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Minimizing Structural Bias in 
Single-Molecule Super-Resolution 
Microscopy
Hesam Mazidi, Jin Lu   , Arye Nehorai & Matthew D. Lew   

Single-molecule localization microscopy (SMLM) depends on sequential detection and localization of 
individual molecular blinking events. Due to the stochasticity of single-molecule blinking and the desire 
to improve SMLM’s temporal resolution, algorithms capable of analyzing frames with a high density 
(HD) of active molecules, or molecules whose images overlap, are a prerequisite for accurate location 
measurements. Thus far, HD algorithms are evaluated using scalar metrics, such as root-mean-square 
error, that fail to quantify the structure of errors caused by the structure of the sample. Here, we show 
that the spatial distribution of localization errors within super-resolved images of biological structures 
are vectorial in nature, leading to systematic structural biases that severely degrade image resolution. 
We further demonstrate that the shape of the microscope’s point-spread function (PSF) fundamentally 
affects the characteristics of imaging artifacts. We built a Robust Statistical Estimation algorithm 
(RoSE) to minimize these biases for arbitrary structures and PSFs. RoSE accomplishes this minimization 
by estimating the likelihood of blinking events to localize molecules more accurately and eliminate 
false localizations. Using RoSE, we measure the distance between crossing microtubules, quantify the 
morphology of and separation between vesicles, and obtain robust recovery using diverse 3D PSFs with 
unmatched accuracy compared to state-of-the-art algorithms.

Since its invention, fluorescence imaging has been an indispensable tool for biological studies of cells, tissues, 
and organisms because of its ability to visualize specific molecules of interest against a dark background in a 
relatively noninvasive manner. Tagging a biological molecule with a small organic fluorophore or fluorescent 
protein enables a fluorescence microscope to produce pictures of structures and movies of interactions between 
molecules within living cells. The optical detection of individual fluorescent molecules in condensed matter1 is 
the basis for an entire family of super-resolved fluorescence microscopy techniques2–5. These methods rely upon 
the blinking of fluorescent molecules in time to reduce the concentration of active emitters and resolve each 
molecule in a microscope image6–8. Repeated cycles of molecular blinking and measurement of molecular posi-
tions from their point spread functions (PSFs) by an image analysis algorithm result in reconstructed images of a 
biological structure with resolution beyond the Abbé diffraction limit (~λ/2NA ≈ 250 nm for visible light, where 
NA is the numerical aperture of the fluorescence microscope). Here, we refer to these techniques collectively as 
single-molecule localization microscopy (SMLM).

Although the experimenter often chooses imaging conditions to minimize the probability of image overlap 
between two molecules, the stochasticity of molecular blinking often leads to some overlap in SMLM datasets, 
especially for complex biological structures with high fluorophore labeling density9. One may even purposefully 
increase the density of active fluorescent probes in any given camera acquisition, such that images of neighboring 
molecules frequently or regularly overlap, in order to improve the temporal resolution of SMLM. Consequently, 
fewer imaging frames are needed to reconstruct a target structure, thereby leading to decreased phototoxicity as 
well as a reduction in motion-blur artifacts10,11.

From a statistical perspective, super-resolution imaging in the presence of significant image overlap poses two 
major problems: (i) identifying the underlying molecules and (ii) estimating their positions and brightnesses. 
Strategies for resolving overlapping molecules are primarily based on two aspects of prior knowledge: molecules 
are sparsely distributed in space and they repeatedly and independently blink over time12. The first strategy recasts 
the estimation of molecular positions as a sparse recovery optimization problem, where a sparsity prior regu-
lates the solution13,14. The second approach exploits molecular emission characteristics (e.g., uncorrelated and 
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repeated blinking events from various molecules) by applying higher-order statistics15,16 or Bayesian analysis17 on 
the images of blinking molecules.

