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Predicting proteome dynamics 
using gene expression data
Krzysztof Kuchta1, Joanna Towpik1, Anna Biernacka  1, Jan Kutner  1, Andrzej Kudlicki2, 
Krzysztof Ginalski1 & Maga Rowicka  2

While protein concentrations are physiologically most relevant, measuring them globally is 
challenging. mRNA levels are easier to measure genome-wide and hence are typically used to infer 
the corresponding protein abundances. The steady-state condition (assumption that protein levels 
remain constant) has typically been used to calculate protein concentrations, as it is mathematically 
convenient, even though it is often not satisfied. Here, we propose a method to estimate genome-
wide protein abundances without this assumption. Instead, we assume that the system returns to its 
baseline at the end of the experiment, which is true for cyclic phenomena (e.g. cell cycle) and many 
time-course experiments. Our approach only requires availability of gene expression and protein half-
life data. As proof-of-concept, we predicted proteome dynamics associated with the budding yeast cell 
cycle, the results are available for browsing online at http://dynprot.cent.uw.edu.pl/. The approach was 
validated experimentally by verifying that the predicted protein concentration changes were consistent 
with measurements for all proteins tested. Additionally, if proteomic data are available as well, we can 
also infer changes in protein half-lives in response to posttranslational regulation, as we did for Clb2, 
a post-translationally regulated protein. The predicted changes in Clb2 abundance are consistent with 
earlier observations.

Measuring protein abundance provides information that is not apparent from gene expression data but is crucial 
for the description of the state of a biological system1. Nevertheless, measured mRNA concentrations are often 
used to linearly approximate the corresponding protein levels, even though such approximation can be very 
imprecise1. However, mRNA levels (unlike protein abundances) are relatively easy to determine due to RNA and 
DNA base pair complementarity, which enables precise and high-throughput measurements, such as sequencing 
and microarrays. Measuring protein levels remains more challenging, due to the different chemical properties 
of proteins and wide dynamical range of protein abundances. Studies have shown that protein levels cannot be 
determined from mRNA levels just by correlation1–6. For example, similar mRNA expression levels can be accom-
panied by a wide range (up to 20-fold difference) of protein abundances and vice versa1.

The relation between mRNA concentration, [mRNAi(t)], and protein concentration, [Pi(t)], of protein i can be 
described in the first approximation by a kinetic equation:

= ⋅ −
d P t
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, and ϑd,i, kd,i and ktrans,i are half-life, degradation rate, and translation rate, respectively. Data 

regarding mRNA levels, protein abundances, degradation rates, and translation rates are required to solve Eq. 1. 
Among these, only translation rates are not readily available for most model organisms. Eq. 1 is typically solved 
using the steady-state assumption, which is the easiest mathematical way to solve it, but it is also the least physio-
logically relevant, since the concentrations of many important proteins and their mRNAs change dynamically. 
Therefore, instead of using the steady-state assumption, we propose to solve Eq. 1 using alternative boundary 
conditions: that both mRNA and protein levels will be the same at time 0 and at the certain time T at the end of 
experiment. Such a condition should be fulfilled in a typical control versus treatment experiment, at the time 
when treatment wears off as the cells go back to their original (control) state. Here, as proof-of-concept, we 
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discuss a specific class of such experiments, where a system undergoes periodic changes, although periodicity of 
the data is not necessary to use our approach.

Results
Taking advantage of an availability of genome-wide data of mRNA levels, half-lives, and average protein abun-
dances in the model organism S. cerevisiae, we predicted dynamic protein abundances based on gene expression 
levels. We chose to use a simple, classical model of translation2,3, as described by Eq. 1, above. The protein concen-
tration [Pi(t)] depends on the number of mRNAs ([mRNAi(t)]), which are translated with rate constant ktrans,i, the 
protein-specific translation rate. Protein degradation is characterized by the rate constant =

ϑ
kd i,

ln(2)

d i,
, where ϑd,i 

is the protein half-life. The proposed model does not include variables sometimes reported as proportional to the 
translation rates, such as ribosome occupancy or ribosome density4. This is because the minimalistic model, 
based only on data that are known with certainty to be relevant, performs better, as demonstrated below. Despite 
the simplicity of this model, it has been shown5 to accurately capture the dynamical changes in protein abun-
dances for a majority of human proteins. These results suggest that the model is suitable for other eukaryotic 
systems (like S. cerevisiae) as well.

