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Photofabrication of Highly 
Transparent Platinum Counter 
Electrodes at Ambient Temperature 
for Bifacial Dye Sensitized Solar 
Cells
Idris K. Popoola1, Mohammed A. Gondal  1, Jwaher M. AlGhamdi  2 & Talal F. Qahtan1

Platinum (Pt) counter electrodes (CEs) have consistently shown excellent electrocatalytic performance 
and holds the record of the highest power conversion efficiency (PCE) for dye-sensitized solar cells 
(DSSCs). However, its use for large-scale production is limited either by high temperature required 
for thermal decomposition of its precursor or by wastage of the material leading to high cost or 
sophisticated equipment. Here, we report a novel photofabrication technique to fabricate highly 
transparent platinum counter electrodes by ultraviolet (UV) irradiation of platinic acid (H2PtCl6.6H2O) 
on rigid fluorine-doped tin oxide (FTO) and flexible indium-doped tin oxide (ITO) on polyethylene 
terephthalate (PET) substrates. The photofabrication technique is a facile and versatile method for the 
fabrication of Pt CEs for dye sensitized solar cells (DSSCs). The photofabricated Pt CEs were used to 
fabricate bifacial DSSCs with power conversion efficiencies (PCEs) attaining 7.29% for front illumination 
and 5.85% for rear illumination. The highest percentage ratio of the rear illumination efficiency to the 
front illumination efficiency (ηR) of 85.92% was recorded while the least ηR is 77.91%.

Third generation solar cells such as dye-sensitized solar cells (DSSCs), quantum-dots sensitized solar cells 
(QDSSCs) and recently perovskite solar cells (PSCs) have generated enormous research interests as they are 
expected to ultimately rival and possibly replace silicon solar cells in the pursuit of renewable and clean energy 
utilizing the abundance energy of the sun. The research interests attracted by these third generation solar cells are 
due to their solution processing capabilities, low costs, easy fabrication techniques, efficient devices performances 
and potentials for application in flexible devices1–4. Since the work of Gratzel in 19915, various components of 
DSSCs such as the substrates, photoanodes, sensitizers (dyes), electrolytes and the counter electrodes (CEs) have 
continued to be researched for new materials, synthesis methods and fabrication techniques. N-type photoanode 
with molecularly engineered dye has reached a record power conversion efficiency (PCE) of 13%6. TiO2 remains 
the most commonly used n-type semiconducting photoanodes6–11 ZnO, photoactive doped metal oxides and 
various nanocomposite materials have been reported as photoanodes in DSSCs12–14. Ruthenium (Ru) based sen-
sitizers such as N3, N719 among others have become the de facto dye materials for DSSCs15. Liquid electrolytes 
are usually comprised of iodide/triiodide (I−/I3−) and cobalt complexes (Co2+/Co3+) redox couples16,17. Highly 
electrocatalytic materials like platinum (Pt) are used to reduced I3− to I− at the interface of the electrolyte/CE in 
order to sustain the flow of current and regenerate molecules of the oxidized sensitizer in the DSSCs devices18,19.

The CE is one of the foci interests of research toward the improvement and advancement of DSSCs. Various 
efforts have been on in utilizing other non-platinum electrocatalytic materials as well as developing new tech-
nique for the fabrication of Pt CE1. Some of the alternative materials that have been investigated and reported 
include polymeric conducting materials such as poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) 
(PEDOT: PSS)1,20–23, carbon materials such as carbon soot, graphene, carbon nanotube (CNT), carbon nanofiber 
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(CNF) and graphite24–27, inorganic semiconducting chalcogenide compounds such as NiS, CoS, and CoSe28, plat-
inic composite materials29,30, and other electrocatalytic composite materials31,32. Polymeric conducting materi-
als and carbon materials have the advantages of low costs, solution processing and low temperature fabrication 
requirement. However, Pt has consistently shown excellent electrocatalytic performance and holds the record of 
the highest PCE for DSSCs18 Pt CEs are usually fabricated at an elevated temperature of 450 °C from platinic acid 
(H2PtCl6) precursor33 or vacuum sputtered from Pt target34,35. Thermal decomposition of H2PtCl6 for the fabrica-
tion of Pt CE is not suitable for material with lower thermal stability at the required elevated temperature for the 
synthesis of Pt. Hence, flexible Pt CE on conductive polyethylene naphtholate (PEN), polyethylene terephthalate 
(PET) and textile cannot be achieved through thermal decomposition process18,19,36. Sputtering deposition on 
the other hand results in wastage of material during deposition process, thereby, limiting its use for large scale 
production as it is not cost effective18,19,36.