Extracting quantities from SMLM images, such as distances between structures or the size and shape of nano-
domains, require molecular estimates with high precision, i.e., having a minimal spread around the mean, as well 
as high accuracy, i.e., having a mean with minimal deviation from the true value11,18. In low-density (LD) SMLM, 
analyzing repeated and isolated images of molecules guarantees statistically-unbiased estimates19. In particu-
lar, localization errors, i.e., the vectors obtained by taking the difference between true and estimated positions, 
are randomly distributed primarily due to Poisson shot noise. Consequently, the super-resolved images from 
a sufficiently large number of localizations are faithful representations of the ground truth, as long as system-
atic inaccuracies due to model PSF mismatch11,20,21, optical aberration22, and insufficient labeling23 are prop-
erly removed. These statistical results, however, no longer apply when analyzing high-density (HD) images. For 
example, standard LD algorithms, although capable of resolving two closely-spaced molecules, underestimate 
their separation distance24, suggesting that the localization errors are skewed toward neighboring molecules. This 
systematic bias gradually decreases as the separation distance becomes larger, achieving a minimum value beyond 
an algorithm-dependent distance24. In fact, the cumulative error between a super-resolution image reconstructed 
by a recovery algorithm and its ground truth scales exponentially with the regularity of molecular positions25 or 
how many molecules actively emit light within a diffraction-limited region at any point in time.

Because the structure of interest dictates the regularity in the position of labeling molecules, these theoretical 
results imply that the extent and characteristics of reconstruction errors fundamentally depend on the said struc-
ture. Put differently, accuracy is no longer a scalar quantity but a vectorial one. We refer to systematic inaccuracies 
caused by the structure of the sample as structural bias (see Supplementary Information, section 1 for a precise 
definition). Metrics used to evaluate SMLM algorithms, such as root-mean-square error (RMSE), detection rate26, 
and Pearson’s correlation16, collapse the reconstruction errors into a single number; moreover, visibility analysis 
only quantifies measurement precision, not accuracy16. These metrics, however, fail to fully characterize the vec-
torial nature of errors and ensuing biases. Errors caused by overlapping images become more severe in 3D SMLM, 
where 3D PSFs are larger than their 2D counterparts and are used to localize molecules over a larger domain27. 
More importantly, 3D super-resolution methods utilize diverse encoding mechanisms for depth, and a recovery 
algorithm that can be easily adapted to different PSFs is currently lacking.

Herein, we present a Robust Statistical Estimation algorithm, termed RoSE, for HD super-resolution imaging 
with arbitrary PSFs. In contrast to prior HD algorithms, RoSE jointly recovers molecular position and bright-
ness through a novel optimization framework, allowing for estimating the likelihood that photons in the SMLM 
dataset arise from true molecular blinking events. By leveraging (i) the spatial sparsity in molecular positions to 
identify closely-spaced molecules; and (ii) the temporal statistics of molecular blinking events to eliminate false 
localizations, RoSE achieves robust recovery against arbitrary image overlap due to sample structure and PSF.

We apply RoSE to recover realistic, bio-inspired structures in 2D (microtubules and densely-packed vesi-
cles23) in silico. Our analysis reveals a sample-dependent bias for HD imaging and shows that RoSE reduces these 
structural biases compared to state-of-the-art algorithms. Notably, our analysis shows that scalar metrics such 
as RMSE and visibility are insufficient in quantifying the sample-dependent errors present in super-resolution 
images. We also find that RoSE reduces these structural errors in the presence of experimental noise, by analyzing 
a SMLM reference dataset26. Finally, we show how the structure of both the sample and the 3D PSF itself fun-
damentally affect the systematic inaccuracies in reconstructing dense arrangements of nuclear pore complexes 
in silico and demonstrate the robustness of RoSE in adapting to various 3D PSFs, namely the double-helix28 and 
tetrapod29,30 PSFs.

Results
Theory.  A joint signal model.  Localizing single molecules with overlapping images is in general a contin-
uous recovery problem: molecular positions lie within a continuous range rather than a discrete set of points. 
Beyond localization, estimating the brightness of fluorescence bursts plays a critical role for measuring molecular 
orientation31.

To address these challenges, we propose a joint signal model in which we consider a single molecule as an 
isotropic point source and assume that within each frame, no two molecules emit within a certain neighborhood. 
(This model can be easily extended to include the emission anisotropy of dipole emitters by including molecular 
orientation32.) Thus, each molecule within an image can be mapped to a unique nearest discrete grid point, each 
associated with a brightness and a set of position gradients (Fig. 1(a)). This signal model allows us to explicitly 
decouple the number of photons that a molecule emits from its continuous position, thus providing a robust 
estimator of these quantities with sub-pixel accuracy (see Methods). In addition, these estimates can be exploited 
for temporal analysis, which is discarded by other signal models13,14. We describe the main steps of RoSE below.