As described in detail in Materials and Methods, protein concentration and translation rate can be calculated 
from a time-course of its gene-expression measurements and its average abundance. As proof-of-concept, we 
chose five different S. cerevisiae cell cycle synchronized gene expression data sets (Table 1): alpha (3395 proteins), 
brd26 (2840 proteins), brd30 (2699 proteins), brd38 (2751 proteins), cdc15 (3173 proteins) and cdc28 (3424 
proteins). First, we used the periodogram to estimate the consensus period for periodically expressed cell cycle 
genes in each of these data sets (Materials and Methods and Table 1). Second, we mathematically pre-processed 
raw data on yeast protein half-lives, to remove negative values and improve overall accuracy of half-life estimates 
(Materials and Methods). Next, we used an existing compendium of the budding yeast mRNA and protein con-
sensus levels to estimate these levels in our conditions (Materials and Methods). Finally, we numerically solved 
Eq. 1, using the Fixed Point Iteration method, for all periodically expressed proteins in these five data sets. This 
resulted in predicted time-courses of dynamic protein abundances, with 1-minute resolution during the whole 
cell cycle, for all budding yeast proteins available in each of five different data sets. All predicted dynamic protein 
concentrations and translation rates can be browsed, compared, and downloaded via our web server (http://
dynprot.cent.uw.edu.pl/).

Validation of predicted dynamic protein abundances. In order to verify the temporal protein levels 
calculated using our model, we utilized western blotting to measure the actual protein concentrations for five 
representative proteins in cell cycle synchronized yeast culture (Materials and Methods). Representative proteins 
were chosen from the three groups: (1) proteins with relatively constant mRNA levels and predicted protein lev-
els (Fig. 1A), (2) proteins with highly variable mRNA and relatively constant predicted protein levels (Fig. 1B), 
(3) proteins with variable mRNA and predicted protein levels during the cell cycle (Fig. 1C). For proteins with 
variable mRNA levels, we also required that they were transcriptionally regulated during the yeast cell cycle to 
guarantee that the observed changes in their levels would be meaningful. To confirm mRNA level periodicity in 
the yeast cell cycle the SCEPTRANS web server was used6. The choice of individual proteins within a group was 
based on availability of commercial antibodies. The first group is represented by Rad50p, a protein required for 
DNA damage repair, genetic recombination during meiosis, and for telomere maintenance7,8. The levels of RAD50 
transcript remain almost constant during the cell cycle and due to a very long half-life of Rad50p (344 minutes, 
calculated as described in Materials and Methods using the data of Belle et al.9), our model predicted that Rad50p 
levels should remain virtually constant during our experiments (Fig. 1A). Indeed, western blot analysis of the 
time-course Rad50p data confirmed this prediction (Fig. 2A). The second group is represented by histone Hht1 
and by Rnr1, the major isoform of the large subunit of ribonucleotide-diphosphate reductase, that is required for 
dNTP synthesis10. As these proteins are crucial for DNA replication, their transcripts peak during S phase and 
decrease shortly thereafter. Despite this high variability of HHT1 and RNR1 transcripts, concentrations of their 
proteins during the cell cycle were predicted to be constant by our model due to the long half-lives of Hht1p and 
Rnr1p (349 and 77 min, respectively; based on the data of Belle et al.9 we re-analyzed, see Materials and Methods). 
These predictions were confirmed by western blotting data showing no significant variability in the levels of 
Hht1or Rnr1 proteins during cell cycle progression (Fig. 2B). The last validation group consisted of two proteins: 
Cdc5 and Clb2, which are directly involved in controlling cell cycle progression. Cdc5 is a polo-like kinase, nec-
essary for meiotic progression11, while Clb2 is a B-type cyclin required for transition from G2 to M phase12. Their 
function is thus restricted to only specific stages of cell division. Consistent with this, both proteins are known to 
have transcript levels strongly regulated during the cell cycle6,13. According to our calculations based on O’Shea 

Data set S. cerevisiae strain Cycle period Data granul Reference

alpha DBY8724 (GAL2 ura3 bar1::URA3) 56 min 7 min Spellman et al.32

brd26
BY2125 (W303:MATa ade2-1 trp1-1 can1-
1000 leu2-3, 115 his3-11 ura3 ho ssd1-d)

60 min 5 min

Pramila et al.34brd30 60 min 5 min

brd38 60 min 10 min

cdc15 W303αcdc15-2ts 116 min 10 min Spellman et al.32

cdc28 K3445 (YNN553) contains cdc28-13 allele 79 min 10 min Cho et al.33

Table 1. Pearson and Spearman correlations between average mRNA and average protein concentrations.

