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Improving sample classification by 
harnessing the potential of 1H-NMR 
signal chemical shifts
Daniel Cañueto  1, Reza M. Salek  2, Xavier Correig1,3 & Nicolau Cañellas1,3

NMR spectroscopy is a technology that is widely used in metabolomic studies. The information that 
these studies most commonly use from NMR spectra is the metabolite concentration. However, as 
well as concentration, pH and ionic strength information are also made available by the chemical 
shift of metabolite signals. This information is typically not used even though it can enhance sample 
discrimination, since many conditions show pH or ionic imbalance. Here, we demonstrate how chemical 
shift information can be used to improve the quality of the discrimination between case and control 
samples in three public datasets of different human matrices. In two of these datasets, chemical shift 
information helped to provide an AUROC value higher than 0.9 during sample classification. In the 
other dataset, the chemical shift also showed discriminant potential (AUROC 0.831). These results are 
consistent with the pH imbalance characteristic of the condition studied in the datasets. In addition, 
we show that this signal misalignment dependent on sample class can alter the results of fingerprinting 
approaches in the three datasets. Our results show that it is possible to use chemical shift information 
to enhance the diagnostic and predictive properties of NMR.

Metabolomics (or metabonomics) is the study of the metabolome in biofluids, cells or tissues extracted from 
animals and plants by characterizing the metabolic fingerprint or phenotype (or their underlying mechanisms) in 
a biological system1,2. 1H-NMR spectroscopy is a high-throughput technique that quantifies metabolite concen-
trations in a reliable and reproducible manner3. 1H-NMR data can be used to classify samples, so it is a powerful 
means for capturing diagnostic and predictive properties and has promising potential for personalized medicine4.

A metabolite can be characterized in an 1H-NMR spectrum by its characteristic pattern of signals. The metab-
olite concentration can be measured by estimating the area below any one of these signals. Likewise, each signal 
has a specific location determined by its chemical shift (the resonant frequency of its nucleus in a magnetic field). 
For example, lactate concentration can be quantified from a signal with a chemical shift located at 1.33 ppm or 
from another signal with a chemical shift located at 4.11 ppm5. The chemical shift (that is to say, the location in 
a spectrum) of signals is influenced by the pH and the ionic strength (mostly mediated by Ca2+ or Mg2 concen-
tration)+ of the sample6. The information about pH and ionic strength given by the chemical shifts has already 
been proved to be beneficial for the quality control of fruit juice7. A recent article showed that the pH and ionic 
strength of human urine samples can be extrapolated from chemical shift information8. A wide range of diseases 
(e.g., tumours9) are characterized by metabolic alkalosis/acidosis10 or ionic imbalance8: these diseases could be 
better identified in the NMR data with the help of chemical shift information. In addition, theoretical proof of the 
potential of chemical shift information to separate samples is already available11. Even so, chemical shift infor-
mation is still not used to characterize these sample properties and possible differences between classes because 
the pH and ionic strength can be masked by phosphate buffering and the dilution of matrices varies considerably. 
These factors hinder the interpretability of the pH information provided by DFTMP12 or Chenomx-based pH 
calibration.

To date, several tools have been developed to automatically quantify metabolite concentrations in 1D 
1H-NMR spectra datasets13–15, making it easier to collect additional information, including signal chemical shifts. 
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For example, a recent redesign of the Dolphin NMR tool rDolphin using open-source R language provided more 
flexible and reproducible automatic metabolite profiling in 1D 1H-NMR datasets16. One additional feature of 
rDolphin is its ability to capture and output additional information (such as the signal parameter values –includ-
ing chemical shift– from every quantified signal) for further evaluation. The collection of multiple chemical shifts 
and the open-source availability of complex algorithms able to combine their information make it possible to use 
chemical shift information to discriminate samples despite the drawbacks of pH masking and dilution mentioned 
above. In this study, we report an approach to combine the binomial of metabolite concentration and signal 
chemical shift information in NMR data from metabolomic studies to maximize NMR discriminant potential. To 
do so, we quantified the metabolite concentrations and signal chemical shifts of three public NMR metabolomic 
study datasets. We found that chemical shift information can be used to separate samples more effectively than 
just metabolite concentration information.

Materials and Methods
Datasets. Three NMR datasets from different human matrices from MetaboLights17 (a public repository of 
metabolomic studies) were analysed and profiled:

•	 MTBLS1 Metabolights dataset: fingerprint NMR data (with adaptive binning) was used to analyse metabolo-
mic changes mediated by type 2 diabetes in mouse, rat, and human urine18. The Metabolights dataset provides 
human urine data of 84 samples from nondiabetics and 48 samples from diabetics.

•	 MTBLS237 Metabolights dataset: in human faecal extract samples, fingerprint NMR data was used to deter-
mine the metabolic profiling of control subjects and patients with active or inactive ulcerative colitis (UC) and 
Crohn’s disease (CD)19. The spectra dataset analysed consisted of: 20 control samples, 14 active CD samples, 
31 inactive CD samples, 19 active UC samples and 28 inactive UC samples.

