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Scenario analysis of ecosystem 
service changes and interactions in 
a mountain-oasis-desert system: 
a case study in Altay Prefecture, 
China
Qi Fu1,2, Ying Hou3, Bo Wang1,4, Xu Bi1, Bo Li1,2 & Xinshi Zhang1,5

Scenario analysis of ecosystem services (ES) can provide a scientific basis for ecosystem management. 
The objective of this study was to reveal the effects of future land use scenarios on ES in a mountain-
oasis-desert system (MODS). We first simulated land use changes for the period of 2015–2035 in 
Altay Prefecture under three different scenarios: business as usual (BAU), economic development 
(ED), and ecological conservation (EC). We then evaluated water yield (WY), crop production (CP), 
soil conservation (SC), sand fixation (SF), carbon sequestration (CS), and aesthetic value (AV) and 
investigated the multiple interactions among ES at the regional and grid scales. The results showed that 
SC, CS, and AV continually increased, WY continually decreased under the three scenarios. Our study 
revealed that the multiple interactions among ES were spatially heterogeneous in the MODS and the 
spatial heterogeneities changed across scenarios. The locations of and causes for the formation of the 
multiple interactions among ES were identified based on spatial analysis. This information can help 
decision-makers develop targeted and differentiated ecosystem management strategies. This study can 
increase the understanding of the multiple interactions among ES. Our findings can provide a reference 
for studies of other regions with the MODS structure.

Ecosystem services (ES) are the basis of human survival and social development and are closely related to human 
well-being1. Since ES were first proposed, researchers have conducted many studies on the definition, classifica-
tion, and evaluation of ES2,3. Many research achievements have greatly promoted the public’s understanding of 
ES, and its concepts and methods have been gradually applied to the formulation of policy for ecosystem man-
agement4,5. However, as in-depth ES research continues, a mere assessment of its value is insufficient to meet the 
demand for decision-making6. The trade-offs, modeling and scenario planning, bundling, and scaling of ES are 
gradually becoming hot topics of current research7.

With global population growth and rapid social development, the human demand for ES has been continu-
ously increasing8. When stimulated by interests, people often focus only on the production function of ecosystems 
and ignore their ecological functions. Many case studies have shown that agricultural extension, urbanization, 
and grazing have caused carbon storage loss, decreased water quality, and reduced biodiversity9–11. With the 
intensification of human activities, 60% of the global ES has been degraded12. Therefore, the adoption of effective 
ecosystem management strategies is critical to reduce the adverse effects of human activities.

To achieve rational ecological management, understanding the interactions among ES is important13. The 
interactions among ES are usually reflected as trade-offs and synergies14. Trade-offs occur when the provision 
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of one or some ES increases at the cost of other services; synergies arise when multiple ES increase simulta-
neously14–16. Many studies have reported trade-offs between provisioning and regulating services, or between 
provisioning and cultural services. Whereas the interactions between different regulating services and between 
different cultural services often display synergies17–19. Among the trade-offs, those between some regulating ser-
vices and food production have drawn the most attention20. For example, noticeable trade-offs have been found 
between food production and water quality regulation in the Great Barrier Reef, Australia21. Another example in 
Beijing, China has found that food provision has negative correlations with carbon storage, water purification and 
habitat provision22. Furthermore, erosion control is significantly negatively correlated with the cultivated crops in 
southeast Spain23. The interactions among ES can differ between different regions because of landscape heteroge-
neity across the regions and the distinct ecosystem management strategies of the regions (e.g. a trade-off between 
food production and carbon stocks are identified in the Sanjiang Plain of China24, while a synergy between these 
two services is found in the Loess Plateau of China25). In addition, the uncertainties in ES assessment may also 
lead to different results in the study of ES interactions26.

The methods for analyzing the ES interactions can be broadly classified into four categories: spatial overlay 
analysis27,28, correlation analysis29,30, ES-bundle analysis19,31,32, and scenario analysis33–38. Among them, scenario 
analysis is currently one of the most common methods used in ES trade-off and synergy studies, which can usu-
ally be used in combination with other methods16. By setting up alternative land use scenarios and calculating 
the changes in and interactions among ES, this method can help improve land use policy-making36,39. Moreover, 
scenario analysis is used to explore the impact of policy or climate change on ES35. However, there are still some 
limitations in previous studies. First, many studies are too subjective in the setup of the scenarios36–38, often lead-
ing to conclusions that are not sufficiently convincing. Second, the ecosystem has diverse functions and thus pro-
vides multileveled services to humans; the intertwining of various services has become a challenge in ecosystem 
management40. However, most of the existing studies consider only the pairwise interactions among ES29,39,41,42 
and, therefore, lack investigation into multiple interactions among ES43, thereby failing to meet the needs of sci-
entific decision-making. Third, to improve ecosystem management, decision-makers and scientists need to know 
the specific location where ES trade-offs and synergies occur. However, few studies have identified the locations 
where multiple interactions among ES occur44.

In terms of study region, current ES research focuses more on cities, urban-rural areas, and watersheds while 
not paying enough attention to arid regions. The uneven distribution of mountains, oases, and deserts is a basic 
feature of the natural geography of the arid region of Central Asia. This combination of terrestrial ecosystems is 
defined as the mountain-oasis-desert system (MODS)45 (Fig. 1). The MODS is not only a regional geological and 
landform framework but also largely determines the climatic conditions, ecosystem patterns, and human activ-
ities in the region. In addition, the mountains, oases and deserts are closely connected by energy material, and 
value flows45. The formation of oases and deserts is inseparable from the supply of water and sediment by moun-
tains. In current ES-related research, many studies focus on the mountains46,47, oases48,49, or deserts50,51 separately, 
but few examine the complex system of the MODS.

To narrow these gaps in research, we used the MODS in Altay Prefecture, China, as an example, focused on 
the multiple interactions among ES in the area, and conducted a scenario analysis of the ES changes and inter-
actions. To conduct a more realistic simulation for the land use change scenarios, we applied Markov chain and 
FLUS (future land use simulation) composite models52. In addition, our study spatially identified the multiple 
interactions among ES in Altay Prefecture. The main objectives of this study are to (1) explore the ES changes and 
interactions under different land use change scenarios in regions with the MODS structure and (2) analyze the 
causes for the changes in ES and for the formation of the multiple interactions among ES. This work can increase 
the understanding of the multiple interactions among ES. In addition, our findings can provide a reference for 
studies of other regions with the MODS structure.