Researchers have reported several attempts at fabricating Pt CEs at low temperature. Electrodeposition tech-
nique is one of such methods employed in the fabrication of Pt CEs at low temperature. This method which takes 
place at room temperature involves three electrodes configuration with transparent conductive oxide (TCO) 
substrate acting as the working electrode and electrolyte material containing platinic acid solution37–39. A cyclic 
voltammetry process is then performed using an electrochemical system. Electrophoretic deposition was used 
by Yin et al.40. They prepared H2PtCl6 glycol solution and preheated it under stirring for 6 h in an atmosphere of 
argon. ITO-PEN substrates were immersed in the resulting Pt-colloid and driven by a D.C. field of 1.6 Vcm−1. 
The Pt coated electrode was washed with deionized (DI) water and ethanol before being post thermally treated at 
60 °C for 30 mins. Both electrodeposition and electrophoretic deposition methods have the shortcoming of large 
Pt loading in the electrochemical baths making them unfeasible for commercial production.

Some other alternative methods have however been reported. Chemical wet-chemistry reduction has been uti-
lized for the fabrication of Pt CEs from H2PtCl6, employing acidic reducing agents without subsequent treatment. 
Matoh et al.41 employing chemical reduction method prepared H2PtCl6 in ethanol for the synthesis of nanostruc-
tured metallic Pt. The ethanolic Pt precursor was either spin-coated or drop coated on fluorine doped tin oxide 
(FTO) glass electrodes or indium doped tin oxide (ITO) PET flexible substrates and dried at room temperature. 
The coated surfaces were then treated with gaseous formic acid reducing agent at temperature of 100 °C for a period 
of 15 minutes. Hseih et al.19 used modified chemical reduction method to fabricate Pt CEs. Polyvinylpyrrolidone 
(PVP) served as surfactant, NaHBr4 as reducing agent, NaOH was used to achieve neutral platinic precursor and 
UV-ozone treatment was used to decompose the surfactant after deposition on FTO or ITO-PEN. Polyol reduc-
tion technique is a facile method of synthesis of Pt from H2PtCl6 whereby ethylene glycol (EG) is used as reducing 
agent. Mei et al.42 fabricated Pt CEs using EG solution of H2PtCl6.6H2O. The deposited precursor was thermally 
treated at 180 °C. The synthesized Pt on the substrates exhibited dense and porous Pt structures. The earlier result-
ing from growth of Pt on the substrates following the reduction while the latter is due to Pt nanoparticle precipita-
tion. Li et al.18 used similar polyol method with modification of the pH of the H2PtCl6 and preheating the precursor 
solution at 110 °C for 30 mins. They as well pretreated the substrates with ‘piranha’ and 3-mercaptopropyl(tri-
methoxysilane) (MPTMS) to produce a thiol-functionalized silane self- assembled monolayer (SAM) film on the 
conductive substrates. The as-prepared functionalized substrates were soaked in the platinic EG solution for 12 h 
and rinsed with ethanol to eliminate undesirable residues and dried in nitrogen environment.

In this study, we photofabricated Pt CEs employing different solvents. Our photofabrication process utilized 
UV irradiation of deposited solutions of H2PtCl6 to achieve Pt CEs. This novel method of fabricating Pt CEs 
requires no pre/post-thermal treatment and was carried out in ambient environment. This method utilized min-
imal Pt loading. It requires no addition of surfactant which is required to be removed either by heating or other 
methods. It is as well properly suited for plastic substrates as no acidic treatment is performed in the fabrication 
process. Moreover, the high transmittances recorded for the photofabricated Pt CEs make them suitable for use in 
bifacial DSSCs. Bifacial DSSCs can be deployed as building windows and integrated electronic devices43.

Results and Discussion
Platinum counter electrodes were photofabricated under different fabrication parameters and characterized. 
Platinic acid precursor solution in EG making 0.02 M were spin-coated at 2000 rpm for 30 s at a ramp rate of 
500 rpm. 20 ul of the EG solution of H2PtCl6 were deposited on an area of 0.25 cm2 before spinning. Three suc-
cessive spin-coating cycles were conducted to ensure proper adhesion of the Pt precursor solution on the FTO 
substrates at the chosen spin-coating speed. After the spin-coating cycles have been completed, scotch tape used 
for the exposure of the coated area was removed before treatment with UV irradiation at ambient room condi-
tions. On completion of the UV irradiation, the Pt precursor was reduced to Pt on the FTO substrate (Fig. 1a). 
The conversion was confirmed by different characterizations reported in this work. To get proper insight into the 
UV conversion process and attaining optimized parameters for the photofabrication process, effect of irradiation 
time was studied. The optimized loading amount of the Pt precursor was also investigated by three different 
spin-coating cycles. Finally, we examined the versatility of the photofabrication techniques by using different sol-
vent than EG (in this case ethanol), drop coating method and flexible substrate (PET-ITO) was used in this work.

