
1SCIenTIFIC REPORTS |  (2018) 8:13009  | DOI:10.1038/s41598-018-31395-5

www.nature.com/scientificreports

A novel logistic regression model 
combining semi-supervised 
learning and active learning for 
disease classification
Hua Chai, Yong Liang, Sai Wang & Hai-wei Shen

Traditional supervised learning classifier needs a lot of labeled samples to achieve good performance, 
however in many biological datasets there is only a small size of labeled samples and the remaining 
samples are unlabeled. Labeling these unlabeled samples manually is difficult or expensive. 
Technologies such as active learning and semi-supervised learning have been proposed to utilize the 
unlabeled samples for improving the model performance. However in active learning the model suffers 
from being short-sighted or biased and some manual workload is still needed. The semi-supervised 
learning methods are easy to be affected by the noisy samples. In this paper we propose a novel logistic 
regression model based on complementarity of active learning and semi-supervised learning, for 
utilizing the unlabeled samples with least cost to improve the disease classification accuracy. In addition 
to that, an update pseudo-labeled samples mechanism is designed to reduce the false pseudo-labeled 
samples. The experiment results show that this new model can achieve better performances compared 
the widely used semi-supervised learning and active learning methods in disease classification and gene 
selection.

Identifying disease related genes and classifying the disease type using gene expression data is a very hot topic 
in machine learning. Many different models such as logistic regression model1 and support vector machines 
(SVM)2 have been applied in this area. However these supervised learning methods need a lot of labeled samples 
to achieve satisfactory results. Nevertheless in many biological datasets there is only a small size labeled data and 
remaining samples are unlabeled. Labeling these unlabeled samples manually is difficult or expensive; hence many 
unlabeled samples are left in the dataset. On the other hand, the proportion of small size labeled samples may 
not represent the real data distribution, which makes the classifier difficult to get the expected accuracy. Trying 
to improve the classification performance, many incrementally learning technologies such as semi-supervised 
learning (SSL)3 and active learning (AL)4 have been designed which utilize the unlabeled samples.

AL tries to train an accurate prediction model with minimum cost of labeling the unlabeled samples man-
ually. It selects most uncertain or informative unlabeled samples and annotates them by human experts. These 
labeled samples are included to the training dataset to improve the model performance. Uncertainty sampling5 
is the most popular AL strategy in practice because it does not require significant overhead to use. However one 
problem is that using uncertainty sampling may make the model to be short-sighted or biased6. What is more, 
though AL reduces the manpower work, manually labeling the selected samples by AL in biological experiments 
still cost much.

In another way, SSL uses unlabeled data together with labeled data in the training process without any manual 
labeling. Many different SSL methods have been designed in machine learning including transductive support 
vector machines7, graph-based methods8, co-training9, self-training10 and so on. However11 pointed out that the 
pseudo-labeled samples are annotated based on the labeled samples in the dataset, and they are easy to be affected 
by the high noisy samples. That is why SSL may not achieve satisfactory accuracy in some places.

Many researchers found the complementarity between AL and SSL. Song combined the AL and SSL to extract 
protein interaction sentences12, the most informative samples which were selected by AL-SVM were annotated by 
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experts and then the classifier was retrained using SSL technology by the new dataset13. used a SSL technology to 
help AL select the query points more efficiently and further reducing the workload of manual classification. In14 
a SVM classifier was proposed to manually label the most uncertain samples and at the same time the other unla-
beled samples were labeled by SSL, thus a faster convergence result was gained. The recent study15 proposed by 
Lin designed a new active self-paced learning mechanism which combines the AL and SSL for face recognition.

However, most attention of the methods combing SSL and AL are paid to the SVM model. The logistic regres-
sion model which widely used for disease classification is seldom mentioned. And also in these existing methods, 
the most informative samples selected by AL are manually annotated, this work maybe very expensive or time 
consuming in disease classification. Hence we design a new logistic regression model combining AL and SSL 
which meets the following requirements:

The new model should be easily understood and applied. Our method should not require significant engineering 
overhead to use.