http://dynprot.cent.uw.edu.pl/
http://dynprot.cent.uw.edu.pl/
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and colleagues’ data9,14, Cdc5 and Clb2 half-lives are 10 and 22 min, respectively. Our model predicted that Cdc5 
and Clb2 concentrations would exhibit strong variability during the yeast cell cycle (Fig. 1C). Indeed, the levels 
of Cdc5p and Clb2p, as determined by western blotting, varied strongly, reaching peaks at 65 and 115 min (M 
phase), and 55 and 110 min (G2/M transition), respectively (Fig. 2C). However, assuming that Clb2 has a constant 
half-life of 22 min (as calculated based on the data of Belle et al.9), gives less than ideal agreement of predicted 
protein concentrations with western blot measurements (Fig. 2C).

Figure 1. Comparison of mRNA vs. predicted protein concentrations for selected proteins in the alpha data set. 
(A) Rad50 (relatively constant mRNA levels and predicted protein levels), (B) Hht1 and Rrnr1 (highly variable 
mRNA and relatively constant predicted protein levels) and (C) Cdc5 and Clb2 (variable mRNA and predicted 
protein levels during the cell cycle).

Figure 2. Comparison of experimental vs. predicted protein concentrations for selected proteins: (A) Rad50 
(B) Hht1 and Rrnr1 and (C) Cdc5 and Clb2.
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Extending the model to accommodate post-translational regulation. Discrepancies between 
predicted and experimental protein levels during the cell cycle may be caused by known inaccuracies of the 
western blot (up to 2-fold) or by post-translational regulation. To address this question, we also constructed 
a more complex model, allowing variable half-life throughout the cell cycle, to verify if considering dynami-
cal half-lives would result in much better agreement between predictions and experimental data. We tested the 
expanded model on the case of Clb2, since it was the only protein tested showing discrepancy with the predicted 
model beyond that expected from western blot measurement errors. First, we calculated predicted Clb2 temporal 
abundance based on static experimental half-lives from two different studies9,14 (Fig. 3A,B). Next, we utilized our 
expanded model, which allows Clb2 to switch between longer and shorter half-lives depending on the stage of the 
cell cycle. We generated such models for Clb2 with half-lives ranging from 1 to 40 minutes, with 1-minute step, 
and changing throughout the cell cycle. We chose the model which best fit the western blot data, which turned out 
to be the model assuming a very short Clb2 half-life up to minute 30 and after the minute 55 after the alpha-factor 
release and longer during the rest of the cell cycle (Fig. 3C). Indeed, it was reported earlier that the Clb2 half-life 
was less than 1 min for cells arrested in G1 by α factor9,14 and in our best-fitting models the Clb2 half-life was 
1 minute (shorter values were not considered) during the G1 phase (Fig. 3C). Clb2 had a longer half-life, closer 
to the value measured in9,14 during the Clb2 activity window, which is at the G2/M transition. These results show 
another important application of our method: if half-life (and/or translation rates) are unavailable, they can be 
estimated with good accuracy from corresponding gene expression and proteomic time-courses, even in very 
challenging cases in which the half-life is variable and the protein time-course is inferred from relatively inaccu-
rate western blots.

Correlation between mRNAs and protein abundances in time-course data. It is typically assumed 
that with an increase in the quality of both gene expression and proteomic data, the correlation between mRNA 
and protein abundance would grow. However, a significant correlation between mRNA and protein concentration 
can be expected only for some groups of proteins. Greenbaum et al.15 showed a significant increase in correlation 
between mRNA and protein levels for proteins localized in the same cell compartment or with the same MIPS 
functional category. O’Shea and colleagues9 later showed that proteins of similar function tend to have similar 
half-lives. So far, the highest correlations between mRNA and protein concentrations have been achieved by 
Futcher et al.16, who found relatively high correlations (r = 0.76) after copula-transforming the data to normal 
distributions. The r = 0.7–0.8 range likely represents the highest possible correlation to achieve. On the other 
hand, protein half-lives are known to have a dynamic range of several orders of magnitude9, and therefore even 
similar mRNA expression levels can be accompanied by a wide range of protein abundance levels, and vice versa1. 
In general, it is increasingly recognized that mRNA abundances are only a weak surrogate for the corresponding 
protein concentrations, mainly because of post-transcriptional control of gene expression. Our studies allow us to 
look deeper at this problem. We found that even though the Spearman and Pearson correlation between average 
protein and mRNA concentrations is highly significant (Table 2), the temporal profiles of protein and mRNA 
concentrations are only weakly correlated (Fig. 4), with typical correlation not higher than 0.2. As expected, the 