Effect of Irradiation Time. To study the effects of irradiation time, samples were treated with different UV 
irradiation times of 2 h, 1 h and 30 min. The prepared samples with different irradiation times were characterized 
and used as CEs in fabrication of DSSCs. Figure 1a shows the transmittance spectra of the samples at different irra-
diation times and that of bare FTO glass. The transmittances of all the three samples at different irradiation times 
are higher than that of bare FTO glass within the visible light spectrum. For an understanding of these recorded 
enhancement of transmittance in the three samples, we examine the effect of UV irradiation on bare FTO glass. 
Figure S1a (Supporting Information) shows the transmittance spectra of a precleaned FTO glass that was treated 
with UV irradiation for different time intervals. The transmittance spectra were measured successively at 30 min, 
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1 h and 2 h irradiation times. We noticed the dependence of transmittance spectra on irradiation time. With this 
observation, the effect of UV irradiation on the resistivity of the FTO sample was investigated by measuring the 
resistance between two pre-marked points at 15 min, 30 min, 1 h and 2 h UV irradiation time. The resistance of 
the UV treated FTO was found to decrease and has dependency on the irradiation time as shown in Fig. S1b. 
Meanwhile, transmittance spectra of Fig. 1a suggest that the UV interaction with the Pt precursor on the FTO 
glass and subsequent formation of Pt metal equally played part in the enhancement of the transparency of the 
Pt-EG-FTO CEs within the visible light region. The sample that underwent 1 h UV irradiation photofabrica-
tion showed the highest transmittance across the visible light region of 400 nm to 720 nm. While those that were 
treated for 30 min and 2 h respectively had almost same transmittance spectra across same wavelengths.

The photoreduction of the H2PtCl6.6H2O in EG to Pt metal for the photofabricated CEs was investigated by 
XPS. The XPS spectra of the three samples with different UV irradiation times were compared to understand the 
effect of UV irradiation time on the photoreduction process. Figure 1b shows the XPS survey spectra of the three 
different samples with 3 cycles of spin-coating and UV irradiated for 30 min, 1 h and 2 h respectively. All three 
samples exhibit platinum peak at Pt 4 f orbital. Small Chlorine peak at Cl 2p orbital is observed to reduce with 
increase in UV irradiation time. At 1 h UV irradiation time the Cl 2p peak can be seen to have greatly reduced 
compare to UV irradiation time of 30 min. While the peak is absent at 2 h UV irradiation time. Figure 1c compares 
the platinum peaks of the three samples at the respective UV irradiation time. This might be due to degradation of 
the Platinum coating on the FTO. The Pt peak of UV irradiation of 30 min exhibit a binding energy of the Pt 4f7/2 
at 72.91 eV shifted away from the 71.77 eV and 71.48 eV for the 1 h and 2 h UV irradiation times respectively. The 
Pt 4f7/2 binding energies of the of the 1 h and 2 h UV irradiation times are closest to the atomic platinum binding 

Figure 1. (a) Schematic showing photofabriation process and assembled DSSC (with front and rear 
illumination). (b) Transmittance spectra of photofabricated Pt CEs (Pt-EG-FTO) with different UV irradiation 
times and bare FTO for comparison. (c) XPS survey spectra of (Pt-EG-FTO) at different irradiation time. (d) 
XPS spectra comparing Pt 4 f peaks of the photofabricated Pt CE (Pt-EG-FTO) at different irradiation times.
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energy of 71.2 eV. The Pt peak at 2 h is seen to be lower intensity peak compared with that of UV irradiation time of 
30 min and 1 h. Hence, optimized UV irradiation time for the photofabrication process is important.

The SEM images shown in Fig. 2(a–c) for the three photofabricated Pt CEs with different UV irradiation times 
of 2 h, 1 h and 30 min indicate that Pt nanoparticles are well dispersed on the FTOs and no agglomerated site can 
be seen on the morphology of the photofabricated Pt CEs.

The electrochemical characterization of the samples was carried out to study the catalytic activity of the sam-
ples in triiodide/iodide electrolyte. Figure 2d shows the cyclic voltammograms of the samples. The bare FTO sam-
ple shows no catalytic activity as no reduction or oxidation is present in the CV scan of the sample. UV irradiated 
samples with 1 h and 2 h show both reduction and oxidation peaks that are aligned throughout the CV scan while 
sample with 30 min UV irradiation time exhibit a slight shift from them. CV measurement is particularly useful in 
understanding the regeneration of dye molecules from the triiodide/iodide electrolyte after the photoreduction of 
the dye molecule in generation of electron into the TiO2 photoanode material, as redox equilibrium is desired for 
the continuous functioning of the solar cells. The redox reaction at the electrolyte/photofabricated Pt CE interface 
is as given in equation (1):

+ →
→ +

− − −

− − −
I 2e 3I
3I I 2e (1)