In this new logistic regression model, we use uncertainty sampling to select the most informative samples in AL. 
Uncertainty sampling is fairly easily generalized to probabilistic structure prediction models. For logistic regression 
model, the sample probability closed to the decision boundary (probability ≈ 0.5) will suffice. In the new logistic 
regression model, self-training is used as a complement to AL. Self-training is one of the popular technologies used in 
SSL because of its fast speed and simplicity, and this method is a good way to solve the short-sighted problem in AL. In 
self-training the classifier is first trained by using the small size labeled samples, and then the obtained classifier will be 
used to label the high confidence samples in the unlabeled samples pool. These selected samples will be included into 
the training set and the classifier will be retrained. The cycle repeats until all the unlabeled samples have been used. 
In the logistic regression model, the samples which the probability closed to 0 or 1 can be seen as the high confidence 
samples. In our model, uncertainty sampling is used for avoiding the classifier being misled by high noisy samples, and 
self-training can avoid the model to be short-sighted or biased because of the high confidence samples’ compactness 
and consistency in the feature space15. By the complementarity of uncertainty sampling and self-training, it is easy to 
build a select-retrain circulation mechanism based on the samples’ probabilities estimated by the logistic classifier.

The new model can achieve a satisfactory accuracy while labeling the samples automatically without manual labeling.

Sometimes labeling the disease samples manually is difficult, expensive or time consuming. In our model the 
uncertain samples selected by AL are labeled by the last classifier automatically, it significantly reduces the burden 
of manual labeling. However how to ensure the correctness of these uncertain samples? The most uncertain sam-
ples mean the false pseudo-labeled samples are easy to be generated. On the other hand the most uncertain samples 
can be seen as the most informative samples in the logistic model, and the misclassified samples will degenerate 
the model performance obviously. Considering these samples are not removed or corrected in the standard AL 
and SSL methods, we design an update mechanism for the pseudo-labeled samples which makes the misclassified 
samples have chances to be corrected based on the new classifiers which generated in later training interactions.

Method
Logistic regression model. Supposing the biological dataset has n samples, which includes n1 labeled sam-
ples and n2 unlabeled samples, n = n1 + n2. And this dataset contains p genes. β β β β β β= + + … +( )p0 1 2  
represents the coefficients between the disease type Y and gene expression X. y c x( , , )i i i i

n represents the individual 
sample, where yi is disease type, = …x x x x( , , )i i i ip1 2  represents the gene expression data, ci represents the sample 
is labeled or unlabeled. The basic logistic regression model can be expressed as:
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Trying to identify disease related genes in the gene expression data, L1-norm regularization (Lasso) is added 
in the model:
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Where β( )P j is the L1-norm regularization part and λ is the tuning parameter.

Uncertainty sampling. In the active learning part of our method, we use uncertainty sampling to select 
samples in the unlabeled dataset. In the logistic regression model the sample which probability close to the deci-
sion boundary (probability ≈ 0.5) can be seen as the most uncertain sample in AL. Hence an AL logistic regres-
sion model can be expressed as:
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where v is the weight parameter of the unlabeled samples, and the αf v( , )AL  represents the selection function 
which can be used to generate the v, a is the control parameter. The selected unlabeled samples will be labeled 
manually and then included into the training dataset. The αf v( , )AL  can be expressed as following:

α β α=







. − < < . +( )v l x y

else

1 0 5 , , 0 5

0 (5)
j

j
T

i

Self-training. In the logistic regression model the sample probability closest to 0 or 1 can be seen as the high 
confidence sample. It is easy to find that the difference between the self-training and uncertainty sampling is that 
the selection criteria of identifying the used unlabeled samples. Hence the self-training logistic regression model 
is shown as:
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where w is the weight parameter of the unlabeled samples, the γf w( , )SSL  represents the selection function of 
self-training and γ is the control parameter. The γf w( , )SSL  is shown as:

γ β γ=
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The logistic regression model combining semi-supervised learning and active learning. In this 
paper we propose a novel logistic regression model combining SSL and AL with an update mechanism. The high 
confidence unlabeled samples selected by self-training can avoid the classifier to be short-sighted. The low con-
fidence samples selected by uncertainty sampling prevent the classifier to be misled by high noisy samples which 
are offered by self-training. The model can be expressed as:
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where w is the weight parameter of the unlabeled samples given by SSL, and the v is the weight parameter of the 
unlabeled samples obtained by AL.

Different from the ordinary AL methods, the unlabeled samples selected in our model are labeled by the 
learned classifier automatically. Considering the uncertainty of classified samples, the misclassified samples 
should have the chances to be revised in latter training iterations. The update mechanism is described below:

•	 If the sample is selected by SSL and the label has been changed by the classifier, this sample will be returned to 
the unlabeled sample pool and wait to be selected again.