•	 MTBLS374 Metabolights dataset: the metabolic serum profiles of smokers and nonsmokers were compared 
in order to study functional alterations caused by smoking through fingerprint data20. The original study ana-
lysed 1H-NMR fingerprint data, with the help of 2D spectrum information, to identify metabolites. According 
to the information available on the repository, the spectra dataset analysed in our study consisted of 56 sam-
ples from smokers and 57 samples from nonsmokers.

Details about sample preparation, spectrum acquisition and main results are available in the original manu-
scripts. Information about the buffer and dietary restrictions in the original studies is available in Supplementary 
Information. Information about chemical shift variability in metabolite signals after sample preparation is 
available in Supplementary Fig. 1. The ethical issues regarding the studies associated with the used datasets are 
described in detail in their original articles18–20.

Spectra preprocessing and profiling. The spectrum preprocessing parameters available in the manu-
scripts of the studies associated with the datasets used were evaluated to generate 1H-NMR spectra similar to 
the ones of the original studies. All datasets were normalised using Probabilistic Quotient Normalisation (PQN) 
as it is the recommended normalisation method in recent reviews21. This method analyses the distribution of 
quotients of the amplitudes of each spectrum with those of a reference spectrum, and then normalises the spec-
trum by the median of the distribution of quotients22. Then, data binning (0.0006 ppm) was applied to the spec-
tra before they were profiled by rDolphin. Unreliable relative metabolite concentrations and signal chemical 
shifts were filtered using a variety of quality indicators (additional information is available in Supplementary 
Information). Then, univariate outliers for each feature (controlling for sample class) were set as missing values 
and imputed.

For metabolite concentration information, the final dataset consisted of: MTBLS1, 39 features; MTBLS237, 
35 features, MTBLS374, 30 features. For chemical shift information, the features were highly correlated. 
Consequently, in each dataset, dimensionality was reduced by principal components analysis (PCA) and the 
dozens of correlated chemical shifts were grouped into 5 independent principal components (enabling the factors 
influencing signal chemical shifts to be accurately evaluated).

Multivariate analysis. First, an exploratory visualization was performed in both metabolite concentration 
and chemical shift information datasets to compare their discriminant potential. The visualization was based 
on the results of a PCA performed to each set of information. During this exploratory visualization, it was also 
checked that no batch effects exerted an effect on the observed differences.

Next, sample classification was performed using the random forest algorithm, a decision tree-based algorithm 
which combines predictions and uses bootstrapping to maximize the optimization of bias and variance23,24. The 
modelling workflow provided by the ‘caret’ R package was used to perform sample classification. The models were 
trained with an average number of 500 trees, automatic hyperparameter tuning to best adapt to data properties, 
500-iteration 0.632 bootstrap resampling to avoid overfitting25, upsampling to maximize the robustness of the 
models against the class imbalance problem in datasets26, and recursive feature elimination to minimize the influ-
ence of non-informative features. Classification was performed in three different variable subsets: 1- Only relative 
metabolite concentrations, 2- Only signal chemical shifts and 3- Using both relative metabolite concentrations 
and signal chemical shifts. Results were evaluated using classification accuracy, Cohen’s kappa (a more robust 
indicator against chance classification and class imbalance) and the area under the receiver operating character-
istic (AUROC). In addition, to further evaluate the trained models, the sensitivity, specificity, positive predicted 
value and negative predicted value are available in Supplementary Information. Lastly, the variable importance in 
the models generated with both sets of variables was measured.
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Reproducibility of study workflow. To validate and reproduce the results, the profiling output, the data 
analysis workflow and the links for downloading the datasets analysed are available on github.com/danielcanueto/
chemical_shift_classification.

Data availability. All the data and the study workflow are available on github.com/danielcanueto/chemi-
cal_shift_classification to ensure reproducibility.

Results
Exploratory visualization of PCA information. Visualization of the first two principal components 
(PCs) of the PCAs of metabolite concentrations and signal chemical shifts suggested higher discriminant power 
in chemical shift information (Fig. 1). In chemical shift figures, less ellipse overlap (or at least more separated 
centres) was observed. Although more discriminative power in concentration information might be present in 
later PCs, the noise-related variance might be able to mask this power more intensely. Also, no batch effects were 
visible on any dataset.

MTBLS1 dataset. Chemical shift information showed potential for discriminating between diabetic and 
non-diabetic samples during random forest classification (AUROC 0.831) (Table 1). However, adding chemical 
shift information did not improve the excellent results obtained with only metabolite concentrations (AUROC 
0.979).

