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Recoil-proton track imaging as a 
new way for neutron spectrometry 
measurements
Jing Hu1,2, Jinliang Liu2, Zhongbing Zhang2, Liang Chen2, Yuhang Guo3, Shiyi He1,2, 
Mengxuan Xu2,3, Leidang Zhou2,3, Zhiming Yao2, Xingqiu Yuan4, Qingmin Zhang3 & 
Xiaoping Ouyang1,2

Recoil-proton track imaging (RPTI) is an attractive technique to optically record the tracks of recoil 
protons in scintillation gas by using realtime imaging devices. For the first time, its use as an online 
nuclear track detector for neutron spectrometry measurements (NSM) is explored. Based on the 
RPTI methodology for NSM, a very basic detector system is designed, consisting of the neutron-to-
proton recoil system and proton track imaging system. Satisfactory performance of the RPTI neutron 
spectrometer has been examined with a series of Monte Carlo simulations. Moreover, using well-defined 
line-proton sources from a tandem accelerator, the capability of the detector for imaging proton tracks 
at the single-particle level in real time has been validated in preliminary experiments. From the clear 
single proton tracks in the images, the proton ranges were easily distinguished, and precise proton 
energy spectra were unfolded, laying a solid experimental foundation for the future implementation of 
NSM.

Neutron spectrometry measurements (NSM) have long contributed a lot to the development of nuclear physics1,2 
and also become an essential component in other important areas, especially fusion plasma diagnostics, radio-
therapy and radiation protection3–7. Nuclear track techniques8,9, typically nuclear emulsion10, CR-3911 and the 
fluorescent nuclear track detector (FNTD)12, are traditional detectors for NSM, mainly based on the recoil proton 
method and unfolding the neutron energy after recording numerous tracks of recoil protons. But for reconstruct-
ing the nuclear tracks, they involve either laborious chemical processing or post readout using a special micro-
scope after the neutron irradiation. Sometimes, however, the recoil tracks need to be read out in real time so as to 
determine the neutron spectra promptly for further data analysis or other purposes.

To address this deficiency, recently we have investigated the recoil-proton track imaging (RPTI) method as 
an online nuclear track technique for NSM. RPTI combines gas scintillation with a realtime imaging device. 
Using an advanced scientific camera (such as an image-intensified CCD/COMS camera), coupled with a trans-
parent scintillation gas of high photon yield and visible light spectra (such as CF4), makes it possible to image the 
recoil-proton tracks in scintillation gas in real time, analyze the track information online, and further unfold the 
neutron energy promptly.

Here we systematically describe the methodology of the RPTI technique for NSM and design a very basic 
RPTI detector system in section 2. Then in section 3, some simulations for the performance of the designed 
RPTI detector are conducted with a Monte Carlo code. Section 4 reports the preliminary experiments that are 
performed to test the track imaging system for proton tracks and further proton spectra; in the last section, sum-
maries and future works are discussed.
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Methodology
Recoil proton method. Collimated incoming neutrons scatter from hydrogen nuclei in a polyethylene 
(CH2) foil, producing recoil protons. In the laboratory coordinate system, the recoil proton energy (Ep) is related 
to the impinging neutron energy (En) in terms of the scattering angle (θ)

θ= .E E cos (1)p n
2

Thus to measure the neutron energy (En), we should firstly obtain the energy of the recoil protons (Ep) in the 
scattering direction θ.

Proton track imaging method. Recoil protons deposit their energy in a scintillation gas, such as a noble 
gas or CF4 gas, and generate scintillation photons along their tracks. The spatial distribution of the induced pho-
tons indicates the proton track. So if the photons can be recorded by using a realtime imaging device, one can 
observe the proton track image, from which the proton track range will be extracted.