Figure 1. The work flow of proposed logistic regression model combining SSL and AL.
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•	 If the sample is selected by AL and the label has been changed, we revise the label of this sample and it will be 
put into the training dataset directly.

The work flow of our proposed logistic regression model is show in Fig. 1:

•	 Step 1: Firstly the labeled data will be used to learn an initial logistic regression model.
•	 Step 2: The logistic regression model will be used to label the unlabeled samples and the high value samples 

which are selected by SSL or AL will be included into the training dataset.
•	 Step 3: Update the logistic regression model using the new training dataset.
•	 Step 4: Identify the false pseudo-labeled samples. If they are selected by SSL, return them to the unlabeled 

sample pool. Otherwise, change their labels and put them into the training dataset directly.
•	 Step 5: The cycle will continue until all the unlabeled samples have been labeled or the run time exceeds the 

maximum number of iteration.

The algorithm of our proposed logistic regression model combining SSL and AL is given in below:
The maximum iteration C is computed based on the step size SZ which is the selection range for identifying 

high value samples based on the pseudo-labeled samples’ probabilities. The probi is defined as the probability of 
the ith pseudo-labeled sample which is estimated by the logistic model. Here we give an example to discuss the 
convergence of this model: if the SZ is set 0.2, the C is 5 (SZ *C = 1). In first iteration only the pseudo-labeled 
samples meeting the following conditions will be used: 0 < probi < 0.05 and 0.95 < probi < 1 (selected by SSL) 
& 0.45 < probi < 0.55 (selected by AL), here the initial probability range is 0.2; in the second iteration the range 
will be increased to 0 < probi < 0.1 and 0.9 < probi < 1 (selected by SSL) & 0.4 < probi < 0.6 (selected by AL), the 
probability range is increased to 0.4, SZ = 0.2 means in every iteration the range of probability will increase by 0.2. 
And while C = 5, the probability range is increased to 1, it means all the pseudo-labeled samples will be used. The 
commonly C is set 10 (SZ = 0.1) or 20 (SZ = 0.05). Sometimes before the iteration reaches the maximum iteration 
C, all the pseudo-labeled samples have been selected, especially while the SZ is set very small. For saving the com-
puting time and cost, the program will be terminated early.

Results
Simulation experiments. The datasets used in simulation experiments are generated as following:

•	 Step 1: Supposing the dataset has n samples, and the number of the genes is 4000. In these 4000 genes we set 
10 disease related genes, and the coefficients of the remaining 3990 genes are set zero.

•	 Step 2: The correlation coefficient p is set 0.3. γ ρ γ ρ= − +x 1i i i0  where γ γγ …, , ,i i ip0 1  (i = 1, …, n) are 
generated independently from standard normal distribution

•	 Step 3: The sample is generated as: β β ε= + ∑ +
−

xlog
y

y i1 0
i

i
, where β0 is the intercept and ε is the randomly 

generated Gauss white noise.

Algorithm 1. The algorithm of the semi-supervised logistic regression model.
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•	 Step 4: The unlabeled data points are selected randomly, supposing in the dataset there are n1 labeled samples 
and n2 unlabeled samples, where n = n1 + n2. In Group A we suppose n1 = 100, n2 = 200; and in Group B 
n1 = 150, n2=300. We recorded the (y x c, ,i i i), ci = 0 means the corresponding yi is unlabeled.

In this paper we compare six different methods: the single logistic model with Lasso, the AL logistic model 
with Lasso (AL-lo), the self-training logistic model with Lasso (SSL-lo), the logistic model combining with AL 
and SSL which needs manual labeling (ASSL-lo), the auto logistic model with Lasso combining with AL and SSL 
without manual labeling and update mechanism (Auto-ASSL(A)), and the logistic model with Lasso combining 
with AL and SSL without manual labeling but using update mechanism (Auto-ASSL(B)). In AL-lo and ASSL-lo, 
about 40% unlabeled samples are labeled manually. The classification accuracy of the unlabeled data is used to 
evaluate the classification performances of different models. The number of selected correct genes (NC), the 

Group A Group B

NC NS sensitivity specificity NC NS sensitivity specificity

logistic 3.15 14.05 0.315 0.995 4.82 26.58 0.482 0.989

AL-lo 3.65 17.80 0.365 0.992 5.19 28.16 0.519 0.988

SSL-lo 3.87 23.61 0.387 0.990 5.51 45.40 0.551 0.979

ASSL-lo 5.32 63.90 0.532 0.971 6.74 96.27 0.674 0.955

Auto-ASSL(A) 3.59 57.68 0.359 0.973 5.26 97.39 0.526 0.953

Auto-ASSL(B) 4.17 27.45 0.417 0.988 5.75 53.60 0.575 0.976

Table 1. The gene selection performances of different methods in simulation experiments.