Results
Markov chain and FLUS models validation. By comparing the simulated values with the actual values of 
land use types in 2015, we found that the built-up area had the largest error (−1.02%), whereas the errors for the 
other land use types were all less than 1% (see Supplementary Table S4). This result shows that using the Markov 
chain model to simulate the land use change in Altay Prefecture achieves the required precision. The ROC values 

Figure 1. Schematic diagram of the MODS landscape.
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of various land use types—cropland, forest, grassland, water, built-up area, and bare land—were 0.935, 0.956, 
0.928, 0.848, 0.832, and 0.96, respectively (see Supplementary Fig. S2). All ROC values were greater than 0.8, 
which means that the driving factors sufficiently explained the land use allocation. The kappa coefficient was 0.94, 
indicating that the use of the FLUS model to simulate the land use change in Altay Prefecture is reasonable (see 
Supplementary Table S5). The simulated and actual land use patterns for 2015 can be found in Supplementary 
Fig. S3.

Land use change. During the period from 2015 to 2035, the cropland area in Altay Prefecture increased 
substantially under the BAU and ED scenarios (1963 km2 and 2959 km2, respectively) and remained virtually 
unchanged under the EC scenario (Fig. 2). The area of forest and grassland increased by 410 km2 and 526 km2, 
respectively, under the EC scenario, and showed a decreasing trend under both the BAU and ED scenarios. Water 
showed an increasing trend in all three scenarios. The built-up area increased by 495 km2 under the ED scenario 
and increased by 166 km2 and 72 km2 under the BAU and EC scenarios, respectively. Bare land area showed a 
substantial decrease under all three scenarios, with the largest decrease under the ED scenario and the smallest 
decrease under the EC scenario. From the perspective of spatial distribution, under the BAU and ED scenarios, 
cropland in the oasis zone increased greatly, and forest, grassland, water, and built-up area in the mountain zone 
increased moderately (Fig. 3). The increase in built-up area was more obvious under the ED scenario. Under the 
EC scenario, forest in the mountain and oasis zones and grassland in the desert zone increased significantly due 
to conservation measures.

ES changes. From 2015 to 2035 in Altay Prefecture, the WY declined under all three scenarios, among which 
the EC scenario showed the greatest reduction in WY (Fig. 4a). The reduction in WY under the BAU and ED 
scenarios was observed mainly in the oasis zone, while under the EC scenario, the reduction in WY was scattered 
and widely distributed throughout the mountain, oasis, and desert zones (Fig. 5a). CP increased most under the 
ED scenario, followed by the BAU scenario, with a large increase in cropland in all scenarios (Fig. 4b). The areas 
where CP increased were distributed mainly in the oasis zone and its surrounding mountain and desert zones 
(Fig. 5b). SC increased under all three scenarios (Fig. 4c). The increase in SC was distributed mainly in the oasis 
zone under the BAU and ED scenarios, while under the EC scenario, the increase in SC was found mainly in the 
mountain zone at high altitude (Fig. 5c). SF first showed an increasing trend under the EC scenario, and a contin-
ually decreasing trend under the BAU and ED scenarios (Fig. 4d). The decrease in SF occurred mainly in the oasis 
zone (Fig. 5d). CS increased continuously under all three scenarios (Fig. 4e). Although the total quantity of CS in 
the entire study area increased, this service decreased in some areas of the mountain and oasis zones (Fig. 5e). The 
total value of AV also increased continuously under all three scenarios, with the largest increase occurring under 
the ED scenario (Fig. 4f). The increase in AV was distributed mainly in the mountain and oasis zones (Fig. 5f).

ES interactions. Figure 6 depicts the multiple interactions among ES from the perspective of the study area 
as a whole unit. Under the BAU scenario, WY and SF showed simultaneous continuous decreases, and CP, SC, 
CS and AV showed a simultaneous continuous increases. This phenomenon means that the CP, SC, CS and AV 
services had synergistic interactions. Meanwhile, the two services WY and SF both had trade-off interactions with 
the four services AV, CP, CS and SC. Under the ED scenario, SF gradually decreased; AV, CP, CS, and SC showed 
simultaneous continuous increases; and WY remained virtually unchanged from 2015 to 2035. This result indi-
cates that synergistic interactions occurred among AV, CP, CS, and SC throughout the years. Furthermore, these 
four services showed trade-off interactions with SF. Under the EC scenario, WY continuously decreased; SF, AV, 
SC, and CS simultaneously underwent a continuous increase; and CP remained virtually unchanged from 2015 

Figure 2. Quantitative changes in each land use type from 2015 to 2035 under the different scenarios.
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Figure 3. Changes in the spatial pattern of land use from 2015 to 2035 under the different scenarios. Maps were 
generated using ArcGIS 10.2 for Desktop (http://www.esri.com/software/arcgis).

Figure 4. Changes in the total amount of ES from 2015 to 2035 under the different scenarios.

http://www.esri.com/software/arcgis
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to 2035. Synergies occurred among SF, AV, SC, and CS, and these four services exhibited trade-off interactions 
with WY.

The interactions among ES were different on the grid scale across Altay Prefecture (Fig. 7). Under the BAU and 
ED scenarios, the trade-offs among the two services WY and SF (simultaneous decreases) and the four services 
SC, CP, CS, and AV (simultaneous increases, suggesting synergies) occurred in many areas of the mountain and 
oasis zones. Under the ED scenario, the area in which these interactions occurred was larger compared to the 
BAU scenario, and more trade-offs between the four services WY, SC, CS, and AV (simultaneous increases, mean-
ing synergies) and SF occurred in the mountain zone; however, few multiple interactions among ES occurred 
in the desert zone. Under the BAU scenario, trade-offs between WY and the four services SF, SC, CS, and AV 
occurred in the desert zone. Under the EC scenario, synergies among SC, SF, CS, and AV (simultaneous increases) 
and trade-offs between these four services and WY occurred widely in the mountain, oasis, and desert zones. In 
addition, trade-offs among the four services WY, SC, SF, and CS (simultaneous increases, meaning synergies) and 
the two services CP and AV (simultaneous decreases) occurred in the mountain-oasis ecotone.