Figure 3. Variable half-life allows best fit of predicted (red) and experimentally measured (green) temporal 
protein concentration profiles (A,B). Previously reported half-lives9,14 (left) for Clb2 do not lead to good fit of 
predicted and measured protein concentration temporal profiles (right), especially for half-life reported in Belle 
et al.9. (C) Variable half-life (left), found through numerical simulations (Material and Methods) allows for best 
fit between dynamic Clb2 abundances predicted from mRNA time-course and measured protein abundance 
time-course from the same condition.
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highest correlations between temporary protein and mRNA abundances were observed for proteins with short 
half-lives, when protein levels follow close behind mRNA concentrations (Fig. 5). These data show that even in 
the simplified case of not considering post-translational modification, mRNA levels are good estimates of tem-
poral protein abundances during the whole cell cycle only for a handful of proteins, highlighting the usefulness 
of the modeling described above.

Estimating translation rates. Translation rate (TR, denoted by ktrans,i in Eq. 1) is the output of protein 
production relative to the amount of mRNA. Translation rates are not easy to measure directly, and are tradition-
ally estimated utilizing a steady-state condition (TRss, Material and Methods, Eq. 7). However, the steady-state 
assumption is usually not fulfilled in physiological conditions. Moreover, there is growing evidence that unlike the 
degradation rate, the translation rate is very plastic and is a mechanism to control protein abundances, in response 
to changing mRNA levels (e.g.17). Our approach provides a method for estimating condition-specific translation 
rates requiring neither the steady-state condition nor knowing protein abundance, but using time-series gene 
expression data instead (TRtc, Material and Methods, Eqs 2 and 3). To compare translation rates calculated using 
these two different approaches we computed the relative difference between steady-state and timecourse-derived 
rates TRdiff (Materials and Methods, Eq. 6), which varies from 0 to 1 depending on how different TRss and TRtc 
are. We found that there are relatively few proteins for which TRdiff is greater than 0.1 (65 out of 3395 in the alpha 
data set, 59 out of 2840 in the brd26 data set, 25 out of 2699 in the brd30, 30 out of 2751 in brd38, 254 out of 3173 
in cdc15 and 64 out of 3424 in cdc28). This result shows that our method offers a useful alternative approach 
to estimating translation rates when protein abundances are not known, but time-course gene expression data 
are available. We think the three main reasons for the observed discrepancies between these two methods of 
computing translation rates, described in more detail below, are: (a) the effects of α-factor synchronization, (b) 
measurement errors of mRNA and protein concentration and (c) time-dependence of half-lives. (a) α-factor 
synchronization would cause mRNA levels of some genes to be changed, for example upon α-factor synchroniza-
tion mRNA abundances of SST2/YLR452C (which regulates desensitization to α-factor)18 and SW11/YGL028C 
(which may play a role in conjugation during mating based on its regulation by Ste12p)19 are elevated. Indeed, for 

Figure 4. Histogram of the Spearman correlation between protein and mRNA concentrations during the cell 
cycle for all available proteins in the following data sets: alpha (3395 proteins), brd26 (2840 proteins), brd30 
(2699 proteins), brd38 (2751 proteins), cdc15 (3173 proteins) and cdc28 (3424 proteins).

Data set Pearson
Person 
p-value Spearman

Spearman 
p-value

alpha 0.51 4.0e-224 0.58 2.3e-301

brd26 0.43 2.1e-127 0.56 8.2e-236

brd30 0.47 5.6e-148 0.57 3.0e-231

brd38 0.53 4.0e-196 0.56 6.2e-227

cdc15 0.52 1.1e-218 0.58 1.4e-279

cdc28 0.52 2.0e-232 0.58 3.9e-302

Table 2. Data sources.
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these two proteins we obtained TRdiff > 0.1. (b) The second likely source of differences is measurement errors of 
data used: here mRNA and protein concentrations and degradation rates. (c) Third, as we will discuss below, some 
half-lives are time-dependent and neither the steady-state nor the time-course based method used so far can fully 
accommodate such time dependency. Due to the very different approaches to estimating TR using either the 
steady-state or time-course method, it is not surprising that time-dependence of actual protein half-lives would 
affect these calculations in a different manner, causing the observed discrepancies. In summary, the main source 
of differences in translation rates we computed is related to our experimental conditions, with additional effects 
resulting from using time-course, not average expression values, and from measurement errors.