Figure 2. The classification accuracy of different methods in simulation experiments.

Figure 3. The ROC curves of different methods in simulation experiments.

AUC logistic AL-lo SSL-lo ASSL-lo Auto-ASSL(A) Auto-ASSL(B)

Group A 0.9584 0.9723 0.9709 0.9874 0.9448 0.9810

Group B 0.9682 0.9855 0.9796 0.9943 0.9738 0.9917

Table 2. The AUC obtained by different methods in simulation experiments.
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number of selected genes (NS), sensitivity and specificity are used to evaluate the gene selection performances of 
the methods. Supposing true positive (TP) is the number of identified disease related genes, false positive (FP) 
is the number of selected unrelated genes, false negative (FN) is the number of disease related genes which are 
missed, and true negative (TN) is the number of the unrelated genes that are abandon by different models. The 
sensitivity and specificity can be expressed as:

=
+

sensitivity TP
TP FN

Dataset
Number 
of genes

Number 
of samples

Number of 
labeled samples Disease types

DLBCL 2648 77 26 diffuse large b-cell lymphoma

Prostate 2135 102 34 prostate cancer

GSE21050 54613 310 103 soft tissue sarcomas

GSE32603 13200 231 77 breast cancer

Table 3. Details of real datasets used in the experiments.

Method DLBCL Prostate GSE21050 GSE32603

logistic 77.94% 86.54% 79.01% 69.69%

AL-lo 83.15% 91.53% 84.43% 73.68%

SSL-lo 81.82% 88.97% 80.92% 70.57%

ASSL-lo 87.14% 94.42% 89.34% 80.63%

Auto-ASSL(A) 80.67% 88.55% 78.33% 68.48%

Auto-ASSL(B) 85.62% 93.36% 86.37% 76.46%

Table 4. The classification accuracy obtained by different methods in the real datasets.

Figure 4. ROC curves obtained by different methods in real datasets (a) DLBCL (b) Prostate (c) GSE21050 (d) 
GSE32603.
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=
+

specificity TN
TN FP

The gene selection performances of different methods in simulation experiments are shown in Table 1, the 
results are the average of 100 runs of the program. It is easy to find the specificity obtained by single logistic 
regression model is highest than any other methods, it means it doesn’t select too many unrelated genes. However 
the lowest sensitivity shows single logistic regression model selects the least disease related genes. The AL-lo 
achieves a closed specificity value compared to single logistic model, but it identifies more disease related genes. 
The SSL-lo selects more disease related genes than single logistic model, and meanwhile many unrelated genes 
are also selected. Through combining the AL and SSL, the ASSL-lo identifies most disease related genes, but the 
problem is that it also selects more disease unrelated genes than SSL-lo. Auto-ASSL(A) selects less correct genes 
compared to ASSL, and the numbers of selected unrelated genes are closed. Compared to the Auto-ASSL(A), 
the gene selection performance obtained by Auto-ASSL(B) is obviously improved. The sensitivity obtained by 
Auto-ASSL(B) is only less than ASSL-lo but higher than any other methods, and the specificity is even more than 
the ASSL-lo. It shows that the Auto-ASSL(B) can achieve a balance between the sensitivity and specificity, and it 
has a strong ability to identify the disease related genes meanwhile eliminates the interference of unrelated genes.