Discussion
ES changes. Our study found that except for SC and SF, the values of all services in 2035 were the highest 
under the ED scenario (Fig. 4). This finding is inconsistent with those of some existing studies, which showed 
that most ES would increase greatly under conservation scenarios34,36,37. This result is mainly due to the distinct 
MODS geographical pattern and human activities in arid regions. In Altay Prefecture, mountains and deserts 
account for a large area of land, and oases are located only on the two sides of the narrow river in the middle 
of the study area53. Due to their flat terrain, deep soil layers, and good irrigation conditions, the oases and their 
surrounding areas are often reclaimed as cropland. Under the ED scenario, a large increase in cropland directly 
led to a substantial increase in CP. The increase in built-up area led to an increase in impervious surface, thereby 
resulting in an increase in WY in these areas (Fig. 5a) and a larger total amount of WY than that in the BAU and 
EC scenarios. In many studies, the increase in cropland was due to encroachment of forest or grassland38,54,55. In 
our study, however, the increase in cropland was mainly due to the conversion of bare land, since the oasis mar-
gin was desert. The carbon pool stores in cropland are much larger than those in bare land (see Supplementary 
Table S11); hence, a large amount of bare land was reclaimed as cropland, resulting in the largest amount of CS 
under the ED scenario. Based on the results of an aesthetic value survey, we found that the local residents (most 
of them are Kazakh) prefer cropland to grassland. Although the score of alpine meadow was high, the score of 
desert grassland was low, and its area was much larger than that of alpine meadow, resulting in a great decrease in 
the average score of the whole grassland category after the area weighting calculation (see Supplementary Section 
2.6). The low score of desert grassland may be because of that most local residents are engaged in animal hus-
bandry and therefore do not like desert grasslands with low productivity. Moreover, in Altay Prefecture, most of 
the crops in the cultivated land are of wheat, corn and sunflowers, which are neater and more pleasing to the eye 
and thus preferred by local people. This explains why the increase in AV was lower than that under the BAU and 
ED scenarios, even though the area of grassland increased significantly under the EC scenario.

Figure 5. Spatial distributions of the changes in ES from 2015 to 2035 under the different scenarios. Maps were 
generated using ArcGIS 10.2 for Desktop (http://www.esri.com/software/arcgis).

http://www.esri.com/software/arcgis
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ES interactions. For the entire study area, we found that the multiple interactions among ES under the differ-
ent scenarios have different characteristics (Fig. 6). For example, under the ED scenario, SF decreased continually 
and exhibited trade-off interactions with the four services SC, CP, CS, and AV. This phenomenon indicates that 
the maintenance of the SF service should be particularly emphasized when implementing economic development 
policies in Altay Prefecture. Under the EC scenario, the WY decreased continually and exhibited trade-off inter-
actions with the four services SC, SF, CS, and AV, indicating that vegetation recovery may lead to water resource 
shortage in the region. Flower diagram analysis helps to formulate policies at the national or regional level, but it 
cannot accurately explain to managers the location of and causes for the formation of multiple interactions among 
ES32,56. The study by Haase et al. showed that for planning purposes, only analysis at the grid scale is meaningful57. 
In this study, we identified the locations where multiple interactions among ES occurred (Fig. 7) and further 
analyzed the causes for the formation of these interactions (see Supplementary Table S13). Conducting studies on 
the spatial heterogeneity of the multiple interactions among ES could help to provide a targeted scientific basis for 
decision-makers to manage different regions.

Our analyses revealed that under the BAU and ED scenarios, the conversion of bare land to cropland leads 
to trade-offs between the two services WY and SF and the four services SC, CP, CS, and AV in many areas of the 
mountain and oasis zones. In Altay Prefecture, agriculture is an important source of income for residents, second 
only to animal husbandry. In general, the larger the cropland area, the more income people can earn. The desert 
of the MODS in Altay Prefecture is mainly formed by the accumulation of sediments and gravels45. There are large 
areas of loamy deserts in the oasis zone and its surrounding areas, which are often reclaimed as cropland by local 
residents. However, the reclamation of cropland from bare land will lead to more actual evapotranspiration and 

Figure 6. Interactions among ES at regional scale under the different scenarios during 2015–2035. These 
figures were generated using R studio software version 1.1.383 (https://www.rstudio.com/).

https://www.rstudio.com/
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less WY. At the same time, cropland reclamation will destroy the soil crust and reduce the SF service58. Without 
the SF service provided by the surrounding ecosystems, the cropland would eventually be overtaken by deserts. 
In addition, we found that the cropland reclamation leads to the increase of SC and a synergistic relationship 
between SC and CP, which is inconsistent with other studies59–61. In these studies, the increased cropland is usu-
ally converted from forest, grassland or wetland, which often leads to increased soil erosion. In our study, the 
conversion of bare land to cropland enhanced vegetation cover and soil conservation measures, resulting in the 
increase of SC service. The conversion of cropland or bare land to built-up area will also result in a reduction in 
SF; therefore, such land se activities should be prohibited in the oasis margin. Under the EC scenario, a large area 
of grassland was converted to forest in the mountain and oasis zones. These conversions led to trade-offs between 
WY and four services SC, SF, CS, and AV. Precipitation in the mountain zone is abundant, especially the heavy 
rainfall that occurs in summer, which can easily lead to geological disasters such as debris flow and landslides. 
The increase in forests in the mountain zone can not only enhance SC but also reduce surface runoff to a certain 
extent, thereby reducing the probability of debris flow and landslides. Moreover, the forests have strong carbon 
sequestration capacity and can provide high landscape aesthetic value. Therefore, afforestation in the mountain 
zone is a preferable approach of ecological conservation. However, extensive afforestation in the oasis zone is 
irrational in the study area. In the oasis zone, there is usually low precipitation, and the groundwater level is near 
the soil surface. The strong transpiration of trees would cause the groundwater level to rise; with the evaporation 
of water, the salt in the groundwater would remain on the surface, resulting in soil salinization62. Therefore, 
large-scale afforestation not only would cause a waste of water resources but also might cause soil salinization due 
to strong transpiration. Our study showed that the conversion of bare land to grassland improved the SC, SF, CS, 

Figure 7. The spatial patterns of multiple interactions among ES under the different scenarios during 2015–
2035. Maps were generated using ArcGIS 10.2 for Desktop (http://www.esri.com/software/arcgis). Because 
the area of Altay Prefecture is approximately 118,000 km2, only those multiple interactions occurring in pixels 
(100 m × 100 m) with a summed area of over 40 km2 are shown in this figure, and the others are collectively 
named “other interactions”; ‘+’ indicates an increase of the ES; ‘−’ indicates a reduction. For example, “SC+ 
CP+ CS+ AV+, WY− SF−” indicates that SC, CP, CS, and AV increased simultaneously (synergies), WY and 
SF decreased simultaneously, and the two services WY and SF both exhibited trade-off interactions with the 
four services SC, CP, CS, and AV.

http://www.esri.com/software/arcgis
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and AV services in the cost of WY in the desert zone. The desert zone is the source of wind erosion, where the 
growing of grass would greatly increase SF. In contrast, the grass types that can grow in desert zone have consid-
erably low transpiration capacity63, which would only slightly reduce WY. Therefore, we consider it a reasonable 
approach of ecological conservation to convert bare land to grassland in the desert zone42.