For charged particles in a given absorber, the specific energy loss (−dE/dx) is expressed by the Bethe formula13
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In Eqs (2, 3), z and v are the atomic number and velocity of the primary particle respectively, m0 is the rest mass 
of electron, Z and N are the atomic number and number density of the absorber atoms respectively, and e is the 
charge of an electron. The parameter I represents the average ionization and excitation potential of the absorber, 
and is experimentally determined for each element. As predicted by Eq. (2), the track range varies with the initial 
energy. The relationship between proton range (R) and initial energy (E) of protons in 1 bar CF4 gas has been cal-
culated as an example with the SRIM code14 and shown in Fig. 1. There is a one-to-one correspondence between 
the initial proton energy and the proton range.

Thus, with the proton tracks optically recorded as track images, the track ranges can be directly extracted, and 
then the energy spectrum of the recoil protons can be derived according to the Energy-Range relationship in the 
given gas (the Energy-Range method). Eventually the neutron spectrum will be unfolded based on Eq. (1).

Basic detector system. Figure 2 shows a schematic layout of a basic RPTI detector system based on the 
above methodology. This detector includes two major components. The first component is a neutron-to-proton 
recoil system, mainly consisting of a neutron collimator and shields, a CH2 foil for converting neutrons to recoil 
protons, and a proton collimator for selecting the incident proton with a well-defined recoil angle θ. The second 
component is a proton track imaging system, including a gas scintillation chamber for producing photons along 
the proton tracks and a set of imaging devices for recording the proton-track photons as an image.

CF4 is our preferred scintillation gas, not just because of its outstanding properties (such as wide spectra 
wavelength, relatively high yield and fast emission)15–19 for imaging purpose, but also for the fact that it is a heavy 
molecule that contains only low-Z atoms, which is insensitive to gamma radiation and allows a good neutron/
gamma discrimination ratio. In engineering design, the gas chamber should have a thin entrance window, such 
as a 5 μm-thickness Ti window, for sealing the gas while permitting recoil protons through. A quartz window 
should also be installed to transfer photons to the outside imaging devices. Advanced scientific cameras, such as 
image-intensified CCD/CMOS, can be chosen as the imaging devices to record the proton-track images in real 
time, and the acquired imaging data will be transmitted to the online analysis system for unfolding the energy 
spectrum promptly.

Figure 1. The track Energy- Range relation calculated by SRIM code for 1 MeV to 10 MeV protons in 1 bar CF4 
gas.
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The neutron energy spread (ΔEn) is defined as the full width at half maximum (FWHM) of the neutron energy 
distribution. For a full RPTI neutron spectrometer based on the design in Fig. 2, ΔEn can be estimated from

Δ = Δ + Δ + Δ + Δ + ΔE E E E E E , (4)n C k a w g
2 2 2 2 2

where ΔEC stands for the spread in energy loss in the CH2 foil, and depends on the thickness and density of the 
foil. ΔEk represents the kinematic energy broadening that results from the scattering angle and its solid angle. 
ΔEa, ΔEw, and ΔEg are respectively the energy straggling of the recoil protons in the gap air, thin entrance win-
dow and CF4 gases, respectively.

Assuming that the collimated protons can be all transmitted into the gas chamber, the detection efficiency of 
the full neutron spectrometer is calculated by

σ
ε =

Ω
ΩN

d
d

L(n) , (5)H
np

s

where NH is the density of the H atom in the CH2 foil; dσnp/dΩ is the differential cross section for n–p scattering 
at the recoil angle of (θ, θ + dΩ) — into the gas chamber; Ωs represents the solid angle for accepting the recoil 
proton, which depends on the air-gap distance and the inner diameter of the proton collimator. L is the effective 
thickness of the converter.

Simulations of the performance. In order to evaluate the performance of the RPTI method for NSM, a 
series of Monte Carlo simulations20 have been performed using the configuration in Fig. 2. Taking DT neutron 
measurements (very common in many applications) as an example, the collimated neutron source is defined as a 
neutron beam at 14 MeV. The direction of the neutron beam is set as 45 degrees from the x-axis, which is chosen 
here just for simplicity in the analysis. In practical applications, this angle should be carefully selected to reduce 
the direct neutron radiation. The incident neutrons directly impinge on a CH2 foil, and generate recoil protons. 
The effective area (hit by the collimated neutron beam) of the CH2 foil is π × 0.52 cm2. A Fe disk with thickness 
of 2 mm and inner radium of 3 mm is used as a proton collimator, positioned at 1 mm away from the entrance 
window (5 μm-thickness Ti window here). The protons along the x-axis direction are selected to enter the gas 
chamber, which is filled with 1 bar CF4 gases. The distance between the CH2 foil and proton collimator is set to 
be 42 mm.