3

3

The Nyquist impedance plot shown in Fig. 2e illustrate the charge transfer mechanism between the electrolyte 
and photofabricated Pt CEs in symmetric dummy cells. The fitting of the Nyquist plots is carried out within the 
NOVA 2.1 software. The equivalent circuit used in fitting the Nyquist plot is as shown in Fig. S2. The series resist-
ance RS, charge transfer resistance RCT, constant phase element (CPE) and the exchange current density (J0) of the 
dummy cells are summarized in Table 1. The sample with 1 h UV irradiation exhibits the least series resistance 
and charge transfer resistance of 17.641 Ω and 10.639 Ω respectively. 2 h UV irradiated sample also performed 
better than 30 min UV irradiated sample. The surface area of the photofabricated Pt CEs as given by the CPE 
shows dependency with UV irradiation times (Table 1). The values of J0 are obtained from equation (2):

Figure 2. (a) SEM images of photofabricated Pt CE with 2 h UV irradiation time. (b) SEM images of 
photofabricated Pt CE with 1 h UV irradiation time. (c) SEM images of photofabricated Pt CE with 30 min UV 
irradiation time. (d) CV scan measurement of photofabricated Pt CEs (Pt-EG-FTO) at different irradiation 
times of 2 h, 1 h and 30 min. (e) Nyquist plots of photofabricated Pt CEs (Pt-EG-FTO) at different irradiation 
times of 2 h, 1 h and 30 min.
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= ∗ ∗ ∗J (R T)/(n F R ) (2)0 CT

where R represents the molar gas constant, T ( = 298 K) is the absolute temperature, n represents the number of 
electrons involved in the triiodide reduction at the electrode/electrolyte interface having a value of 2 and F is the 
Faraday’s constant33. The Tafel plots for these Pt CEs are as shown in Fig. S3a. Pt-EG-FTO UV irradiated for 1 h 
exhibited the highest value for both the anodic and cathodic current densities.

From the transmittance, XPS and electrochemical characterizations results discussed above, we conclude that 
30 min irradiation was not sufficient to reduce the Pt precursor to Pt metal. On the other hand, excessive UV 
exposure appears to be detrimental to the photofabrication process as is the case for the 2 h UV irradiated sample. 
Hence, 1 h irradiation time seems the optimal value for the UV photofabrication Pt CE technique.

Effect of Solvents. The versatility of our photofabrication technique with respect to different solvents is 
reported. Here, we chose ethanol as a representative solvent of other suitable solvents that are used in the synthe-
sis of Pt metal from H2PtCl6.6H2O precursor. Ethanol being a nontoxic solvent has an advantage of low boiling 
point of 78 °C over EG, it can therefore evaporate easily compared to EG. Owing to this advantage, drop cast-
ing method was used in depositing the platinic acid in ethanol precursor for the photofabrication process. The 
drop casting method utilized much lower platinic acid solution, leading to minimal Pt loading as compared to 
spin-coating process that results in wastage of material. For the drop casting process, 30 ul of 0.02 M ethanol 
solution of H2PtCl6.6H2O was dropped on an exposed area of 0.25 cm2 of FTO glass. Three samples were prepared 
using this approach and UV irradiated for 1 h, 30 min and 15 min, respectively. Figure 3a shows the transmittance 
spectra of the photofabricated Pt CEs from the ethanolic platinic acid solution. All the transmission spectra of the 
three samples are greater than the transmittance spectrum of bare FTO across the visible light wavelength region.

Figure 3b is the XPS spectra of the photofabricated Pt CEs from ethanol based platinic acid solution. All 
three samples at different UV irradiation time show much prominent platinum peaks than platinum peaks of all 
samples photofabricated from EG platinic acid solution. This indicates that there are better and more efficient 
platinum loading for drop coated precursor samples than there are for the spin-coated samples. The effect of 
UV irradiation time can as well be seen from the XPS spectra. As UV irradiation time increases from 15 min 
to 1 h, the platinum peaks can be seen to increase with respect to the irradiation time (Fig. 3c). Meanwhile, the 
Chlorine peaks decrease with increase in UV irradiation time (Fig. 3b), confirming the photoreduction of the 
H2PtCl6.6H2O in ethanol to Pt. Pt-EtOH-FTO with 1 h UV irradiation time exhibited Pt 4f7/2 peak at a binding 
energy of 71.27 eV, while Pt-EtOH-FTO with 30 min and 15 min UV irradiation had a shifted Pt 4f7/2 peaks at 
binding energies of 72.81 and 73.62 eV respectively.

The SEM images of photofabricated at different irradiation time are presented in Fig. 4. Figure 4a shows 
similarly well dispersed Pt particles on the FTO. However, Fig. 4c shows a different morphology of sheet and 
cloud-like structures indicating that the ethanolic platinic acid solution has only been partially photoreduced, 
While Fig. 4b shows traces of the sheet and cloud-like structures that are seen in Fig. 4c, further underscoring that 
30 min UV irradiation was not sufficient for the photofabrication process.