Conclusion
This study simulated land use change scenarios and explored the multiple interactions (i.e., trade-offs and syn-
ergies) among ES in the MODS of Altay Prefecture. Moreover, we revealed the causes for the formation of the 
interactions. The results showed that SC, CS, and AV continually increased, WY continually decreased under the 
three scenarios. The changes of CP and SF showed different trends under different scenarios. The multiple inter-
actions among ES exhibit different patterns for the entire Altay Prefecture under different scenarios. In addition, 
the interactions were spatially heterogeneous on the grid scale across Altay Prefecture. Under the BAU and ED 
scenarios, the conversion of bare land to cropland in the mountain and oasis zones led to a continuous decrease 
in WY and SF and caused them to exhibit trade-off interactions with the four services SC, CP, CS, and AV. Under 
the EC scenario, the conversion of grassland to forest in the mountain and oasis zones and the conversion of bare 
land to grassland in the desert zone caused SC, SF, CS, and AV to continuously increase and to exhibit trade-off 
interactions with WY. This information can help decision-makers develop targeted and differentiated ecosystem 
management strategies. This study can increase the understanding of the multiple interactions among ES. In addi-
tion, our findings could provide a reference for ecosystem management in other areas with the MODS structure.

Methods
Study Area. Altay Prefecture is located in the extreme north of Xinjiang, China, between 85°31′57″E and 
91°01′15″E and between 44°59′35″N and 49°10′45″N. It is bordered by Kazakhstan, Russia, and Mongolia. The 
total area of the prefecture is approximately 118,000 km2, and the total population is approximately 675,900 
(2015). The terrain descends from north to south and has an obvious steppe-like topography. Altay Prefecture has 
a typical temperate continental climate. The average annual temperature ranges from 0.7–4.9 °C and decreases 
with an increase in altitude and latitude; the average annual precipitation in the study area is approximately 
139.3–268.4 mm and decreases with a decrease in altitude. The soil distribution in the study area has an obvious 
vertical band spectrum, and most of the soil is characterized by a thin soil layer, a coarse texture, and the ability 
to readily undergo salinization. These unique terrain, climate, and soil characteristics render Altay Prefecture a 
typical large-scale, multilevel, and regularly patterned “MODS”. As of 2015, the landscape of Altay Prefecture con-
sists of 34.9% grassland, 7.3% forest, 3.6% cropland, 52.3% bare land, and 1.9% other land use/cover types (Fig. 8).

Land use change simulation. Many models for simulating land use changes exist, but no single model can 
cover all the processes of land use changes64–66. In our study, Markov chain and FLUS models were used jointly to 
perform simulation of the land use changes (see Supplementary Fig. S1). The land demands under the different 
scenarios were obtained based on the Markov chain model. First, we analyzed the land use changes from 2000 to 
2015, and obtained the initial transition probability matrix. Then, using the year 2015 as the initial year, we cal-
culated the land demands under different scenarios by modifying the initial transition probability matrix67,68. The 
spatial allocation of land use was determined by using the FLUS model, which is created based on artificial neural 
network (ANN) and cellular automata (CA) models. The simulation accuracy of the FLUS model is higher than 
that of other well-accepted models (e.g., CLUE-S and CA models)52. The ANN model was used to calculate the 
suitability probability of each land use type; in this study, a total of 16 spatial driving factors were used for training 
the ANN model (see Supplementary Table S1). Combined with the suitability probability, conversion cost, and 
neighborhood weights, the CA model was used to simulate the spatial allocation of land use. The conversion 
cost and neighborhood weights were estimated based on historical land use data (see Supplementary Tables S2 
and S3). The Markov chain model and FLUS model were run with Matlab software (www.mathworks.com) and 
GeoSOS-FLUS software (http://www.geosimulation.cn/FLUS.html), respectively.

In this study, three alternative potential land use change scenarios were developed, namely, business as usual 
(BAU), economic development (ED), and ecological conservation (EC), to detect the ES changes and interactions 
under these scenarios. The principles and goals of designing these scenarios were as follows:

 (i) BAU scenario. This scenario assumed that the historical land use change trends are maintained; the land 
demand in the period of 2015–2035 can be calculated according to the initial transition probability matrix 
for the period of 2000–2015.

 (ii) ED scenario. The ED scenario depicted a situation in which, to meet the demand of economic develop-
ment, a large area of cropland is reclaimed, and the built-up area expands in this region. Referring to 
previous studies67,69,70, we calculated the land demands by modifying the conversion rate between certain 
land use types. In the period of 2015–2035, the conversion probabilities of forest, grassland, water and bare 
land into cropland increase by 50%, and the conversion probabilities of cropland, forest, grassland and bare 
land into built-up area increase by 200%.

 (iii) EC scenario. This scenario described a situation in which the local government strengthens the protection 
of forest, grassland, and water; strictly controls the increase in cropland and built-up area; and encourages 
peasants to return cropland to forest, grassland, and lake. Similar to the ED scenario, we calculated the land 
demands for this scenario by modifying the conversion rate between certain land use types67,69,70. In the 
period of 2015–2035, the conversion probabilities of forest, grassland, and water into cropland and built-up 
area decrease by 100%; the conversion probabilities of bare land into cropland and built-up area decrease 
by 50%; and the conversion probabilities of cropland into forest, grassland, and water increase by 80%.

http://www.mathworks.com
http://www.geosimulation.cn/FLUS.html
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To test the effectiveness of the Markov chain model, we used the year 2000 as the initial year to simulate 
the land demand in 2015 and then compared it with the actual areas of each land use type in 2015. The FLUS 
model test was divided into two steps. First, the calculation of suitability probabilities based on the ANN were 
tested using the relative operating characteristic (ROC) method71, with an ROC value of 1 indicating that a given 
regression equation has the best explanatory power. Second, the kappa statistic64,65 was employed to evaluate the 
accuracy of the FLUS model by comparing the simulated and actual spatial allocation of land use in 2015. The 
prediction of land demand and the spatial allocation of land use during 2015–2035 under each scenario are pro-
vided in Supplementary Table S6 and Figs S4–S6.

ES quantification. Considering the characteristics of the ecosystem, socioeconomic development, and 
data availability in this study area, we selected six kinds of ES, namely, water yield (WY), crop production (CP), 
soil conservation (SC), sand fixation (SF), carbon sequestration (CS), and aesthetic value (AV), as the research 
objects. The detailed variables calculation for each model and a template of the AV questionnaire are provided in 
Supplementary Section 2.