Identifying single molecules via structured deconvolution.  When images of closely-spaced molecules overlap, the 
number of underlying molecules becomes an unknown parameter. The theory of sparse recovery provides algo-
rithmic tools to identify single molecules from their overlapping images. Our approach leverages sparsity know-
ing that only a small number of molecules are active in each frame as compared to the number of grid points. This 
prior knowledge can be included in a deconvolution problem through a so-called regularizer such as 1 norm 
while maintaining consistency with the measured data. Here, we propose a structured deconvolution method in 
which the regularizer enforces joint sparsity in molecular brightness and position, that is, if the brightness of a 
molecule associated with a grid point is zero (i.e., there is no molecule at that grid point), then the corresponding 
position gradients should be zero (see Methods).

Figure 1(b) illustrates a 3D example of two closely-spaced molecules with significantly-overlapping  
images. The recovered molecular parameters from the structured deconvolution program denoted by 
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 ˆˆ
 ∆ ∆ ∆= s x y z[ , , , ] cannot resolve the brightnesses and positions of the two molecules. However, examin-

ing the joint structure of ̂ reveals that the brightness-weighted position gradients converge to the 3D positions 
of each molecule (Fig. 1(b), right). To make this mapping precise, we define a tensor , called GradMap, in which 
each pixel takes on a value in [−1, 1], termed the source coefficient, that signifies the local degree of convergence 
to that pixel (see Supplementary Information, section 3). In other words, the GradMap represents the likelihood 
that photons localized to particular positions in the map truly originate from the structure. Notably, GradMap 
leverages the convergent symmetry of the position gradients, thus sidestepping the need for PSF symmetry16,33. 
Consequently, the number of molecules and their initial parameters are estimated from the local maxima of 
GradMap (Fig. 1(c)).

Accurate and precise recovery via adaptive maximum likelihood.  After identifying the correct number of mole-
cules, we further minimize the errors due to the sparsity constraint14 as well as the sample’s structure. Importantly, 
the errors from conventional sparse deconvolution programs, which may be larger than a few grid points, depends 
on the underlying molecular positions25. For accurate and precise estimates, RoSE adaptively updates the grid 
point closest to the current estimate of the molecule’s position (Fig. 1(d)) by maximizing adaptively a constrained 
maximum likelihood (see Supplementary Information, section 3). This strategy enhances the accuracy of both 

Figure 1.  Joint recovery of molecular position and brightness by RoSE. (a) Left: Mapping of a continuous 
molecular position to a discrete grid in 2D (rx = ry = r). Right: Molecular parameters s x y z[ , , , ]̂ ∆ ∆ ∆=  in 
3D. (b) Left: Simulated image of two overlapping molecules, located at (0,0,0) and (120,120,180) nm using the 
tetrapod PSF. Middle: Slices of recovered parameters ̂  ∆ ∆ ∆= s x y z[ , , , ] (using equation 2 in Methods) in 
the z = 0 plane. Right: Joint processing of brightness and position gradients of ̂ reveals two molecules 
unambiguously separated in 3D space (gold points). (c) Slices of estimated GradMap at z = 0 and z = 200 nm for 
the recovered signal in (b). Scale bars: 500 nm. (d) Initial position estimates (black triangles) obtained via the 
GradMap in (c) and the recovered molecular positions (purple diamonds) after applying adaptive constrained 
maximum likelihood. Ground-truth molecular positions are denoted by gold circles.
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molecular position and brightness estimates and attains the limits of precision indicated by Cramér-Rao bound 
(CRB) (Figs S2–S6).

Exploiting temporal blinking statistics via GradMap.  Since molecular blinking events occur stochastically, mis-
identified localizations resulting from overlapping images exhibit significantly less autocorrelation over time 
compared to molecules that are accurately identified. Thus, the autocorrelated GradMap represents the confi-
dence that molecules represent the true structure and not a false localization (see Supplementary Information, 
section 3). Noting that GradMap localizes these blinking events with sub-pixel accuracy, we apply a threshold on 
the pixel-wise temporal autocorrelation of GradMap to eliminate false localizations. We refer to this scheme as 
RoSE-C.

Beyond Scalar Metrics.  Traditional performance metrics for evaluating HD recovery algorithms, such as 
recall rate (i.e., the number of molecules that are recovered correctly with a certain distance criteria) and the 
RMSE between correctly recovered molecules and their matched ground truths26, disregard the role of underlying 
structure; the magnitude and direction of errors vary across the super-resolved image. In the following sections, 
we examine and characterize the structural biases of various recovery algorithms. Our analysis includes simu-
lated realistic, HD SMLM image stacks of several bio-inspired structures as well as experimental SMLM images 
of microtubules.