The simulation records the residual proton energy after passing the CH2 foil (represented by Ep1), the air 
gap (represented by Ep2), and the Ti window (represented by Ep3), respectively. The energy spreads resulting 
from the five factors in Eq. (4) are all considered in the simulation and the results are shown in Fig. 3, where a 
CH2 foil with density of 0.94 g/cm3 and thickness of 10 μm is used. Figure 3(a) presents the detailed spectrum 
broadening of protons in each passing medium (CH2, air, and Ti) and it is seen that all proton spectra are approxi-
mately Gaussian in form. Figure 3(b) shows the resulting proton range distribution, from which the initial energy 
distribution of the protons before entering the CF4 gas chamber [Ep3 m in Fig. 3(c)] is derived based on the 
Energy-Range relation in 1 bar CF4 gas. Combined with the Energy-Range relations in Ti and air (calculated by 
SRIM code), and also corrected for the average energy loss in the CH2 foil, the energy spectrum of recoil protons 
[Epm in Fig. 3(c)] is also acquired. Finally, the neutron spectrum [Enm in Fig. 3(d)] is unfolded from the recoil 
proton energy spectrum by means of Eq. (1).

The average value and FWHM corresponding to each spectrum in Fig. 3 are listed in Table 1. It is revealed 
that the unfolded neutron spectrum has an average energy (peak energy) of 14 MeV with a FWHM of 326 keV. 
The simulated neutron energy resolution (FWHM/E) of the whole system is 2.33% at 14 MeV. If the measurement 

Figure 2. Schematic layout of the designed basic detector systems based on the RPTI method for NSM.
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system setup is fixed, the response function from the recoil proton range distribution to the neutron spectrum is 
a known factor based on the above unfolding processes [from Fig. 3(b–d)].

The neutron energy resolution and detection efficiency were also computed as a function of the thickness of 
the CH2 foil. The detection efficiency is defined by the ratio of the total number of protons into the gas chamber 
to the total number of incident collimated neutrons. An energy resolution (FWHM/E) of 2.33% for 14 MeV neu-
trons can be achieved with a detection efficiency in the order of 10−7. The calculated results in Fig. 4 show that as 
the thickness of the CH2 foil increases, the neutron detection efficiency becomes higher, but the energy resolution 
gets worse. In practical applications, the thickness of CH2 can be flexibly changed to adjust the energy resolution 
and neutron efficiency. Also, the solid angle of recoil protons has a similar effect on the tradeoff between the 
energy resolution and the detection efficiency, and can be adjusted by altering the diameter of the proton col-
limator, the distance between the CH2 and proton collimator, or the neutron impacting area of CH2 foil. In the 
high-yield measurements, it is better to operate the system in a high-resolution mode by using either a thinner 
CH2 or a smaller solid angle of recoil protons. However, for low-yield cases, as the detection efficiency is critical 
to normal operation, it is necessary to increase the CH2 thickness or enlarge the proton solid angle appropriately 
at the cost of a degraded energy resolution.

Preliminary experiment setup. The preceding discussion of RPTI for NSM assumed that it is possible to 
measure proton ranges accurately. Before testing its use with neutrons, a first priority is to examine the perfor-
mance of the proton track imaging system for proton tracks using protons of well-defined energy. Preliminary 
experiments have been carried out at the EN-6 tandem accelerator at the Institute of Heavy Ion Physics, Peking 
University.