Water yield. In this study, we used the InVEST (Integrated Valuation of Ecosystem Services and Trade-offs) 
model to quantify and map WY33,37,72. The core algorithm of the InVEST model calculates the WY produced by 
each grid in the basin by using the principle of water balance in combination with the climate, topography, soil 
characteristics, and land use parameters. The calculations are as follows:

Y AET P P(1 / ) (1)jx xj x x= − ×

where Yjx is the annual WY of land use type j in grid x; AETxj is the average annual actual evapotranspiration of 
grid x; and Px is the average annual precipitation of grid x.

Crop production. Due to inadequate habitat quality, only a very small area of oasis is suitable for agricul-
tural development. Therefore, the cropland quantity and quality are important limiting factors for CP in Altay 
Prefecture. Using previous studies73–75 as a reference, we quantified CP by stacking the cropland quality factors 
onto the foundation of potential net primary productivity as follows:

= ×CP P I (2)v zrd

where CP represents crop production; Pv is the climatic productivity for a crop; and Izrd is the land use level index 
determined by the regulations of farm land grading in China.

Figure 8. (a) The location of Altay Prefecture in China; (b) the land use/land cover (LULC) pattern and the 
geographical division of Altay Prefecture. Maps were generated using ArcGIS 10.2 for Desktop (http://www.esri.
com/software/arcgis).

http://www.esri.com/software/arcgis
http://www.esri.com/software/arcgis
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Soil conservation. In this study, SC was assessed with the Universal Soil Loss Equation (USLE), which is the 
most widely used model for predicting soil erosion59,76. SC is determined by the amount of potential soil erosion 
subtracted by the amount of actual soil erosion. The calculations are as follows:

= −A A A (3)c r

A R K L S C P (4)= × × × × ×

= × × ×A R K L S (5)r

where Ac is the amount of SC; A is the amount of actual soil erosion; Ar is the amount of potential soil erosion; R 
is the rainfall erosivity factor; K is the soil erodibility factor; L is the slope length factor; S is the slope angle factor; 
and C and P represent the current vegetation cover and erosion control factors, respectively.

Sand fixation. We used the Revised Wind Erosion Equation (RWEQ) to evaluate the SF service in Altay 
Prefecture; this model takes into account the meteorological conditions, the natural conditions of underlying 
surfaces, and the impacts of humans on wind erosion77–79. The calculations are as follows:

Q Q Q (6)v0Δ = −

= ⋅ ⋅ ⋅ −Q Z S Q e(2 / ) (7)x max
x S

( )
2 ( / )2

Q WF EF SCF K C109 8 ( ) (8)max a= . ⋅ × × × ×

S WF EF SCF K C105 71 ( ) (9)a
0 3711= . ⋅ × × × × − .

where ΔQ is the amount of SF (t · km−2 · a−1); Q0 is the amount of potential sand erosion without vegetation cover 
(t · km−2 · a−1); Qv is the amount of actual sand erosion with vegetation cover and management (t · km−2 · a−1); Q(x) 
is the amount of sand transported by the wind at a point x downwind; Qmax is the maximum amount of sand that 
can be transported downwind; and S is the critical field length. WF is the weather factor; EF is the soil erodibility 
factor; SCF is the soil crust factor; Ka is the soil roughness factor; and C is the vegetation cover factor.

Carbon sequestration. We used the InVEST model to assess CS. Taking the land use type as the evaluation unit, 
the carbon storage module in the InVEST model divides the ecosystem carbon stock into four basic carbon pools: 
aboveground biochar, underground biochar, soil carbon, and dead organic carbon. CS is calculated by multiply-
ing the average carbon density of each of the four carbon pools with the area of each land use type72 as follows:

= + + +C C C C C (10)total above below soil deadj j j j j

CT C S
(11)j

total j
1

6

j∑= ×
=

where Ctotal j
 is the total carbon density and Cabovej

, Cbelowj
, Csoil j

, and Cdeadj
 are the aboveground carbon density, 

belowground carbon density, soil organic carbon density, and dead organic matter carbon density, respectively. 
CT represents the total amount of CS, and Sj represents the area of land use type j.

Aesthetic value. We conducted a sample questionnaire survey of residents to obtain their AV rating (integer 
values from 0 to 5) of different landscape types, which was taken as an indicator in evaluations of the service. First, 
we took photographs of different landscape types by selecting representative photographs for each landscape in 
summer (summer is the tourist season in Altay Prefecture, whereas spring, autumn, and winter are not suitable 
for traveling because of the cold weather), and these photographs were scored by respondents according to the 
degree of beauty. Then, the average scores of the different landscape types were calculated based on the survey 
results (a total of 264 valid questionnaires were surveyed), and ArcGIS was used to assign the scores to the corre-
sponding pixels of land use types to generate layers for the AV service.

ES changes and interactions. Based on the calculations of each ES, we used the zonal statistics tool of 
ArcGIS 10.2 to generate the values of each ES for the entire study area for different years under the three scenar-
ios. In addition, we performed spatial overlay analysis of each ES between 2015 and 2035 under the different sce-
narios. These analyses can demonstrate future spatiotemporal changes in the ES. For the ES interactions, we first 
used the min-max normalization method to standardize the values of the various ES under the different scenarios 
for the entire study area for the period of 2015–2035. Using the ggplot2 package in R statistical software80, we 
generated flower diagrams to present trade-offs and synergies among different ES throughout future years. Many 
studies have used the flower diagrams to characterize the ES interactions19,31,32. However, the ES interactions in 
these studies were identified using data only for one year. In our study, we simulated the dynamic changes of ES 
over many years in the future and used a series of flower diagrams to characterize the multiple ES interactions. 
To identify the locations where ES interactions occurred, we created a set of six-digit codes and made each ES 
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correspond to one digit. We then performed the subtraction operations on each ES in 2035 and 2015 with the 
ArcGIS grid calculator and used the reclassification tool to assign the value 1, 2, and 3 to increased, reduced, and 
unchanged pixels, respectively, for each ES. Finally, we performed spatial overlay operations on the reclassified 
layers and identified the multiple interactions among ES by interpreting the codes in the pixels of the output layer 
of overlay analysis (an example is provided in Supplementary Fig. S8). In addition, by comparing the ES interac-
tions with the land use change layers, we further analyzed the causes for the formation of the interactions, which 
can provide knowledge to support ecosystem management in regions with the MODS structure.