Accurate frame-by-frame analysis: imaging crossing microtubules using RoSE.  To quantitatively characterize the 
effects of sample structure and blinking density on the size and structure of localization errors, we construct and 
examine two crossing microtubules (MTs) in silico. MTs are tubular intracellular assemblies of the protein tubulin 
that form a dynamic, three-dimensional network34. MTs act as “robotic arms” and are responsible for key func-
tions such as cell division, shaping the cell membrane, and intracellular transport34.

The MTs are simulated as cylinders aligned perpendicular to the optical axis with radii of 12.5 nm and are 
displaced symmetrically about the focal plane with an axial separation of 25 nm. We developed a stochastic model 
to generate SMLM images (see Supplementary Information, section 4). To measure the mean separation between 
MTs, we consider a sliding rectangular area containing both MTs with a constant 58.5-nm height (Fig. 2(a) orange 
box). The rectangle is sufficiently large such that labeling noise is insignificant but small enough to resolve algo-
rithm performance as a function of true separation d*. The localizations within the rectangular area are then 
projected onto the x-axis transverse to the MTs, collapsing the localization data into histograms.

We tested RoSE and FALCON14, of which the latter has a high accuracy score (low RMSE) and a competi-
tive Jaccard index26, on image data generated at various blinking densities, namely 4.9 × 10−6, 1.3 × 10−5, and 
1.9 × 10−5 molecules/nm2, representing low, high and ultra-high densities, respectively (Fig. S7). At high blinking 
density, the measured mean separation distance exhibits a negative bias for both algorithms, meaning errors are 
structured toward the center of the MTs (Fig. 2(b)). Compared to FALCON, RoSE reduces the bias in measuring 

Figure 2.  Structural bias of two crossing microtubules (MTs) recovered by RoSE (purple) and FALCON 
(green). (a) 2D histogram of (top) the simulated ground-truth structure and (bottom) recovered structure 
obtained by RoSE for a blinking density of 1.3 × 10−5 molecules/nm2. Scale bar: 50 nm. Color bar: number 
of localizations per 5 × 5 nm2. (b) Projection of the localizations within the orange box in (a) and the 
corresponding double Gaussian fits. The arrows labeled by d* and d denote the distance between the centers of 
the two MTs and the distance between the peaks of the fitted double Gaussian for RoSE, respectively. (c,d) Mean 
distance between centers of the MTs along the length of the structure for mean emission intensities of (c) 3000 
photons and (d) 800 photons. (e,f) Localization errors along the +x direction (Ex) for molecules within the 
white box in (a) at various distances from the center crossing yc: (left) 81.9 nm, (middle) 304 nm, (right) 438 nm. 
The noted bias values represent the difference between the true center of the MT and the mean of matched 
localizations; the arrows indicate a [10, −10] nm interval centered at the true position of the MT.
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d* across the entire length of the structure, and the measured errors drop to being CRB-limited more quickly for 
RoSE than FALCON for both low (800 photons) and high (3000 photons) molecular brightnesses (Fig. 2(c,d)). 
In particular, for true mean separations from 70.2 nm to 128.7 nm (Fig. 2(c)), RoSE incurs an average bias of 
−4.7 nm compared to −10.5 nm for FALCON. This difference in average bias becomes more pronounced for 
dimmer molecules (Fig. 2(d)), where RoSE exhibits a small bias of −5.7 nm, which is well within the FWHM 
of the theoretical limit of precision (≈2.3 × σCRB = 13.8 nm). In contrast, FALCON incurs an average bias of 
−15.2 nm. For large d*, the error distance is non-zero due to non-uniform sampling and stochastic localization 
precision.

Examining the left-most MT at various distances yc from the crossing point reveals the vectorial nature of these 
errors (Fig. 2(e,f)). We calculated the localization error Ex along the x dimension by matching correctly-identified 
localizations to the ground-truth dataset26 (see Supplementary Information, section 5). Interestingly when 
yc = 81.9 nm, the errors are skewed toward the +x direction (Fig. 2(e)), in accord with the systematic underesti-
mates of MT separation (Fig. 2(c,d)). As yc increases, the errors converge to a Gaussian distribution centered at 
zero whose width is determined by the CRB, as expected.

