and ˆ −
Oy

( )
 for λ ≥ λc, see 

Fig. 10(a). The two phases at λ < λc and λ > λc are characterized by a diverging multipartiteness FQ/N ~ N3/4, while 
FQ/N ~ N1/2 at criticality λ = λc

48. These scaling behaviors survive at low temperature as shown in Fig. 9(a) where 
we plot ρ̂ ψ| 〉F F[ ]/ [ ]Q T Q 0  in the λ-T phase diagram. For low temperatures T Tcross, we recognize two QPs at both 
sides of the critical point. Since the transition is characterized by ΔQ = 1/2 and z = 1, the thermal decay 

Figure 8. QFI for the Kitaev chain with short-range pairing. (a) Fisher density FQ[|ψ0〉]/N as a function of λ for 
the ground state of Eq. (44) with N = 50 and α = 100. The vertical dashed lines signal the critical points λc. The 
shaded area marks entanglement, FQ[|ψ0〉] > N. (b) Fisher density ρ̂F N[ ]/Q T  (color scale) in the λ-T plane for 
N = 50. The colored area corresponds to ρ̂ >F N[ ]Q T . (c) Scaling of ρ̂F N[ ]/Q T  as a function of N for different 
temperatures. The thick black line is the Heisenberg limit FQ = N2, the dashed lines are the bound in Eq. (45).

Figure 9. Phase diagram of the Kitaev chain with long-range pairing. (a) QFI normalized to its low-
temperature value, ρ̂ ψ| 〉F F[ ]/ [ ]Q T Q 0  (color scale), in the λ-T phase diagram. (b) Scaling coefficient 

ˆβ ρ= d F d Tlog [ ]/ logQ T . In both panels the white line is Tcross and the blue dashed line is the energy gap Δ. Here 
N = 50 and α = 0.
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ρ̂ ∼ −F T[ ]Q T
1/2 for ΔT  characterizes the CP around λc. In Fig. 9(b), the green region highlights values 

β ∈ [−0.53, −0.47]. Figure 10(b) highlights the region of the λ-T phase diagram where the QFI witnesses multi-
partite entanglement (colored region). In particular, in Fig. 10(c) we plot ρ̂F N[ ]/Q T  as a function of N for λ = 0 
and different temperatures. For sufficiently small temperature the QFI is bounded by Eq. (1). In this case, the 
evaluation of the degeneracy of the first excited state ν is not easily practicable: an analysis of Eq. (41) shows that 
the number of states in a small interval centered around the energy of the first excited state increases with N. We 
thus superpose in Fig. 10(c) the numerical data (dots) for ρ̂F N[ ]/Q T  to the curve Δ +

+

−Δ

−Δ( )tanh
T cN

2
2

1 e
1 e

T

T

/

/
 (dashed 

lines) as suggested by Eq. (1), where c = 1.4 is a fitting parameter and Δ = .0 91  (in the thermodynamic limit). 
For Δ

N ce /T/ , the QFI grows as ρ̂ ∼F N N[ ]/Q T
3/4.

Conclusions
The QFI, as a multipartite entanglement witness, allows to study strongly-correlated systems from a quantum 
information perspective and is thus attracting increasing interest37,44–50,56. Differently from bipartite/pairwise 
entanglement measures the QFI37 (or close lower bounds44,53,54) can be extracted experimentally in arbitrary large 
systems of atomic ensembles and solid-state platforms.

In this manuscript we have discussed the universal behavior of the QFI for systems at thermal equilibrium 
close to a QPT. At low-temperature, the QFI is lower bounded by a simple function that only depends on the 
structure of the two low-lying energy levels and is factorable in a finite-temperature and a zero-temperature 
contributions. This feature allows to draw a V-shaped phase diagram for the QFI centered at the critical point, 
Fig. 1, which is common to both symmetry-breaking and topological QPTs. We showed the existence of a uni-
versal low-temperature region – the CP – where thermal decay of the QFI is ruled by few fundamental critical 
exponents. This region fans out from the critical point and can be identified as a quantum critical regime where 
quantum coherence has a behavior controlled by the transition and competes with thermal fluctuations. The 
universal behavior is lost at surprisingly high temperatures.

Finally, the analysis has emphasized the robustness of multipartite entanglement at finite temperature. In 
particular, a superextensive QFI (with a scaling at the Heisenberg limit FQ ~ N2) survives up to high temperatures, 
T ∝ 1/log N in topological systems with large finite size. This is an important difference with respect to models 
showing symmetry-breaking QPTs. In the latter systems multipartite entanglement is generally found at finite 
temperature in the disordered phase and the superextensive QFI that characterizes the ground state of the ordered 
phase is exponentially fragile against temperature, being lost for T ∝ e−N. Note added in Proofs: Short before the 
submission of this manuscript, we became aware of the similar work108 by I. Frerot and T. Roscilde. There, the 
quantum variance, a quantity related to the quantum Fisher information, is studied at finite temperature around 
the critical point of many-body quantum models and used to characterize a quantum critical regime.
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