Data preparation. The datasets used to quantify the six ES are provided in Supplementary Table S12. In 
this study, ArcGIS 10.2 was used as the GIS software platform. Meteorological data are point data and need to be 
interpolated in ArcGIS. In Altay Prefecture, the most influential human activity on ES is land use. Soil properties 
and DEM changed very little over decades of years. To examine the impact of land use changes on ES, we used 
the multiyear average meteorological data from 2000–2015 and assumed that soil properties and the DEM will 
not change from 2015 to 2035. All vector and grid data were converted to the same projection coordinate system 
(Krasovsky_1940_Transverse_Mercator), and the grid data (except for the calculation of the SC service, for which 
30 m × 30 m DEM was used) were resampled at a spatial resolution of 100 m × 100 m.

Data availability. The datasets generated during the current study are available from the corresponding 
author on reasonable request.

References
 1. Bennett, E. M. et al. Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for 

sustainability. Curr. Opin. Environ. Sustain. 14, 76–85 (2015).
 2. Costanza, R. et al. The value of the world’ s ecosystem services and natural capital. Nature 387, 253–260 (1997).
 3. Daily, G. C. Ecology: The Value of Nature and the Nature of Value. Science (80-.) 289, 395–396 (2000).
 4. Bateman, I. J. et al. Bringing Ecosystem Services into Economic Decision-Making: Land Use in the United Kingdom. Science (80-.) 

341, 45–50 (2013).
 5. de Groot, R. S., Alkemade, R., Braat, L., Hein, L. & Willemen, L. Challenges in integrating the concept of ecosystem services and 

values in landscape planning, management and decision making. Ecol. Complex. 7, 260–272 (2010).
 6. Haines-Young, R. & Potschin, M. Common International Classification of Ecosystem Services (CICES): Consultation on Version 4, 

August - December 2012. Rep. to Eur. Environ. Agency, 1–17, https://doi.org/10.1038/nature10650 (2013).
 7. Costanza, R. et al. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 28, 

1–16 (2017).
 8. Bennett, E. M., Peterson, G. D. & Levitt, E. A. Looking to the future of ecosystem services. Ecosystems 8, 125–132 (2005).
 9. Xie, W., Huang, Q., He, C. & Zhao, X. Projecting the impacts of urban expansion on simultaneous losses of ecosystem services: A 

case study in Beijing, China. Ecol. Indic. 84, 183–193 (2018).
 10. Polasky, S., Nelson, E., Pennington, D. & Johnson, K. A. The impact of land-use change on ecosystem services, biodiversity and 

returns to landowners: A case study in the state of Minnesota. Environ. Resour. Econ. 48, 219–242 (2011).
 11. Le Maitre, D. C. et al. Linking ecosystem services and water resources: Landscape-scale hydrology of the Little Karoo. Frontiers in 

Ecology and the Environment 5, 261–270 (2007).
 12. Millennium Ecosystem Assessmen (MEA). Ecosystems and Human Well- Being: Synthesis. (Island Press, 2005).
 13. Hao, R., Yu, D. & Wu, J. Relationship between paired ecosystem services in the grassland and agro-pastoral transitional zone of 

China using the constraint line method. Agric. Ecosyst. Environ. 240, 171–181 (2017).
 14. Rodríguez, J. P. et al. Trade-offs across space, time, and ecosystem services. Ecol. Soc. 11 (2006).
 15. Qiu, J. & Turner, M. G. Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proc. Natl. Acad. Sci. 

110, 12149–12154 (2013).
 16. Deng, X., Li, Z. & Gibson, J. A review on trade-off analysis of ecosystem services for sustainable land-use management. J. Geogr. Sci. 

26, 953–968 (2016).
 17. Felipe-Lucia, M. R., Comín, F. A. & Bennett, E. M. Interactions among ecosystem services across land uses in a floodplain 

agroecosystem. Ecol. Soc. 19 (2014).
 18. Lee, H. & Lautenbach, S. A quantitative review of relationships between ecosystem services. Ecol. Indic. 66, 340–351 (2016).
 19. Yang, G. et al. Using ecosystem service bundles to detect trade-offs and synergies across urban-rural complexes. Landsc. Urban Plan. 

136, 110–121 (2015).
 20. Hou, Y., Lü, Y., Chen, W. & Fu, B. Temporal variation and spatial scale dependency of ecosystem service interactions: a case study on 

the central Loess Plateau of China. Landsc. Ecol. 32, 1201–1217 (2017).
 21. Butler, J. R. A. et al. An analysis of trade-offs between multiple ecosystem services and stakeholders linked to land use and water 

quality management in the Great Barrier Reef, Australia. Agric. Ecosyst. Environ. 180, 176–191 (2013).
 22. Sun, X., Lu, Z., Li, F. & Crittenden, J. C. Analyzing spatio-temporal changes and trade-o ff s to support the supply of multiple 

ecosystem services in Beijing, China. Ecol. Indic. 94, 117–129 (2018).
 23. Castro, A. J. et al. Ecosystem service trade-offs from supply to social demand: A landscape-scale spatial analysis. Landsc. Urban Plan. 

132, 102–110 (2014).
 24. Wang, Z. et al. Quantifying changes in multiple ecosystem services during 1992–2012 in the Sanjiang Plain of China. Sci. Total 

Environ. 514, 119–130 (2015).
 25. Lü, Y. et al. A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the loess plateau of China. 

Plos One 7, 1–10 (2012).
 26. Hou, Y., Burkhard, B. & Muller, F. Uncertainties in landscape analysis and ecosystem service assessment. J. Environ. Manage. 127, 

S117–S131 (2013).
 27. Egoh, B. et al. Mapping ecosystem services for planning and management. Agric. Ecosyst. Environ. 127, 135–140 (2008).
 28. Willemen, L., Hein, L., van Mensvoort, M. E. F. & Verburg, P. H. Space for people, plants, and livestock? Quantifying interactions 

among multiple landscape functions in a Dutch rural region. Ecol. Indic. 10, 62–73 (2010).
 29. Jia, X. et al. The tradeoff and synergy between ecosystem services in the Grain-for-Green areas in Northern Shaanxi, China. Ecol. 

Indic. 43, 103–111 (2014).
 30. Jopke, C., Kreyling, J., Maes, J. & Koellner, T. Interactions among ecosystem services across Europe: Bagplots and cumulative 

correlation coefficients reveal synergies, trade-offs, and regional patterns. Ecol. Indic. 49, 46–52 (2015).
 31. Renard, D., Rhemtulla, J. M. & Bennett, E. M. Historical dynamics in ecosystem service bundles. Proc. Natl. Acad. Sci. 112, 

13411–13416 (2015).
 32. Raudsepp-Hearne, C., Peterson, G. D. & Bennett, E. M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. 