RMSE analysis cannot reveal these structural biases, i.e., the systematic deviation of localized molecules away 
from the true center of the MT. Surprisingly, the RMSE for FALCON is slightly smaller than RoSE for yc = 81.9 nm 
(Fig. 2(e,f) left); however, the percentage of localized molecules for RoSE that are within [−10, 10] nm is 70% 
compared to 55% for FALCON; this increased localization accuracy results in more accurate measurements of 
the MT separation distance (Fig. 2(b)). Indeed, the Jaccard index calculated over the entire structure for RoSE 
(54%) is higher than FALCON (49%). These results suggest that decomposing the reconstruction errors into 
scalar detection and localization error metrics cannot quantify the variation in magnitudes and cannot reveal the 
vectorial nature of these significant biases. Therefore, a structure-based analysis of errors beyond scalar metrics is 
critical for quantitative evaluation and insight into the performance of recovery algorithms.

Additionally, RoSE maintains its robust performance and consistently outperforms FALCON at both low and 
higher blinking densities. Even at low blinking density, RoSE resolves the walls of MTs with much better visibility 
than FALCON (57% larger), especially close to the crossing point (Fig. S7).

Leveraging blinking statistics across frames: accurate imaging of vesicles via RoSE-C.  SMLM techniques have 
revealed the morphology of protein clusters within bacteria35 and during the assembly of HIV viruses36. In par-
ticular, clustering algorithms have been utilized to infer clusters and their spatial distributions from SMLM data-
sets18. The accuracy of such analyses, however, critically relies upon the accuracy of positions recovered from the 
SMLM algorithm.

We examine the structural errors in characterizing clusters from simulated SMLM data of a dense arrange-
ment of fluorescently-labeled vesicles. These four vesicles are modeled as circles with a 30 nm radius, each uni-
formly labeled with 100 molecules. These molecules blink within a total of 80 frames (a mean blinking density 
of 4.7 × 10−5 molecules/nm2), resulting in highly-overlapped images and a short acquisition time. To separate 
Poisson shot noise and sampling artifacts, we compared reconstructions from this HD dataset to equivalent 
LD imaging (i.e., one burst per frame with the same brightness as in HD data) in which no image overlaps. 
ThunderSTORM was chosen to provide a super-resolved structure from LD frames37.

We tested the performance of RoSE-C in eliminating false localizations that mostly occur between vesicles 
due to significant image overlap. Remarkably, RoSE-C perfectly restores the discrete structure of packed vesicles 
for various signal-to-background levels as well as blinking densities (Fig. S8). Computing the confidence level of 
obtaining true localizations, quantified by the auto-correlated GradMap, critically enables RoSE-C to filter out 
false localizations otherwise recovered by RoSE.

ThunderSTORM, FALCON and RoSE-C are all able to resolve 4 clusters (Fig. 3(a–d)). The sizes and shapes 
of these vesicles were analyzed using a density-based clustering algorithm, which takes into account vesicle size 
and localization precision and is robust against false localizations38 (see Supplementary Information, section 5). 
The two left-most clusters for ThunderSTORM (Fig. 3(b,e)) exhibit a small average ellipticity of 1.2, defined 
by the ratio of the major axis and the minor axis and similarly the two right-most clusters (Fig. 3(b,f)) have an 
average ellipticity of 1.12. These small ellipticity values could be caused by Poisson shot noise and finite-sampling 
artifacts. Interestingly, the clusters for both RoSE-C and FALCON (Fig. 3(c–f)) are skewed toward neighboring 
vesicles and exhibit larger ellipticity values. The two left-most clusters recovered by RoSE-C (Fig. 3(d,e)) exhibit 
an average ellipticity of 1.38, while for FALCON (Fig. 3(c,e)), the average ellipticity is 1.84. For the two right-most 
clusters, RoSE-C (Fig. 3(d,f)) has a slightly smaller average ellipticity of 1.42 compared to FALCON’s (Fig. 3(c,f)) 
1.44. Overall RoSE-C minimizes the average ellipticity bias by 24%. This analysis reveals vectorial inaccuracies 
(i.e., structured ellipticity) present in the super-resolved images that cannot be fully quantified by scalar RMSE 
values.

Recently, a class of algorithms termed super-resolution radial fluctuations (SRRF)16 was introduced based 
on super-resolution optical fluctuation imaging (SOFI)15. SRRF relies on radial symmetry (spatial information) 
to reduce the apparent FWHM of the Gaussian PSF. Moreover, by applying higher-order statistics to images of 
blinking molecules over time, SRRF resolves molecules at smaller separations with better visibility. Analysis of 
simulated SMLM datasets using SRRF and RoSE-C reveals that SRRF images contain a vesicle separation bias of 
27%, while RoSE-C reduces this bias to −3% (see Supplementary Information section 7, Figs S9–S11). Visibility 
metrics fail to capture this bias.