The CV scan measurement of the photoreduced ethanolic platinic acid based Pt CEs are presented in Fig. 4d. 
Consistent with the XPS spectra and SEM images, 15 min UV irradiated sample showed poor catalytic activity as 
it exhibits little reduction and oxidation peaks in the CV scan measurement. On the other hand, 1 h UV irradiated 
sample showed a more prominent reduction and oxidation peaks, making it exhibits very good catalytic activity. 
Pt CE photofabricated with 30 min UV irradiation equally manifest good catalytic activity.

The Nyquist plot parameters of all ethanolic based photofabricated Pt CEs are presented in Table 1 and the 
plots are shown in Fig. 4e. Owing to the good Pt loading and high catalytic activity UV 1 h (Pt-EtOH-FTO) has a 
small series resistance and small charge transfer resistance. The Nyquist plot further confirmed the insufficiency 
of 15 irradiation time for the photofabrication process. The series and charge transfer resistances are to be higher 
than all photofabricated Pt CEs. CPE follows similar dependency with UV irradiation time as that of Pt-EG-FTO 
CEs. The calculated J0 values for the Pt-EtOH-FTO are as well listed in Table 1. Tafel plots in Fig. S3b shows 
Pt-EtOH-FTO with 1 h UV irradiation having the highest current density values for the anodic and cathodic 
current densities as compared with those of 30 and 15 min UV irradiation time.

Photofabrication of Pt on PET-ITO. Flexible Pt CE on PET-ITO (Pt-EtOH-ITO-PET) was photofabri-
cated as a demonstration of the versatility and potential area of application of the photofabrication technique. 5 
ul ethanolic platinic acid precursor was drop casted on an exposed area of 0.25 cm2 of PET-ITO substrate and 

Photofabricated Pt-CEs RS (Ω) RCT (Ω) CPE (μF) J0 (mA cm−2)

UV 2 h (Pt-EG-FTO) 18.21 22.697 11.91 0.57

UV 1 h (Pt-EG-FTO) 17.64 10.639 7.09 1.20

UV 30 min (Pt-EG-FTO) 18.17 40.788 5.69 0.32

UV 1 h (Pt-EtOH-FTO) 30.36 24.098 10.38 0.53

UV 30 min (Pt-EtOH-FTO) 37.65 143.53 9.20 0.09

UV 15 min (Pt-EtOH-FTO) 22.17 241.04 5.58 0.05

UV 1 h (Pt-EtOH-PET-ITO) 366.10 1655.30 0.39 0.008

Table 1. Nyquist impedance parameters of photofabricated Pt CEs.
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then treated with 1 h UV irradiation time. The ambient temperature of not more than 40 °C of the UV irradiation 
intensity particularly make it suitable for use on flexible substrates. Figure 5a is the transmittance spectra of the 
photofabricated Pt flexible CE. The obtained spectra show improvement of the transparency of the photofab-
rciated Pt flexible CE as compared to bare PET-ITO substrate. This is consistent with the transmittance results 
obtained for photofabricated Pt CEs on FTO substrates. Figure 5b shows the SEM morphology image of the Pt 
flexible CE with well dispersed Pt seen in the image and some agglomeration sites can as well be seen in the image. 
The catalytic activities of photofabricated Pt flexible CE were investigated by CV scan, EIS Nyquist measurement 
and Tafel plot. Figure 5c and d show the CV scan measurement and Nyquist plot of the photofabricated Pt flexible 
CE. The Tafel is as shown in Fig. S3c.

Solar Cells Performance. The photofabricated Pt CEs were used for the fabrication of bifacial DSSCs 
(Fig. 1a) and their photovoltaic performances were measured under the illumination of AM 1.5 G solar simula-
tor at 100 mW cm−2 light intensity. Figure S4a shows typical DSSCs fabricated using the photofabricated Pt CEs 
while Fig. S4b shows the image of the fabricated flexible DSSC (flex-DSSC) utilizing the photofabricated Pt flex-
ible CE. The front and rear illuminated DSSCs I-V parameters are summarized in Table 2. Figure 6a–c illustrate 
the front illumination I-V curve for the spin-coated (Pt-EG-FTO), ethanol based drop coated (Pt-EtOH-FTO) 
and the flexible (Pt-EtOH-ITO-PET) CEs. Figure S5(a–c) show the rear illumination I-V curves for the DSSCs 