Proc. Natl. Acad. Sci. 107, 5242–5247 (2010).

http://dx.doi.org/10.1038/nature10650


www.nature.com/scientificreports/

1 2SCIENTIFIC REPORtS |  (2018) 8:12939  | DOI:10.1038/s41598-018-31043-y

 33. Alcamo, J. et al. Changes in nature’s balance sheet: Model-based estimates of future worldwide ecosystem services. Ecol. Soc. 10 
(2005).

 34. Nelson, E. et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape 
scales. Front. Ecol. Environ. 7, 4–11 (2009).

 35. Kirchner, M. et al. Ecosystem services and economic development in Austrian agricultural landscapes - The impact of policy and 
climate change scenarios on trade-offs and synergies. Ecol. Econ. 109, 161–174 (2015).

 36. Harmáčková, Z. V. & Vačkář, D. Modelling regulating ecosystem services trade-offs across landscape scenarios in Třeboňsko 
Wetlands Biosphere Reserve, Czech Republic. Ecol. Modell. 295, 207–215 (2015).

 37. Bai, Y., Zheng, H., Ouyang, Z., Zhuang, C. & Jiang, B. Modeling hydrological ecosystem services and tradeoffs: A case study in 
Baiyangdian watershed, China. Environ. Earth Sci. 70, 709–718 (2013).

 38. Zheng, H. et al. Using ecosystem service trade-offs to inform water conservation policies and management practices. Front. Ecol. 
Environ. 14, 527–532 (2016).

 39. Li, B. & Wang, W. Trade-offs and synergies in ecosystem services for the Yinchuan Basin in China. Ecol. Indic. 84, 837–846 (2018).
 40. van Jaarsveld, A. S. et al. Measuring conditions and trends in ecosystem services at multiple scales: the Southern African Millennium 

Ecosystem Assessment (SAfMA) experience. Philos. Trans. R. Soc. B Biol. Sci. 360, 425–441 (2005).
 41. Lauf, S., Haase, D. & Kleinschmit, B. Linkages between ecosystem services provisioning, urban growth and shrinkage - A modeling 

approach assessing ecosystem service trade-offs. Ecol. Indic. 42, 73–94 (2014).
 42. Fu, Q., Li, B., Yang, L., Wu, Z. & Zhang, X. Ecosystem services evaluation and its spatial characteristics in Central Asia’s arid regions: 

A case study in Altay Prefecture, China. Sustain. 7, 8335–8353 (2015).
 43. Egarter Vigl, L., Schirpke, U., Tasser, E. & Tappeiner, U. Linking long-term landscape dynamics to the multiple interactions among 

ecosystem services in the European Alps. Landsc. Ecol. 31, 1903–1918 (2016).
 44. Li, Y. et al. Spatially explicit quantification of the interactions among ecosystem services. Landsc. Ecol. 32, 1181–1199 (2017).
 45. Zhang, X. Ecological restoration and sustainable agricultural paradigm of Mountain-Oasis-Ecotone-Desert system in the north of 

the Tianshan mountains. J. Integr. Plant Biol. 43, 1294–1299 (2001).
 46. Bogdan, S.-M., Pătru-Stupariu, I. & Zaharia, L. The Assessment of Regulatory Ecosystem Services: The Case of the Sediment 

Retention Service in a Mountain Landscape in the Southern Romanian Carpathians. Procedia Environ. Sci. 32, 12–27 (2016).
 47. Egarter Vigl, L., Depellegrin, D., Pereira, P., de Groot, R. & Tappeiner, U. Mapping the ecosystem service delivery chain: Capacity, 

flow, and demand pertaining to aesthetic experiences in mountain landscapes. Sci. Total Environ. 574, 422–436 (2017).
 48. Sawut, M., Eziz, M. & Tiyip, T. The effects of land-use change on ecosystem service value of desert oasis: a case study in Ugan-Kuqa 

River Delta Oasis, China. Can. J. Soil Sci. 93, 99–108 (2013).
 49. Liang, Y. & Liu, L. An integrated ecosystem service assessment in an artificial desert oasis of northwestern China. J. Land Use Sci. 12, 

154–167 (2017).
 50. Cuni-Sanchez, A., Pfeifer, M., Marchant, R. & Burgess, N. D. Ethnic and locational differences in ecosystem service values: Insights 

from the communities in forest islands in the desert. Ecosyst. Serv. 19, 42–50 (2016).
 51. O’Farrell, P. J. et al. The possibilities and pitfalls presented by a pragmatic approach to ecosystem service valuation in an arid 

biodiversity hotspot. J. Arid Environ. 75, 612–623 (2011).
 52. Liu, X. et al. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural 

effects. Landsc. Urban Plan. 168, 94–116 (2017).
 53. Fu, Q., Li, B., Hou, Y., Bi, X. & Zhang, X. Science of the Total Environment Effects of land use and climate change on ecosystem 

services in Central Asia’ s arid regions: A case study in Altay Prefecture. China. 608, 633–646 (2017).
 54. Akuja, T., Avni, Y., Zaady, E. & Gutterman, Y. Soil erosion effects as indicators of desertification processes in the northern Negev 

Desert. Soil Eros. Res. 21st Century, Proc., 595–598 (2001).
 55. Liu, Z., Verburg, P. H., Wu, J. & He, C. Understanding Land System Change Through Scenario-Based Simulations: A Case Study 

from the Drylands in Northern China. Environ. Manage. 59, 440–454 (2017).
 56. Raudsepp-Hearne, C. & Peterson, G. D. Scale and ecosystem services: how do observation, management, and analysis shift with 

scale—lessons from Québec. Ecol. Soc. 21 (2016).
 57. Haase, D., Schwarz, N., Strohbach, M., Kroll, F. & Seppelt, R. Synergies, trade-offs, and losses of ecosystem services in urban regions: 

An integrated multiscale framework applied to the leipzig-halle region, Germany. Ecol. Soc. 17 (2012).
 58. Zobeck, T. M. Abrasion of Crusted Soils: Influence of Abrader Flux and Soil Properties. Soil Sci. Soc. Am. J. 55, 1091 (1991).
 59. Fu, B. et al. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol. Complex. 8, 284–293 

(2011).
 60. Hao, R. et al. Impacts of changes in climate and landscape pattern on ecosystem services. Sci. Total Environ. 579, 718–728 (2016).
 61. Xiao, Q., Hu, D. & Xiao, Y. Assessing changes in soil conservation ecosystem services and causal factors in the Three Gorges 

Reservoir region of China. J. Clean. Prod., https://doi.org/10.1016/j.jclepro.2016.09.012 (2016).
 62. Jobbágy, E. G. & Jackson, R. B. Groundwater use and salinization with grassland afforestration. Glob. Chang. Biol. 10, 1299–1312 

(2004).
 63. Tong, S., Zhang, J., Hasi & Ma, Q. 14 Years Spatial-temporal Distribution Characteristics of Evapotranspiration in Xilingol Grassland 

Based on MOD16. Chinese J. Grassl. 38, 83–91 (2016).
 64. Zheng, H. W., Shen, G. Q., Wang, H. & Hong, J. Simulating land use change in urban renewal areas: A case study in Hong Kong. 