Structural errors in experimental SMLM images.  Quantifying the structural bias present in SMLM 
images can be difficult without knowledge of the ground truth. However, microtubules have often been used in 
demonstrations of SMLM because of their smoothness and well-characterized branching behavior. We compare 
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the performance of FALCON, SRRF, and RoSE on experimental SMLM images of MTs26 in regions where MT 
bundles are dense and the fluorescence background is relatively uniform.

We observe that the cumulative errors in molecule position exponentially increase with molecular density 
in crowded regions (white rectangular region in Fig. 4(g–i)). The nature of these errors depends on the recovery 
algorithm. The localizations obtained using FALCON generally broaden and occlude details of the branching 
structure (Fig. 4(g)). In contrast, the structure recovered by SRRF exhibits distortion of the middle MT such that 
it appears to extend toward the upper-right branch (Fig. 4(h)). RoSE-C appears to recover the structure of the MT 
network with both greater accuracy and precision (Fig. 4(i)). We note that the correlated GradMap exhibits low 
confidence for regions that do not belong to the MT network (Fig. 4(f)), which is consistent with the results of 
recovering densely-packed vesicles (Fig. 3).

We further consider another region in the dataset exhibiting non-uniform molecular blinking (Fig. S13(a)). 
For each algorithm, we observe structural bias in the SMLM reconstructions that are similar to the aforemen-
tioned simulation studies (Fig. 2): the separation distances between MTs measured using localizations recovered 
by FALCON are smaller than those obtained by RoSE-C (Fig. S13(e,f)). In addition, separation distances across 
the length of MTs for RoSE-C exhibit smooth curvature that is consistent with our expectation of MT network 
structure. On the other hand, separation distances obtained by FALCON exhibit significant biases where parallel 
MTs are closer together (Fig. S14(a,b,c)). As the MTs become far apart, the separation distances measured by 
each algorithm converge to similar values (Fig. S14(d)). Examining the recovered images by SRRF algorithms 
reveals the structural biases, wherein parallel MTs are frequently unresolved and visibility is difficult to quantify 
(Fig. S15).

The GradMap provides an insightful map of confidence levels, in which it displays low confidence for regions 
that are subject to localization errors due to either low sampling or dense molecular blinking (Fig. S13(d)). This 
confidence metric cannot be inferred from the SMLM reconstructions themselves produced by FALCON, SRRF, 
and RoSE-C. We note that in analyzing experimental SMLM images using RoSE-C, we chose the confidence 
threshold adaptively (see Supplementary Information, section 3D), but all other parameters remained the same 
from the aforementioned in silico studies. We could not recover structures with similar quality as RoSE-C by 
tuning the sparsity parameter of FALCON or related parameters of SRRF (Fig. S16).

Robust 3D recovery using diverse PSFs.  PSF engineering has become a popular strategy for 3D 
super-resolution imaging. A variety of PSFs, including the astigmatic PSF39, the double-helix PSF (DH-PSF)28 
and the tetrapod PSF29,30 can be implemented with fixed phase masks or programmable hardware. These PSFs 
have tunable axial ranges (spanning 2−20 μm27) and exhibit diverse and complex features over their measure-
ment domains. Importantly, they occupy more space on the camera compared to the standard PSF. Therefore, 
addressing the problem of image overlap for an arbitrary 3D PSF becomes critical.