TR was expected to correlate with many factors known to contribute to protein production, such as protein 
abundance, ribosome density, ribosome occupancy, mRNA concentration, the codon adaptation index (CAI), or 
the tRNA adaptation index (TAI)20,21. However, the TRss we computed (Fig. 6A) does not show high correlation 
with features that had been expected to be correlated with TR. For example, it seems intuitive and it has been 
proposed in Arava et al.20 that TR would be proportional to the product of ribosomal density (i.e. number of 
ribosomes bounded to mRNA) and ribosomal occupancy (number of mRNA associated with ribosomes), 
denoted in Fig. 6A as TA1. However, we did not observe such correlation using the Spearman or Pearson coeffi-
cient (Fig. 6A). Although this could suggest that neither ribosomal density nor occupancy contribute meaning-
fully to translation rates, the lack of high positive correlation between TR and the proposed TR contributing 
factors is in fact the result of high standard deviations of k

mRNA t[ ( )]
d i

i

, ; the proportionality factor between translation 
rate and average protein concentration for the protein i. Indeed, the factors mentioned earlier, that are reported 
as likely to correlate with TR in some publications, are highly correlated with average protein concentration 
(Fig. 6B). TR is associated with average protein concentration, however, this correlation is not very high (0.18 for 
cdc15, 0.20 for brd30 and 0.19 for others) due to the important impact of protein half-life, which can vary by at 
least two orders of magnitude, on protein concentration (Eq. 8). Another interesting observation is that very 
complex attempts at modeling translation rate, such as the Ribosomal Flow Model, do not fare better than simpler 
models: in our comparison the complex RFM approach of 21 is outperformed by simpler methods.

To visualize which cell compartments and protein functions are associated with high or low half-life and 
translation rate, we analyzed different MIPS functional categories and localizations using SCEPTRANS web-
server (Fig. 7A–D). Global analysis shows that half-lives and translation rates have almost the same levels in 
all functional categories. However, there are some interesting exceptions to this principle: in the cell wall and 
extracellular categories there are proteins with relatively short half-lives (that is high degradation rates) and high 
translation rates (Fig. 7B and D). Additionally, proteins involved in protein synthesis have much shorter half-lives 
than average (Fig. 7A).

In summary, the proposed model (Eq. 1), combined with a periodic data set (other time-course data sets 
can be used as well) allowed us to estimate not only genome wide changes in protein abundances, but also both 
translation and degradation rates of proteins. The model performs especially well in the most interesting case of 
substantially dynamic changes in protein abundances over time. It is also capable of detecting post-translational 
regulation of proteins for which corresponding time-course abundance data are available. Finally, the calculated 
protein concentration time-courses were validated experimentally for several proteins.

Figure 5. Relationship between Spearman correlations of protein and mRNA levels during the cell cycle and 
protein half-lives.
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Discussion
Taking advantage of the high availability of genome-wide data of mRNA levels, we propose a model which pre-
dicts dynamic levels of protein abundances based on the time-course of gene expression levels and measured or 
predicted half-lives. We experimentally verified the proposed computational approach in the model organism 

Figure 6. The Spearman (red bars) and Pearson (blue bars) correlations between: (A) Steady-state translation rates 
and translation rate descriptors, (B) average protein concentrations and translation rate descriptors. Several variants 
of translational activities have been computed (TA1, TA2 and TA3) using the following formulae: TA1 = (ribosome 
density) * (ribosome occupancy) * (mRNA concentration), TA2 = (ribosome density) * (ribosome occupancy) * 
(mRNA concentration) * CAI, TA3 = (ribosome density) * (ribosome occupancy) * (mRNA concentration) * CAI/
(0.06 + (ribosome density)) * (ribosome occupancy * mRNA concentration), where CAI is codon adaptation index; 
tAI is tRNA adaptation index and RFM is translation rate calculated using Ribosome Flow Model21.

Figure 7. Half-lives (in minutes) (A,B) and translation rates (C,D) in each of the functional and localization 
categories as described in MIPS database, as retrieved from SCEPTRANS.
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S. cerevisiae by measuring protein concentration changes for selected proteins in the α-factor synchronized cell 
cycle using western blotting. We also showed how our approach can be used to infer post-transcriptional or 
post-translational regulation, if both gene expression and proteomic time-course data are available. Additionally, 
we introduced a variant of the method for estimating translation rates without using the standard, but typically 
non-physiological, steady-state assumption. Instead, we propose to use a boundary condition of the beginning 
and end protein concentration equivalence, which is typically satisfied not only in periodic processes like the cell 
cycle, but also in common time-course experiments, when the system is allowed to return to baseline after treat-
ment. Our approach may be useful in many experimental systems in which the steady-state condition is clearly 
not satisfied (e.g., differentiation), but adaptive changes in translation rates play an important regulatory role17.