The values of classification accuracy obtained by different methods in the unlabeled data are shown in Fig. 2. 
The ROC curves obtained by different methods in one run of the program are shown in Fig. 3. And the AUC 
values corresponding to the ROC curves are given in Table 2. The ASSL logistic model achieves the best result 
through combining the AL and SSL, however it needs much time and cost for manual labeling. The performance 
obtained by Auto-ASSL(A) is even worse than SSL logistic model, this result proves the misclassified uncertain 

Method DLBCL Prostate GSE21050 GSE32603

logistic 0.9199 0.9569 0.8975 0.7557

AL-lo 0.9295 0.9749 0.9394 0.8328

SSL-lo 0.8942 0.9708 0.9232 0.7962

ASSL-lo 0.9583 0.9862 0.9596 0.9023

Auto-ASSL(A) 0.8333 0.9646 0.8835 0.7757

Auto-ASSL(B) 0.9391 0.9785 0.9432 0.8390

Table 5. The AUC obtained by different methods in the real datasets.

logistic AL-lo SSL-lo ASSL-lo Auto-ASSL(A) Auto-ASSL(B)

1 HPN TP63 TP63 TP63 PTGDS TP63

2 TP63 XBP1 XBP1 XBP1 HPN HPN

3 MYOF NELL2 HPN HPN NELL2 MYOF

4 XBP1 TGFB3 PTGDS NELL2 RRAD XBP1

5 PTGDS HPN NELL2 RBM3 HSBP1 JUNB

6 NELL2 ATP5ME MYOF PTGDS MYOF NELL2

7 SERPINA3 TRIM29 ATP5ME SDC1 TP63 SERPINA3

8 RBM3 MYOF SERPINA3 CFD PDLIM5 TIPARP

9 TGFB3 RBM3 TGFB3 ATP5ME ATP5ME TGFB3

10 TRIM29 SERPINA3 TRIM29 HSBP1 SERPINA3 TRIM29

Table 7. The genes selected by different methods in Prostate.

logistic AL-lo SSL-lo ASSL-lo Auto-ASSL(A) Auto-ASSL(B)

1 SELENOP SELENOP SELENOP SELENOP SELENOP MDM4

2 KIF2C MT2A PURA CD34 GPR18 SELENOP

3 MT2A MIF MT2A TXNIP ESD MIF

4 MORC3 GLIPR1 GLIPR1 MT2A GLIPR1 MORC3

5 TLE4 SELL TLE4 PURA SELL TLE4

6 SELL BMI1 MIF TRIB2 MYCLP1 SELL

7 N4BP2L1 IFITM2 N4BP2L1 GAPDH TRIM23 N4BP2L1

8 GLIPR1 GAPDH SELL MYCLP1 TLE4 GLIPR1

9 EFNA3 CCL21 CCL21 GLIPR1 KIF2C CCL21

10 MYCLP1 SMAD6 ESD MIF GAPDH MT2A

Table 6. The genes selected by different methods in DLBCL.
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samples have significant bad effect on the classification performance and our update mechanism is very neces-
sary for Auto-ASSL. The results show our method is advanced because it achieves higher accuracy than AL-lo or 
SSL-lo and only less than ASSL-lo, and meanwhile it doesn’t need any manual labeling.

Hence the new logistic regression model combing SSL and AL can be seen as a very efficient method because 
it implements the following functions:

 (1) It works without any manual intervention. This saves much cost and the results can be quickly obtained.
 (2) It can achieve accuracy above 90% in disease classification. The experiments show our method can achieve 

a better accuracy than the AL and SSL logistic regression models.

Figure 5. The number of genes selected by different methods in real datasets.

logistic AL-lo SSL-lo ASSL-lo Auto-ASSL(A) Auto-ASSL(B)

1 ROR2 GRB2 LOC642236 ROR2 ROR2 EMB

2 LOC642236 MS4A1 ROR2 EMB EMB ROR2

3 GRB2 EMB GRB2 ZSCAN9 GRB2 GRB2

4 EMB ROR2 EMB CDKN1B TMEM242 TMEM242

5 MAST1 UBE2W UFC1 HPSE

6 C2orf70 EPHB1 TPD52L2

7 TAF8 SUPT20H

8 MTSS1 ARL2BP

9 PRDM4 STK3

Table 9. The genes selected by different methods in GSE32603.

logistic AL-lo SSL-lo ASSL-lo Auto-ASSL(A) Auto-ASSL(B)

1 C15orf41 SNAPC1 SNAPC1 FADS1 MTHFD2 MTHFD2

2 SNAPC1 SNORD35B C8orf82 SNORD35B ADD3 SNORD35B

3 C8orf82 MTHFD2 MTHFD2 IFT43 SNAPC1 SNAPC1

4 MTHFD2 NFATC2IP SLC1A4 C8orf82 SNORD35B ADD3

5 LPAR1 C8orf82 PML CDC42EP3 FHL2 C8orf82

6 AKT2 NUP155 PLD1 MTHFD2 PCDH18 XPO6

7 XPO6 XPO6 WDHD1 DCN NFATC2IP ATP6V1D

8 SLC1A4 IFT43 AKT2 SNAPC1 YEATS2 IFT43

9 PLD1 PCDH18 RPL13A XPO6 LIMK2 NUP155

10 SNORD35B WDHD1 NFATC2IP ADD3 SMAD4 ENO2

Table 8. The genes selected by different methods in GSE21050.
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 (3) It can identify more disease related genes and at the same time less unrelated genes will be selected. This 
further saves the researchers’ time and cost.