We test the robustness of RoSE-C in recovering dense arrangements of nuclear pore complexes (NPCs) in 
3D using the DH and tetrapod PSFs. An NPC is a ring-like protein complex composed of eight subunits with 
an approximate diameter of 90–120 nm, well below the diffraction limit40. The complex and dense 3D arrange-
ments of NPCs necessitate the use of 3D super-resolution techniques for measuring their diameters and resolving 
their subunits41. We simulated each NPC using 8 subunits equidistantly distributed on a circle with a diameter 
of 120 nm. The NPCs are placed in 3D with centers at (0, 0, 0), (300, 0, 50) and (200, 200, 130) nm with various 
orientations (Fig. 5(a,b)). Each subunit is labeled with a single fluorophore that blinks stochastically with a mean 
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Color bars: (b) number of photons per 100 × 100 nm2 and (c,e,g,i) number of localizations per 25 × 25 nm2.
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Figure 5.  3D recovery of densely-packed NPCs using the double-helix and tetrapod PSFs. (a) xy and (b) yz 
views of the simulated ground-truth arrangement of 3 NPCs centered at (0, 0, 0), (300, 0, 50) and (200, 200, 
130) nm, each consisting of 8 labeling sites equidistantly distributed on a circle with diameter of 120 nm. The 
brightest pixel corresponds to the peak of a Gaussian distribution (standard deviation = 3.5 nm) multiplied 
by the number of blinking events. (c,d) Representative images of overlapping molecules corresponding to the 
(c) DH and (d) tetrapod PSFs. (e,f) xy projections of the NPCs recovered by RoSE using the (e) DH and (f) 
tetrapod PSFs. The white arrow in (f) indicates mislocalizations at higher axial coordinates. (g,h) xy projections 
of the NPCs recovered by RoSE-C using the (g) DH and (h) tetrapod PSFs. Scale bars: 100 nm. Color bars: 
(a,b) number of blinking events/nm2; (c,d) number of photons per 58.5 × 58.5 nm2; and (e–h) number of 
localizations per 12 × 12 nm2.
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brightness of 3100 photons per blinking event. On average, one molecule per NPC emits during any specific 
frame, causing a high probability of PSF overlap on the camera (Fig. 5(c,d)).

In the projected 2D images of the NPCs recovered by RoSE, the NPC subunits are more blurry when using the 
DH-PSF (Fig. 5(e)) compared to the tetrapod (Fig. 5(f)). This difference is consistent with the superior precision 
of the tetrapod PSF29, which allows for counting subunits using the clustering algorithm with 25% better accu-
racy (see Fig. S17 for the performance of the DH and tetrapod PSFs in resolving two closely-spaced molecules). 
Intriguingly, however, the structure resolved by RoSE using the tetrapod PSF exhibits a set of mislocalizations 
at higher axial coordinates that resemble an NPC (Fig. 5(f)). In contrast, there are fewer mislocalizations in the 
reconstruction using the DH-PSF, and interestingly, they do not resemble an NPC (Fig. 5(e)).

RoSE-C remarkably minimizes the structured mislocalizations when using the tetrapod PSF (Fig. 5(h)). This 
improved accuracy is enabled by GradMap, in which pixels that correspond to false localizations exhibit smaller 
autocorrelation over time than those that correspond to true localizations (Fig. S18). For the DH-PSF, the mislo-
calizations between the two right-most NPCs cannot be eliminated with RoSE-C. One possible reason is that the 
pixel size of the GradMap (58.5 nm) is larger than the half of the separation between the two right-most NPCs 
along the y dimension (120 nm). Thus, in this particular simulation, GradMap has insufficient spatial sampling to 
resolve false localizations from true ones using temporal autocorrelation.

To gather insight into the structured mislocalizations in the recovered NPCs using the tetrapod PSF, we exam-
ined a different arrangement with NPCs located at (0, 0, 0), (300, 0, 50), and (200, 200, −130) nm using the tet-
rapod PSF. Surprisingly, the number of mislocalizations in the super-resolved structure by RoSE is significantly 
reduced (Fig. S18). This reduction likely results from the distinct depth encoding of negative z values compared to 
positive ones for the tetrapod PSF. Thus, the tetrapod can resolve NPCs accurately when they reside on alternate 
sides of the focal plane rather than all above the focal plane. These results reveal the role of both structure and the 
degeneracy of PSF in causing biases (see Supplementary Information, section 8).

Discussion
The vectorial nature of localization errors in SMLM is often ignored. Our simulations show that when recovering 
bio-inspired structures under HD imaging conditions, reconstruction errors exhibit magnitudes and directions 
that depend on the structure of the sample and cannot be revealed by conventional error metrics. Our analysis of 
HD experimental data of dense microtubules corroborates these results. Furthermore, in 3D SMLM, the inaccu-
racies are affected both by the structure of the sample and the structure of the PSF. In particular, PSF degeneracy 
causes structured mislocalizations that may pose difficulty for downstream quantitative analysis18.

Current methods for minimizing nanoscale inaccuracies, including classifying localizations based on spot 
size, brightness24, and similarity-based techniques42, lack robustness against sample structure and become unre-
liable for 3D imaging. Further, point-wise precision for individual localizations, which is used for filtering local-
izations with large uncertainty, becomes inaccurate in the case of overlapping PSFs due to biased brightness 
estimates (Fig. S4). Taken together, these observations necessitate estimation of a fundamentally different quan-
tity for individual localizations.