The motivation for our study was deeply practical: to obtain in silico estimations of time-course abundance 
data for proteins for which corresponding gene expression measurements are known or to integrate genomic and 
proteomic data to elucidate possible post-translational regulation. Most other studies in the field were instead 
motivated by the desire to explain the observed degree of correlation between protein abundance and gene 
expression levels1,15,22 or to estimate translation rates21. Nevertheless, it seems that our estimation of translation 
rates – a necessary step on the path to estimate protein levels - is also quite accurate, perhaps more so than in 
other popular methods (Fig. 6). Of course, in the case when proteomic data are unavailable, our predictions will 
be of limited accuracy for proteins undergoing post-translational modifications and possibly additionally due to 
inaccuracies in the data measurement, especially half-lives (the half-life data we used in this study9 has a multi-
plicative error of up to 2). Our goal, however, is not to produce accurate predictions for all proteins, but instead 
provide predictions that are far better than using mRNA as a proxy for a large number of proteins that are not 
highly unstable, but also do not undergo substantial post-translational regulation in the conditions studied. As 
was shown in our verification, and as should be expected, depending on half-life, protein abundance profiles may 
show anywhere between no resemblance, to very high resemblance to the underlying mRNA expression profiles. 
Therefore, our predicted protein profiles can provide a valuable resource for scientists interested in dynamic 
changes of protein abundances during their process of interest, but who only have gene expression profiles avail-
able, which are much easier and less expensive to measure than protein levels. Moreover, if a protein is known 
or predicted to undergo a post-translational modification, such as methylation23 or phosphorylation24, it can be 
flagged for potential lower accuracy of our predictions. If the corresponding proteomic timecourse is available, 
potential temporal changes to half-life can be calculated, following the approach we used for Clb2. To allow such 
analysis in a variety of organisms and conditions, we are developing a webserver, based on the proof-of-concept 
study presented in this paper, to provide predicted protein time-course profiles based on user-provided gene 
expression and protein half-life data. Currently, all our predictions for proteome dynamics in the budding yeast 
in different conditions can be conveniently browsed and visualized at http://dynprot.cent.uw.edu.pl/.

To ensure the accuracy of numerical integration, the integration step Δt in Eq.(2) should be very small, 
smaller than a typical resolution of time-course gene expression experiments. Therefore, estimation of mRNA 
concentration is required at every step of the numerical integration. In the present case of the cell cycle data sets, 
we obtained it from linear interpolation. Here, such approximation is justified, since the characteristic time-scales 
of transcriptional regulation in the process (measured e.g. as dt

d mRNA tlog([ ( )])i
 are much longer than the step Δt. In 

the case of very dynamic expression data (e.g Yeast Metabolic Cycle)25, where characteristic scale of the process is 
shorter, more advanced methods may need to be used to prepare input transcriptomic data for modeling pro-
teome dynamics, such as our MaxEnt model-based approach to infer high-resolution changes in gene 
expression13,26,27.

In summary, we have shown that a simple model of the relationship between mRNA and protein levels usu-
ally leads to a rather accurate prediction of protein levels, if post-translational regulation is not involved. Our 
approach can be used to obtain an approximate view of proteome dynamics (without post-translational regula-
tion), to integrate gene expression and proteomic time-course data if both are available, or to more specific tasks, 
such as estimating changing degradation rates, as in our example with Clb2. Our approach was verified experi-
mentally to provide useful results and we believe that such an approximated simulation of proteome dynamics 
may become the standard final step of time-course gene expression analysis, either performed for the whole 
genome, or for pathways or genes of interest.

The availability of genome-wide measured protein degradation rates in various organisms9,28 is growing17,29, 
which makes our approach more broadly applicable. Moreover, there is also substantial progress in understanding 
how protein half-life is encoded in its sequence, which gives hope that these values may be predicted computa-
tionally from sequence alone in the coming years30,31. This would allow the extension of our approach to any 
organism for which gene expression data are available.

Methods
Definitions. Ribosome density is an average number of ribosomes bound to mRNA per unit of mRNA length 
(100 nt).

Ribosome occupancy is a fraction of transcripts associated with ribosomes, i.e. engaged in translation, with 
values in the [0,1] interval.