Real data experiments. In real data experiments six methods are applied on four real gene expression data-
sets: Diffuse large B-cell lymphoma (DLBCL) dataset16, Prostate cancer dataset17, GSE2105018 and GSE3260319. 
In these four datasets about 2/3 samples are treated as the unlabeled samples for evaluating the classification 
accuracy of unlabeled samples. The labeled samples and unlabeled samples are randomly selected in every runs of 
the program. More details of the datasets used in the experiments are shown in Table 3.

The values of classification accuracy obtained by different methods in real datasets are shown in Table 4. The 
ROC curves obtained by different methods in one run of the program in different datasets are shown in Fig. 4, and 
the corresponding AUC are shown in Table 5. The SSL-lo performs better than single logistic and Auto-ASSL(A), 
but worse than the other three methods. It is obviously that the accuracy of ASSL logistic model is highest. The 
Auto-ASSL(A) does not perform well because the misclassified samples affect the accuracy. The classification 
accuracy obtained by Auto-ASSL(B) is better than any other methods except ASSL which proves that the update 
pseudo-labeled samples mechanism is a very important improvement for the model.

The numbers of genes selected by different methods in real dataset are shown in Fig. 5. It is obvious that the 
single logistic method selects least genes. The numbers of selected genes obtained by ASSL and Auto-ASSL(A) 
are far more than other methods. Our method selects more genes than AL-lo and SSL-lo, but less than ASSL-lo.

In order to further assess the correctness of the selected genes by different methods, the top-10 ranked genes 
selected by different methods in real datasets are listed in Tables 6–9, Table 9 is partly blank because the methods 
didn’t select so many genes. The genes in italic in the tables such as SELENOP, HPN, MTHFD2 and ROR2 are 
the ones which are selected by all the methods in the same datasets. The SELENOP in DLBCL can be seen as an 
extracellular antioxidant, and it may be potential non-invasive diagnostic markers for cancer. Some researches 
show that selenium could be seen as an anticancer therapy by affecting SELENOP20. The research has proved 
that expression of the encoded protein of HPN is related to the growth and progression of cancers, particularly 
prostate cancer. It may be associated with susceptibility to prostate cancer21. The MTHFD2 in GSE21050 is seen 
as a prognostic factor and a potential therapeutic target for future cancer treatments.22. The ROR2 in GSE32603 is 
reported that it can significantly reduce cell proliferation and induced apoptosis23.

On the other hand, our method also identified some special genes which other methods did not select.
These genes are shown in bold in the Tables 6–9. The MDM4 in DLBCL plays a very important role in the 

proliferation of the cancer cells, and it is crucial for the establishment and progression of tumors24. JUNB plays 
a specific role in cancer cell proliferation, survival and drug resistance25. Single nucleotide polymorphism of 
TIPARP in Prostate has been proved to be related with cancer26. In27 ENO2 is reported to be a risk factor for bone 
metastases in cancer. The TPD52L2 in GSE32603 encodes a member of the tumor protein D52-like family, and 
contributes to proliferation of cancer cells28. These genes mentioned in the literatures demonstrate that our new 
logistic regression model has a strong ability in gene selection.

Conclusion
In this paper we have designed a novel method which does not require significant engineering overhead to use 
and meanwhile achieves satisfying results by utilizing the unlabeled gene expression samples in disease clas-
sification. The novel logistic regression model is designed based on the complementarity of semi-supervised 
learning and active learning. In addition to that an update pseudo-labeled samples mechanism is embedded in 
this method to reduce the false pseudo-labeled samples. In conclusion, our method can achieve more accuracy 
results compared widely used SSL and AL logistic models, and it also has a good performance in identifying the 
disease related genes. In addition to that, this model can work without any manual labeling for saving much time 
and cost. We believe it will be an efficient tool to make contributions for disease classification and gene selection 
because of its high reliability and stability against noise and outliers.
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