Figure 3. (a) Transmittance spectra of Pt CEs (Pt-EtOH-FTO) with different irradiation times. (b) XPS survey 
spectra of photofabricated Pt CEs (Pt-EtOH-FTO) with different UV irradiation time and (c) XPS spectra 
comparing Pt 4f peaks of photofabricated Pt CEs (Pt-EtOH-FTO) with different irradiation times.
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fabricated with the respective Pt CEs. It is seen that the Pt CEs with 1 h UV irradiation time outperformed other 
Pt CEs with UV irradiation time other than 1 h for both EG and EtOH based fabricated Pt CEs respectively. 
Further confirming the good catalytic activities of Pt CEs fabricated with 1 h UV irradiation time as established 
by electrochemical CV, EIS and Tafel characterizations. Solvent effect shows EtOH based Pt CEs to be better and 
more efficient for DSSCs than EG based Pt CEs. Pt-EtOH-FTO CE with 1 h UV photoreduction exhibited the 
best performance efficiency of 7.29% and the highest open circuit voltage VOC of 810 mV for front illumination. 
In a similar trend, DSSC utilizing Pt-EtOH-FTO CE with 30 min UV irradiation time performed better than all 
DSSCs fabricated with Pt-EG-FTO CEs with efficiency of 5.07% as compared to the best EG based CEs of 5.01% 
(for UV 1 h (Pt-EG-FTO)). Flexible DSSC based on UV 1 h (Pt-EtOH-ITO-PET) CE and employing ZnO as 
photoanode recorded a PCE of 3.26%.

All DSSCs employing photofabricated Pt CEs retained more than 77% of their front illumination efficiencies 
when illuminated from the rear. The percentage ratio of the rear illumination efficiency to the front illumination 
efficiency (ηR) is given in Table 2. The ηR trend is consistent with the reported transmittance spectra of the pho-
tofabricated CEs. UV 2 h (Pt-EG-FTO) CE retained the highest percentage conversion efficiency ratio at 85.92% 
slightly above 85.42% of UV 1 h (Pt-EG-FTO) CE. Flexible DSSC recorded ηR of 79.75%. Hence, our photofab-
rication technique proved adequate for utilization in bifacial DSSCs. Difference in PCEs between front and rear 
illumination of DSSCs is observed to be largely due to the reduced photocurrent density of the rear illuminated 
DSSCs. This reduction in photocurrent density can be ascribed to electrolyte layer in the cell which behaved as 
a barrier between the incident light radiation and the dye sensitizer. The electrolyte is known to reflect incident 
light away, thereby reducing the amount of light available for the photoexcitation of the dye molecules.

Figure  S6a shows pictures of typical transparent photofabricated Pt CEs (upper left – UV 15 min 
(Pt-EtOH-FTO), upper right – UV 30 min (Pt-EtOH-FTO), and bottom left – UV 1 h (Pt-EtOH-FTO)) and 

Figure 4. (a) SEM images of photofabricated Pt CE with 1 h UV irradiation time. (b) SEM images of 
photofabricated Pt CE with 30 min UV irradiation time. (c) SEM images of photofabricated Pt CE with 
15 min UV irradiation time. (d) CV scan measurement of photofabricated Pt CEs (Pt-EtOH-FTO) at different 
irradiation time of 1 h 30 min and 15 min. (e) Nyquist plots of photofabricated Pt CEs (Pt-EtOH-FTO) at 
different irradiation time of 1 h, 30 min and 15 min.
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opaque thermally fabricated Pt CE (bottom right). As a reference for comparison, thermally fabricated Pt CE at 
450 °C was used to fabricate DSSC. An efficiency of 7.54% was recorded slightly above the best photofabricated 
Pt CE DSSC. The photovoltaic parameters for this cell are listed in Table 2 for both front and rear illumination. 

Figure 5. (a) Transmittance spectra of photofabricated Pt flexible CE and bare PET-ITO substrate. (b) SEM 
image of photofabricated Pt CE (Pt-EtOH-ITO-PET) with 1 h UV irradiation time. (c) CV scan measurement of 
photofabricated Pt CE (Pt-EtOH-PET-ITO) at irradiation time of 1 h as compared with bare PET-ITO substrate. 
(d) Nyquist plot of photofabricated Pt CE (Pt-EtOH-PET-ITO) at irradiation time of 1 h.

Photofabricated Pt-CEs Illumination JSC (mA cm−2) VOC (V) FF (%) η (%) ηΡ (%)