Habitat Int. 46, 23–34 (2015).
 65. Wu, M., Ren, X., Che, Y. & Yang, K. A Coupled SD and CLUE-S Model for Exploring the Impact of Land Use Change on Ecosystem 

Service Value: A Case Study in Baoshan District, Shanghai, China. Environ. Manage. 56, 402–419 (2015).
 66. Jiang, W., Deng, Y., Tang, Z., Lei, X. & Chen, Z. Modelling the potential impacts of urban ecosystem changes on carbon storage 

under different scenarios by linking the CLUE-S and the InVEST models. Ecol. Modell. 345, 30–40 (2017).
 67. Hu, Y., Zheng, Y. & Zheng, X. Simulation of land-use scenarios for Beijing using CLUE-S and Markov composite models. Chinese 

Geogr. Sci. 23, 92–100 (2013).
 68. Zhang, H., Liao, X. & Zhai, T. Evaluation of ecosystem service based on scenario simulation of land use in Yunnan Province. Phys. 

Chem. Earth 104, 58–65 (2018).
 69. Lu, R. et al. Land Use Scenarios Simulation Based on CLUE-S and Markov Composite Model—A Case Study of Taihu Lake Rim in 

Jiangsu Province. Sci. Geogr. Sin. 29, 576–580 (2009).
 70. Ma, L., Niu, S. & Yang, L. Scenarios simulation of land use/cover pattern in Dunhuang City,Gansu Province of Northwest China 

based on Markov and CLUE-S integrated model. Chinese J. Ecol. 31, 1823–1831 (2012).
 71. Pontius, R. G. Jr., Cornell, J. D. & Hall, C. A. S. Modeling the spatial pattern of land-use change with GEOMOD2: application and 

validation for Costa Rica. Agric. Ecosyst. Environ. 85, 191–203 (2001).
 72. Sharp, E. R. et al. InVEST+ VERSION+ User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The 

Nature Conservancy, and World Wildlife Fund., 2015.
 73. Hu, H., Fu, B., Lü, Y. & Zheng, Z. SAORES: a spatially explicit assessment and optimization tool for regional ecosystem services. 

Landsc. Ecol. 30, 547–560 (2015).
 74. Zheng, Z., Fu, B., Hu, H. & Sun, G. A method to identify the variable ecosystem services relationship across time: a case study on 

Yanhe Basin, China. Landsc. Ecol. 29, 1689–1696 (2014).

http://dx.doi.org/10.1016/j.jclepro.2016.09.012


www.nature.com/scientificreports/

13SCIENTIFIC REPORtS |  (2018) 8:12939  | DOI:10.1038/s41598-018-31043-y

 75. Wang, B., Tang, H. & Xu, Y. Integrating ecosystem services and human well-being into management practices: Insights from a 
mountain-basin area, China. Ecosyst. Serv. 27, 58–69 (2017).

 76. Hall, L. J. S. & Foster, G. R. The revised universal soil loss equation. Soil Sci. Soc. Am. J. 46, 83–104 (1994).
 77. Guo, Z., Zobeck, T. M., Stout, J. E. & Zhang, K. The effect of wind averaging time on wind erosivity estimation. Earth Surf. Process. 

Landforms 37, 797–802 (2012).
 78. Fryrear, D. W. et al. RWEQ: Improved wind erosion technology. J. Soil Water Conserv. 55, 183–189 (2000).
 79. Van Pelt, R. S., Zobeck, T. M., Potter, K. N., Stout, J. E. & Popham, T. W. Validation of the wind erosion stochastic simulator (WESS) 

and the revised wind erosion equation (RWEQ) for single events. Environ. Model. Softw. 19, 191–198 (2004).
 80. Wickham, H. Ggplot2: Elegant Graphics for Data Analysis, https://doi.org/10.1007/978-0-387-98141-3, 1 (Springer Publishing 

Company, Incorporated, 2009).

Acknowledgements
This work was supported by the National Science and Technology Support Plan of China (2014BAC15B04), the 
Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese 
Academy of Sciences (WSGS2017007), and the China Postdoctoral Science Foundation (2017M610059). We 
would like to thank the anonymous reviewers for their valuable comments and suggestions.

Author Contributions
Q.F. and B.L. designed and carried out the majority of the research. Y.H., B.W. and X.B. cooperated in the 
research, providing input throughout and reviewing details. X.Z. is the academic adviser. All authors reviewed 
the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-31043-y.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1007/978-0-387-98141-3
http://dx.doi.org/10.1038/s41598-018-31043-y
http://creativecommons.org/licenses/by/4.0/

	Scenario analysis of ecosystem service changes and interactions in a mountain-oasis-desert system: a case study in Altay Pr ...
	Results
	Markov chain and FLUS models validation. 
	Land use change. 
	ES changes. 
	ES interactions. 

	Discussion
	ES changes. 
	ES interactions. 

	Conclusion
	Methods
	Study Area. 
	Land use change simulation. 
	ES quantification. 
	Water yield. 
	Crop production. 
	Soil conservation. 
	Sand fixation. 
	Carbon sequestration. 
	Aesthetic value. 

	ES changes and interactions. 
	Data preparation. 

	Acknowledgements
	Figure 1 Schematic diagram of the MODS landscape.
	Figure 2 Quantitative changes in each land use type from 2015 to 2035 under the different scenarios.
	Figure 3 Changes in the spatial pattern of land use from 2015 to 2035 under the different scenarios.
	Figure 4 Changes in the total amount of ES from 2015 to 2035 under the different scenarios.
	Figure 5 Spatial distributions of the changes in ES from 2015 to 2035 under the different scenarios.
	Figure 6 Interactions among ES at regional scale under the different scenarios during 2015–2035.
	Figure 7 The spatial patterns of multiple interactions among ES under the different scenarios during 2015–2035.
	Figure 8 (a) The location of Altay Prefecture in China (b) the land use/land cover (LULC) pattern and the geographical division of Altay Prefecture.