Quantitative model of gene expression. Using periodic gene expression data enables us to eliminate 
the value of translation rate, ktrans,i, from equation [Eq. 1]. In order to do that, we introduced the function [Ri(t)] 
defined as follows:

http://dynprot.cent.uw.edu.pl/
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For a small time interval Δt:
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and the first order differential equation, [Eq. 1],
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Detailed derivation of [Eq. 2] is provided in the Appendix. The boundary condition for the [Eq. 1]:

= +P t P t T[ ( )] [ ( )]i i

is equivalent to:

= +R t R t T[ ( )] [ ( )],i i

where T is the period of the cyclic phenomenon, e.g. the length of the cell cycle.The proportionality factor ktrans,i 
can be obtained from the following formula:

=k
P
R
[ ]
[ ]

,
(3)

trans i
i

i
,

where P[ ]i , R[ ]i  are the mean values of [Pi] and [Ri] over time T, respectively.

Data sets used and data pre-processing. The average protein and mRNA concentrations have been 
taken from previous studies of Beyer et al.22. Test data sets alpha, brd26, brd30, brd38, cdc15 and cdc28 are 
cell-cycle synchronized gene expression data sets described in detail in Table 1. The data sets alpha and cdc15 
have been published by Spellman et al.32; cdc28 by Cho et al.33 and brd26, brd30 and brd38 by Pramila et al.34. The 
gene expression log2 ratios, Li(t), were transformed to mRNA concentrations [molecules/cell] according to the 
following relation:

= ⋅M t
M t

[ ( )] 2
[ ( )]

2
,i

L t i
L t

( )
( )

i

i

where 2L t( )i  is the arithmetic average of 2L t( )i  in one cell cycle period and [Mi(t)]is the cell-cycle average mRNA 
concentration in molecules per cell, based on literature22. Linear interpolation was used to approximate the value 
of mRNA concentration in every minute during cell cycle, based on computed values at points of measurements 
(equation above).

Estimating the consensus period for periodically expressed genes. The set of genes transcription-
ally regulated during the cell cycle will be defined as the genes with a transcriptional modulation consistent with 
the periodicity T of the mitotic cell division. We utilized the measure of periodicity defined as the periodogram, 
P35–37, of transcript concentration:

∫ ∫σ
π π

=
−

⋅
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where a and b are the beginning and end of the time-course, respectively, E is the transcript concentration and σ 
is the standard deviation of gene expression E. To accommodate uneven distribution of time points, we estimate 
P(T) using the unbiased formula of 36. The statistical significance of a single frequency (corresponding to perio-
dicity with period T) in the periodogram, assuming a Gaussian null hypothesis, is expressed by35–38:

= −z exp P T[ ( )], (5)E

Since no reliable value of the period T measured independently from the transcriptome profiles was available, 
therefore, similar as in6,25, before applying Eq. 4, we estimated the most likely period of transcriptional oscillation 
in the system from the expression data. We have followed the Maximum Likelihood approach, using Eqs 4 and 5  
for each gene independently over a range of possible periods, computing the logarithms of likelihood of perio-
dicity for every gene and every period. These logarithms summed over all genes yield the total likelihood of every 
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period, and the period with the maximum total likelihood has been adopted as the consensus period of regulation 
in the system. Estimated cell cycle periods for different data sets are described in Table 1.

Correcting the estimated protein degradation half-lives. Belle et al.9 reported protein half-lives, as 
estimated from the observed degradation rate, that sometimes have very high values, and, at times, negative ones. 
Since such values are not realistic, we adopted the following algorithm to estimate the most likely true half-lives 
for these proteins. We assumed that the measured quantity (degradation rate kd,i, which is related to the half-life 
ϑd,i by =

ϑ
kd i,

ln(2)

d i,
) may include an error that has a Gaussian distribution, with a variance corresponding to the 

inverse of 300 minutes (the maximum reliably measureable value according to9) divided by the scaling factor 
ln(2). The negative reported half-lives result from experimental error, therefore, to correct the data we used the 
described above error model and prior assumption that a half-life must be positive. The true degradation rate was 
computed by integrating the normal distribution, limited and normalized to the positive part of its domain, and 
the inverse of this value multiplied by ln(2) was adopted as the corrected half-life. The correction was small for 
half-lives significantly shorter than 300 minutes, but significant for values longer than 300 minutes or negative 
reported values.

Calculating protein concentrations. We used the Fixed Point Iteration numerical method to solve Eq. 2 
for each protein and mRNA data set. As a starting point for iterations we used [Ri(0)] = 0 and Δt = 1 minute. We 
continued iterative calculations until convergence, specifically until the condition − ≤ ⋅ −R T R[ ( )] [ (0)] 5 10i i

10 
had been met.