RoSE addresses these challenges by directly estimating the likelihood of fluorescence emission for individual 
blinking events, which enables molecules with overlapping images to be localized in the continuous domain 
and increases localization and photon-counting accuracy. Further by assuming that the sample is static over the 
imaging interval, RoSE-C simply autocorrelates these likelihoods to obtain point-wise confidence levels without 
knowing the sample structure a priori. The confidence level of a localization signifies its uncertainty in represent-
ing the ground truth, which is exploited to eliminate false localizations at higher blinking densities (Fig. S8). More 
importantly, the estimated confidence levels do not rely on point-wise precision, brightness, or how molecules’ 
images overlap and can be applied to any arbitrary PSF. Access to such a confidence metric is a key to automating 
challenging quantitative analyses in SMLM, such as elucidating protein organization in 3D.

We emphasize that although RoSE-C eliminates localizations with small confidence levels, which may degrade 
the overall apparent labeling density, these localizations would otherwise lead to structural biases if they are not 
eliminated. This degradation in HD SMLM is fundamentally different from low-density SMLM for which even 
localizations with large uncertainty provide unbiased information regarding the underlying structure. Besides 
thresholding, the confidence levels can systematically be used as additional input to increase the accuracy of vari-
ous quantitative analyses such as Bayesian clustering43. Nonetheless, RoSE-C exhibits robustness in measuring the 
apparent labeling density w.r.t. the number of blinking events per molecule, whereas image-based HD algorithms 
utilizing higher-order statistics incur significant errors (Fig. S9). Finally, we note that, at ultra-high molecular 
blinking densities, the pixel-wise autocorrelation produces confidence levels for false localizations that rise above 
our chosen threshold (Fig. S8). A more effective approach in this situation may be to exploit the spatial correlation 
in the GradMap stack. Investigating an optimal strategy for leveraging correlations between multiple blinking 
events remains the subject of future studies.

Methods
Mathematical description of joint signal model.  The proposed joint signal model together with a 
first-order approximation result in a linear forward model with a convex set of constraints on molecular parame-
ters, denoted by N 4 ∈ ×  (see Supplementary Information, section 2):
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where ∈g m  represents the vectorized noiseless image relayed by the microscope; Φ ∈ ×m N  denotes the PSF 
matrix sampled at the grid points; ∈ ×Gx

m N , ∈ ×Gy
m N  and Gz

m N∈ ×  represent corresponding gradient 
matrices along x, y and z, respectively; N is the number of object grid points; and m is the number of image pixels. 
Further, ∈ s N  is the vectorized brightness and ∆ ∈ x N , ∆ ∈y N  and ∆ ∈ z N  are the corresponding PSF 
gradient vectors ( represents component-wise multiplication of two vectors) at each grid point. Additionally,  
represents the convex set of constraints for a box centered at each grid point i with side lengths 2rx, 2ry and 2rz 
(Fig. 1(a)).

Structured deconvolution.  We develop a joint sparse deconvolution program to identify single molecules 
from their overlapping images. Our key insight is that the brightnesses s and position gradients (Gx,Gy,Gz) are 
jointly sparse. The structured deconvolution is cast as an optimization problem:

L
C

A g bmin ( , ; , ) ,
(2)1,2λγ γ+

γ∈

where ∈b m is the vectorized background and λ is a sparsity penalty parameter that balances the sparsity of the 
solution and likelihood of its observation. Further,  ⋅( ) is the Poisson negative log likelihood given by

 ∑ ∑γ γ γ= + − + .
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enforcing joint sparsity in γ44. The optimization problem given by (2) is a convex program (see Supplementary 
Information, section 3), and we developed a novel variant of the accelerated proximal gradient algorithm to 
efficiently solve it45. To calculate λ, we devised a computational tuning strategy (see Supplementary Information, 
section 3) accounting for each PSF Φ.

The computational performance of FALCON, SRRF, and RoSE-C are detailed in a supplementary table 
(Table S1).

Data Availability
The source code, ground-truth molecule brightnesses and positions, simulated noisy images, and bright-
ness and localization data output by RoSE and RoSE-C are available at: https://osf.io/vbptf/?view_only= 
5947ca1b9e8948bca2c70e536314d43d.
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