UV 2  h (Pt-EG-FTO)
Front 9.68 0.74 66.47 4.76

85.92
Rear 8.32 0.74 66.43 4.09

UV 1  h (Pt-EG-FTO)
Front 10.31 0.75 64.9 5.01

85.42
Rear 8.82 0.75 65.15 4.28

UV 30  min (Pt-EG-FTO)
Front 10.59 0.69 38.49 2.81

79.36
Rear 8.57 0.67 38.88 2.23

UV 1  h (Pt-EtOH-FTO)
Front 13.53 0.81 66.56 7.29

80.25
Rear 10.89 0.802 67.03 5.85

UV 30  min (Pt-EtOH-FTO)
Front 10.4 0.74 66.77 5.07

77.91
Rear 8.16 0.72 67.18 3.95

UV 15  min (Pt-EtOH-FTO)
Front 9.79 0.75 53.1 3.92

78.57
Rear 7.93 0.74 52.62 3.08

UV 1  h (Pt-EtOH-PET-ITO)
Front 8.67 0.71 53.35 3.26

79.75
Rear 7.14 0.687 53.02 2.6

Pt-EtOH-FTO @ 450 °C
Front 15.49 0.84 57.73 7.54

35.94
Rear 7.225 0.759 49.51 2.71

Table 2. IV characteristics parameters of photofabricated Pt CEs DSSCs. *ηR is the percentage ratio of the rear 
illumination to the front illumination.
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Figure S6c showed the front and rear illumination I-V curves for the DSSC fabricated with thermally prepared 
Pt CE. The rear illumination photovoltaic performance significantly deviates from the performance recorded for 
the front illumination. The deviation can be seen to result from the drastic drop in photocurrent density of the 
rear illuminated DSSC which consequently led to significant loss in fill factor. The high reflectance (low transmit-
tance) of the thermally prepared Pt CE as shown in Figure S6b is responsible for the observed loss in photovoltaic 
parameters with a significantly reduced PCE of 2.71%. A ηR 35.94% was recorded for this cell, 41.97% less differ-
ence when compared with the photofabricated CE having the least ηR of 77.91%.

Conclusion
We develop a novel photofabrication technique for the fabrication of highly transparent Pt CEs with the aid of 
UV irradiation on rigid FTO glass and flexible PET-ITO substrates. The facile and versatile photofabrication 
technique was used to fabricate Pt CEs that showed better transmittance across the visible light spectrum of 400 
to 700 nm wavelengths than bare FTO glass and bare PET-ITO substrates. UV irradiation was found to improve 
both the transmittance and conductivity of bare FTO glass and improved transmittance of photofabricated Pt CEs 
was found to be a function of UV irradiation time. XPS spectra confirmed the photoreduction of H2PtCl6.6H2O 
to Pt metal CEs. XPS results established 1 h UV irradiation as the optimal photofabrication time. Catalytic 

Figure 6. (a) I-V curve of DSSCs based on photofabricated Pt CEs (Pt-EG-FTO). (b) I-V characteristics curve 
of DSSCs with photofabricated Pt CEs (Pt-EtOH-FTO) and (c) I-V characteristic curve of flex-DSSC with 
photofabricated Pt flexible CE (Pt-EtOH-ITO-PET).
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activities of the photofabricated Pt CEs studied by CV scan measurement, EIS and Tafel plot are found depend on 
UV irradiation time as complete photoreduction is necessary for a better catalytic performance of the photofab-
ricated Pt CEs. SEM images revealed well dispersed Pt nanoparticles on both the FTO and PET-ITO substrates. 
Investigation of solvents effects showed that ethanol as a volatile liquid is more suitable for the photofabrication 
technique as minimal Pt precursor is used thereby helping to save cost as against EG based platinic acid precursor 
that required to be spin-coated on the substrate owing to it high boiling point that makes drop casting unsuitable 
for the photofabrication method which is carried out at maximum ambient temperature of 40 °C. Spin-coating 
deposition technique make use of more precursor material that is largely wasted making it cost ineffective. The 
photofabricated Pt CEs were used to fabricate bifacial DSSCs with PCEs attaining 7.29% for front illumination 
and 5.85% for rear illumination as compare with DSSC utilizing thermally fabricated Pt CE having PCE of 7.54% 
and 2. 71% for front and rear illumination respectively. The highest percentage ratio of the rear illumination effi-
ciency to the front illumination efficiency (ηR) of 85.92% was recorded while the least ηR is 77.91%.

Materials and Method
Materials. Platinic (H2PtCl6) acid, ethylene glycol (EG) purriss grade, FTO glass (7 Ωsq−1) and ITO-PET 
(14 Ωsq−1). Lithium perchlorate (LiClO4), iodine and lithium iodide (LiI) were purchased from Sigma Aldrich. 
Acetone, 2-propanol and methanol were purchased from Fisher scientific, Ti-Nanoxide T/SP paste, and N719 
sensitizer were all products of Solaronix, Switzerland. Iodide/triodide in acetylnitrile (AN) electrolyte was pur-
chased from Chemsolarism.

Platinum CE photofabrication process. FTO and ITO-PET substrates were cleaned successively using 
detergent, deionized (DI) water, acetone and 2-propanol for 1 hour by ultrasonication process using Branson 
3510. The substrates were heated at 70 °C for 20 min to completely remove the organic cleaning agents. 0.02 M 
H2PtCl6 solution in EG was prepared. The H2PtCl6 readily dissolved in the EG solvent at room temperature. 20 ul  
of the platinic acid solution was then spin-coated on the pre-cleaned FTO substrate with an exposed area of 
0.25 cm2 at 2000 rpm for 45 s using Specialty Coating System (SCS) 6800 spin coater series. The H2PtCl6 solu-
tion coated FTO substrate was then exposed to UV irradiation using Lumen Dynamics Omnicure series 2000 
at 2 W cm−2 at a distance of 5 cm from the platinic acid coated FTO substrate in an ambient environment for a 
specific duration of time. The UV light intensity temperature was measured by a homemade Arduino-based tem-
perature sensor. The maximum temperature recorded at UV light intensity of 2 W cm−2 was 40 °C.