As shown in Fig. 5, the experimental setup consists of a proton accelerator and the proton track imaging 
system. The tandem accelerator can deliver protons with energy ranging from 2 MeV to 10 MeV by varying the 
terminal voltage. In these experiments, protons of 5.91 MeV and 6.30 MeV were delivered from the accelerator. As 

Figure 3. Calculated results with Monte Carlo simulations. (a) Recoil proton energy spectra after passing the 
CH2 foil (Ep1), the gap air (Ep2), and the Ti window (Ep3); (b) proton range distribution in the CF4 gas; (c) the 
unfolded initial proton spectrum into CF4 gas (Ep3m) and recoil proton spectrum (Epm) from n-p scattering; 
(d) the neutron spectrum (Enm) calculated from the Epm by means of Eq. (1), using a CH2 foil with density of 
0.94 g/cm3 and thickness of 10 μm.

Ep1 
(MeV)

Ep2 
(MeV)

Ep3 
(MeV)

Range 
(mm)

Epm 
(MeV)

Enm 
(MeV)

Average 6.969 6.693 6.609 209.9 7 14

FWHM 0.0365 0.0615 0.0676 8.311 0.163 0.326

Table 1. The characteristics of each spectrum in Fig. 3.
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shown in Fig. 5, before entering the gas scintillation chamber, the delivered protons passed through a Ti window 
(5 μm in thickness) installed on the exit of the accelerator tube, an air gap of 45 mm, and another Ti window (also 
5 μm thickness) at the entrance of the gas chamber.

The gas scintillation chamber was filled with 1 bar CF4 gas. The total scintillation yield of CF4 is about 2000 
photons/MeV (measured with alpha-particles) at 1 bar17. For an individual proton, the number of induced pri-
mary photons in CF4 are too small to be detected by any scientific cameras available to us. To address this issue, 
a strong electric field can be utilized to generate photon avalanches21,22, which produces a large population of 
photons that are able to be optically recorded. It should be noted that this kind of electric field can be easily 
achieved by using a proper electrode geometry inside the gas chamber, such as the gaseous detectors23 like Optical 

Figure 4. The simulated energy resolution (black line) and efficiency detection (blue line) as the function of the 
thickness of the CH2 foil.

Figure 5. Experimental setup for preliminary test of the RPTI method with protons from accelerator at (a) 
Oblique View and (b) Top view.
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Avalanche Chamber (OPAC)24, Micro-Strip Gas Chambers (MSGC)25, Gas Electron Multipliers (GEM)26 or other 
simple structure. For this initial proof-of-principle experiment, we fabricated a simple multi-wire cylinder struc-
ture, which is consisted of 18 cathode copper wires with 100 μm in diameter, and an anode gold-plated tungsten 
wire with 25 μm in diameter. The 18 cathode wires are circular uniformly distributed around the anode wire with 
30 mm in distance between the anode wire and each around cathode. It is similar to a cylindrical proportional 
counter27, but with dozens of cathode wires instead of the cathode tube, thus the cathode-wire gaps are able to 
transport the light outside. In order to get the proton-track ranges, the direction of incident protons was parallel 
to the anode wire. This ensured that the avalanche-induced photons became the parallel projection of the proton 
track in this electric field, and retained all the required longitudinal information of the track for extracting proton 
ranges. The scientific camera we used here is an image-intensified CCD (IICCD), with 1024 × 1024 active pixels 
(each pixel size 13 × 13 μm2).

Experimental Results and Discussions
Recorded proton track images. With the cathode wires grounded while the anode wire was supplied with 
+3000 V (light gain about 300) in the gas chamber, a strong electric field (of the order of 107 V/m)) was produced 
in the vicinity of the anode, where avalanche-induced photons from individual proton tracks were generated and 
then successfully recorded by the IICCD. Typical single proton track images for 5.91 MeV and 6.30 MeV protons 
in 1 bar CF4 gas are shown in Fig. 6(a,b) respectively, where the color scale represents the relative intensity. It is 
revealed that the proton tracks on the images are very distinguishable, especially near the termination of the track, 
which is the region of interest for extracting ranges. In this experimental system, the track range (R/mm) is linear 
to the terminal position (expressed by pixel value Np) of recorded track on the images as

= + ×R mm N mm130( ) 76( )/1024 (6)p

where 76 mm is the size of the imaging view, 130 mm is the distance from the left side of the imaging field to the Ti 
window of the gas chamber, and 1024 is the number of CCD pixels. Np can be retrieved backwards from the end 
of the image, exactly at the first X-pixel position where the average intensity (gray value) is nearest to 10% of the 
maximum intensity. The Np values extracted from Fig. 6(a,b) are 300 and 512, respectively, and thus based on the 
above linear conversion, the proton ranges are 152 mm and 168 mm, respectively.