Comparison between steady-state and time-course based translation rates. To determine the 
differences between steady-state derived translation rate, TRss, and time-course derived translation rate, TRtc, we 
defined the coefficient TRdiff :

=
−

TR
TR TR

TR TRmin( , )
,

(6)diff
ss tc

ss tc

where the time-course derived translation rate, TRtc, is defined by Eq. 3 and the steady-state derived translation 
rate, TRss, is defined by:

= ⋅ .TR k P
M
[ ]

[ ] (7)ss i d i
i

i
, ,

Incorporating post-translational regulation. To accommodate post-translational regulation, we 
expanded our approach by allowing time-dependent variation of degradation rates. We will use Clb2 as an exam-
ple to illustrate detecting post-translational modifications. For Clb2, fitting constant degradation rate results in 
poor fit, both for half-lives based on the report of O’Shea and colleagues9 (Fig. 3B) and for the much shorter 
half-life reported by Amon et al.14 (Fig. 3A). Therefore, instead we propose a time-dependent half-life function 
that will also be periodic in the consecutive cell cycles. To describe a half-life that is modified by post-translational 
regulation within K minute window starting at the time t0 within the cell cycle with the period T, we propose the 
following step function ϑ t( )d:

ϑ =







ϑ ≤ ≤ +

ϑ < < + < ≤
.t

t t t K
t t and t K t T

( )
0 (8)

d
d

d

1
0 0

2
0 0

To find values of ϑd
1 , ϑ t,d

2
0 and K optimally describing time dependence of Clb2 half-life we numerically 

optimized these parameters, considering for half-lives ϑd
1 and ϑd

2 all values in the range from 1 minute to 40 min-
utes, with 1 minute steps, and for t0 and K all possible times from the first to the last minute of the cell cycle, again 
with 1 minute steps. For each set of parameters for the function ϑ t( )d, we solved Eq. 2, as described previously 
(Calculating protein concentrations). The set of parameters offering the best fit with experimental data was chosen 
as the best estimate of true Clb2 half-life. Thus, we were also able to calculate the time-dependent degradation rate 
for Clb2 as =

ϑ
k t( )d t

ln(2)
( )d

. The best fit was achieved for variable half-life, with the Clb2 protein becoming extremely 
unstable outside of the window of its activity during the cell cycle (Fig. 3C). This result shows that our approach 
allows one to re-discover, ab initio, the timing of post-translational regulation of a protein, if only gene expression 
and proteomic time-courses are available.

α-Factor based synchronization. Yeast strain DBY8724 (Mat a GAL2 ura3 bar1::URA3) was kindly pro-
vided by P. T. Spellman. Obtained S. cerevisiae cells were synchronized by α-factor arrest as described by Spellman 
et al.32 and Pramila et al.34. Cells were grown to an OD600 of 0.2 in YEP glucose pH 5.5, an asynchronous sam-
ple was taken and α-factor (Sigma Aldrich) was added to a concentration of 25 ng/ml. After 2 hours cells were 
released from α-factor arrest by pelleting and re-suspended in fresh medium to an OD600 of 0.2 (Fig. 8C, time 0). 
Every 5 min, for the next 120 min, 25 samples were taken (25 ml for western blot analysis, 1 ml for FACS analysis 
and 1 ml to count budding index). Cell cycle progression was monitored by bud counting and DNA content anal-
ysis (FACS) (Fig. 8A–C).
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Budding index calculation and FACS analysis. For budding index calculation, two hundred cells were 
examined at every time point. The budding percentage was calculated as the number of budded cells divided by 
the number of all cells. To monitor DNA synthesis, samples were prepared as described previously39 and DNA 
content was measured using a BD FACSCalibur Flow Cytometer.

Western blot analysis. Cell extracts were prepared by TCA precipitation40 and then subjected to western 
blot analysis. Protein samples were separated on Mini-PROTEAN TGX 4–20% (Bio-Rad) gels and transferred to 
PureNitrocellulose Paper 0.45 μm (Bio-Rad). Blots were blocked using 0.2% I-Block buffer (Applied Biosystems), 
cut horizontally and probed with primary antibodies followed by incubation with appropriate horseradish 
peroxidase-conjugated secondary antibodies. The primary antisera used to detect selected proteins were from 
Santa Cruz Biotechnology (Rad50, Cdc5, and Clb2), Abcam (H3), Agrisera (Rnr1) and Millipore (Act1) and the 
secondary antisera were from Dako. Protein bands were visualized with the Immoblilon Western (Millipore) 
and scanned in a G-Box imaging system (Syngene). Band intensities were quantified using Gene-Snap software 
(Syngene).
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