TiO2 photoanodes fabrication. TiO2 photoanodes were prepared by blade coating Ti-Nanoxide T/SP 
paste on an 0.25 cm2 exposed area of a pre-cleaned FTO glasses. The 0.25 cm2 exposed area was achieved by cov-
ering the FTO glass with scotch tape leaving only an area of 0.25 cm2 for coating of TiO2 photoanode. The TiO2 
coated FTO was heated at 450 °C for 30 mins on a hot plate in open air. Prior to the heating, the masking scotch 
tapes were removed. After the TiO2 paste had been baked for 30 mins, the TiO2 photoanodes was allowed to cool 
down gradually to room temperature. The samples were then soaked in N719 dye solution for 24 h.

ZnO flexible photoanode fabrication. For the flexible DSSC, ZnO semiconducting photoanode was 
employed due to its low temperature processing potential. ZnO dispersion in butanol was utilized for coating 
on ITO-PET. Prior to coating, the ZnO dispersion was stirred for 2 h at 60 °C to achieve needed viscosity for a 
paste-like ZnO, which was then blade coated on ITO-PET and sintered at 120 °C. The sample was allowed to cool 
to room temperature before being immersed in N719 dye solution for 24 h.

N719 Dye Solution Preparation. N719 dye sensitizer was dissolved in methanol. The solution was soni-
cated for 30 min to dissolve the N719 dye. The prepared dye was used to sensitize all TiO2 photoanodes and ZnO 
flexible photoanode.

Dye Sensitized Solar Cells Coupling. The DSSCs fabrication was completed by coupling the photoanodes 
and the photofabricated Pt CEs using acrylic super glue gel. Triiodide/iodide electrolyte was introduced into the 
cells before being hand-pressed to seal the electrolyte in between the electrodes and completing the cells fabrica-
tion. The cells were left for some minutes prior to measuring the IV characteristics.

Characterization. XPS spectra of photofabricated CEs were carried out using Thermos-Scientific 
ESCALAB-250Xi System equipped with monochromatic Al Kα radiation (hv = 1486.6 eV). Spectra acquisi-
tion was done using a constant energy mode with pass energy of 100 and 30 eV for the survey and the narrow 
scans, respectively. The analysis chamber base pressure was 4 × 10−10 mbar. The photofabricated CE samples were 
mounted onto the sample holders with the aid of double-sided conductive adhesive tapes and outgassed in the 
sample loading chamber for 5 h at 2 × 10−7 mbar. The data acquisition was carried out using Thermo-Scientific 
Avantage software was used to acquire the XPS data.

The morphology of the fabricated samples was studied using Lyra TESCAN field emission scanning electron 
microscopy (FESEM) equipped with an accelerating voltage of 5 kV.

Transmittance spectra of the photofabricated samples were recorded using the Jasco 670 double beam spectro-
photometer at wavelength range of 400 nm and 900 nm.

To study the catalytic activity of photofabricated Pt CE samples, three electrodes cyclic voltammetry measure-
ment was conducted. Saturated calomel electrode (SCE) served as the reference electrode, platinum plate sheet 
electrode was used as the counter electrode while the photofabricated Pt electrodes were placed as the working 
electrodes in the setup. The electrolyte used contained 0.1 M lithium perchlorate (LiClO4), 0.01 M lithium iodide 
(LiI) and 0.001 M iodine (I2) all in acetonitrile (AN) solvent. The operating potential for the CV measurement 
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ranges between −0.5 V to 1 V vs SCE. The CV measurement was carried out on Autolab PG302N equipped with 
NOVA 2.1 software.

The electrochemical impedance spectroscopy measurement of samples was carried using Autolab PG302N 
potentiostat equipped with NOVA 2.1 software. The Nyquist plot of the impedance parameters and tafel plots 
were carried out on the system. The operating frequency ranges from 0.1 Hz to 100 kHz at a voltage scan rate of 
10 mV/s.

The I-V characteristics of the photovoltaic performance of the fabricated DSSCs utilizing photofabricated Pt 
CEs were measured using Autolab potentiostat PG302N equipped with NOVA 1.11 software. Oriel lamp solar 
simulator calibrated to 100 mW cm−2 was used as light illumination source for the I-V characteristic measure-
ment. An area of 0.25 cm−2 was exposed for the measurement.
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