Unfolded proton energy spectrum. In the experiments, approximate 500 single proton track images at 
the nominal energies of 5.91 and 6.30 MeV from the accelerator were respectively acquired to reconstruct the cali-
bration spectra. The range distributions of the single proton tracks are shown in Fig. 7(a), in which fitted Gaussian 
distributions (red solid curves) are also plotted. The characteristics for the two different incident energies are 
listed in Table 2, including the mean ranges (Rm) and the FWHM of the range. The measured range deviation is 
determined by range straggling and the transversal diffusion of electrons during the drift motion. Mono-energetic 
protons experience track range straggling is theoretically in single-Gaussian distribution. Primary electrons 
induced by protons drift towards the avalanche regions, and might spread in the direction perpendicular to the 
drift. The diffusion can be reduced by decreasing the length of the drift path.

After each proton track was imaged, the proton energy can be promptly calculated from the extracted range 
according to the track Energy-Range relations in the passing materials (1 bar CF4 gas, a 5 μm-thickness Ti win-
dow, an air gap of 45 mm, and another 5 μm-thickness Ti window). The unfolding process is very similar to the 
process described in the simulation and can be automatically performed using a simple program. All of the 
calculated proton energies form the measured proton spectra, shown with histograms in Fig. 7(b). The unfolded 
proton spectra agree well with the single Gaussian distributions (red solid curves) as expected. The energy spec-
tra parameters extracted from Fig. 7(b) are also listed in Table 2. The measured peak proton energies (Epm) are 
5.90 and 6.28 MeV, and the FWHM of the spectra are 0.137 and 0.150 MeV, resulting in the energy resolutions 
(FWHM/Epm) of 2.32% and 2.39%, respectively for the nominal energies of 5.91 and 6.30 MeV. The peak energies 
are slightly smaller than the corresponding nominal energies, which probably results from the errors of meas-
urement in the Ti thicknesses, air gap and gas pressures. The energy broadening in the proton spectra is mainly 
caused by the range straggling in the CF4 gas, and the energy spreads in the gap air and the two Ti windows also 
contributed. In general, precise proton energy spectra are successfully unfolded from the recorded track images, 
and the capability of the proton track imaging technique is well demonstrated.

Figure 6. The typical single proton track images for (a) 5.91 MeV and (b) 6.30 MeV delivered proton in 1 bar 
CF4 gas with a strong electric field. The protons incident direction is from left to right and the color scales are 
the relative intensity (gray value) in the images.
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Conclusions and Future Works
In this paper, an online nuclear track technique for NSM based on RPTI methodology has been developed, with 
the advantageous functions of imaging single proton tracks in real time and further unfolding the neutron spectra 
online. By using Monte Carlo simulations, the designed RPTI detector was evaluated with good performance for 
NSM and the energy resolution (FWHM/E) of 2.33% at 14 MeV can be achieved with a detection efficiency in 
the order of 10−7. Particularly, the crucial track imaging capability was tested experimentally using protons of 
well-defined energy from a tandem accelerator. A number of clear tracks at single-proton level were successfully 
imaged, indicating high sensitivity of the system. Most importantly, the proton ranges were easily distinguished 
from the track images and further used to unfold the proton energy spectra, resulting in energy resolutions 
(FWHM/E) of 2.32% for 5.91 MeV protons and 2.39% for 6.30 MeV protons. Thus, the practical use of the proton 
track imaging system has been demonstrated, which paves the way for the next study on NSM.

On this basis, neutron measurements will be performed once a suitable neutron source is available to our 
team. The general properties, along with the aforementioned features of the RPTI technique for NSM will be 
further investigated experimentally.
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