MTBLS237 dataset. Chemical shift information, alone or combined with metabolite concentration infor-
mation, significantly improved sample discrimination in 6 of the 8 subgroup comparisons: Active UC vs Inactive 
UC (0.917 vs 0.811 in AUROC), Active UC vs Active CD (0.768 vs 0.743 in AUROC), Inactive UC vs Inactive CD 
(0.870 vs 0.810 in AUROC), Control vs Active UC (0.948 vs 0.914 in AUROC), Control vs Inactive UC (0.943 vs 
0.823 in AUROC) and Control vs Inactive CD (0.854 vs 0.825 in AUROC) (Table 2).

MTBLS374 dataset. Random forest classification on smoker and nonsmoker samples showed much higher 
AUROC values with chemical shift information than with metabolite concentration (0.937 vs 0.856 in AUROC) 
(Table 3). The combination of both sources of information gave slightly better values than when only chemical 
shift information was used (AUROC 0.950; Table 3, left).

Discussion
The results of our studies showed that 1D 1H-NMR spectra chemical shift information can give greater insight 
into sample properties and improve sample classification. In the three datasets analysed, chemical shift infor-
mation led to good sample classification. In addition, in two of them, chemical shift information helped gave 
AUROC values higher than 0.9 and improved the classification with only metabolite concentration information.

Relationship between chemical shift and metabolic alkalosis/acidosis. The high classification 
performance observed in the three study datasets seems to be consistent with what has been previously reported 
about the alkalosis or acidosis characteristics of the conditions in the associated studies.

The MTBLS1 dataset is associated with the study of the changes in human urine caused by type 2 diabetes. 
Type 2 diabetes mediates lower pH in urine as a result of greater net acid excretion and fewer ammonia buffers27. 
A lower pH increases the chemical shift of signals (i.e., the signal moves to the left in a spectrum)28. Accordingly, 
most signals show a higher chemical shift in the diabetes samples than in the control samples (Supplementary 
Fig. 2, top). Several signal chemical shifts (such as one of indoxyl sulfate in Supplementary Fig. 2) show an inverse 
trend to the other signals. This inverse trend may be mediated by the influence of ionic strength. However, it may 
also be an artefact of the TSP signal used to reference spectra. The pKa of TSP is approximately 5, which makes 
its signal chemical shift sensitive to pH variation and causes signals with lower sensitivity (like the ones in the 
phenolic region29) to seem to move in the opposite direction to other signals.

In the case of the MTBLS237 dataset, alkalosis/acidosis in inflammatory bowel disease (the subtypes of which 
are UC and CD) has been reported elsewhere in the literature30. The relationship between faecal pH and the dis-
ease could be influenced by the location of lesions and/or the complex acid-base balances. The pH disturbance 
could have manifested as acidic pH in the UC samples represented by a higher chemical shift (Fig. 2, right; 
Supplementary Fig. 2, middle), and has been reported in the literature31. As in the MTBLS1 dataset, several sig-
nal chemical shifts show an inverse trend that may be mediated by the use of the TSP signal to reference spectra 
(Supplementary Fig. 2, middle).

As for the MTBLS374 dataset, respiratory acidosis is typically seen in lung disease developed by smokers32 
and in cigarette smoke that contains oxidants with acidic properties33. Signals in the spectra from the smokers 
group showed a higher chemical shift than the equivalent signals in the non-smokers (Fig. 2, left; Supplementary 
Fig. 2, bottom). This effect might be mediated by a more acidic pH in smokers’ samples as a consequence of smok-
ing, which would be mostly captured by the second principal component of the PCA of signal chemical shifts 
(Supplementary Table 1). Unlike the other two datasets, this dataset does not contain any signal chemical shift 
with an inverse trend. This is consistent with the reference signal being glucose, a metabolite with a pKa (approx. 
12) that is quite different from the pH of biological samples and thus much more resilient to pH variability.

Effect of class-dependent signal misalignment on fingerprinting approaches. All the datasets 
evaluated were processed using fingerprinting approaches in the original studies, in contrast to the profiling 
approach used here. Fingerprinting approaches perform the classification by looking for significant spectral dif-
ferences between groups and identifying the metabolites involved in the second stage. On the other hand, pro-
filing approaches start by characterizing the metabolites in the samples and then performing statistical analysis 
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in the second stage. Their different workflows imply variations in how metabolites are identified and how their 
concentrations are quantified34.

Profiling is deemed to provide more resistance against signal overlap or baseline appearance through the 
deconvolution of signals in the spectrum lineshape35. However, one factor not evaluated in the differences 
between fingerprinting and profiling approaches is class-dependent signal misalignment (i.e., the differences in 
signal chemical shifts between spectra from different sample classes). Fingerprinting reliability is based on the 
premise that signals are reasonably well-aligned throughout the spectra dataset and, consequently, the differences 

Figure 1. Exploratory PCA analysis shows the potential of the chemical shift data in the classificaton models. 
The first PCs of the PCA using chemical shifts (right) show better separation than the ones using concentrations 
(left). Plots also suggest no batch effects necessary to monitor.
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Both sets of 
information

Concentration 
information

Chemical shift 
information

Accuracy 0.929 0.933 0.795

kappa 0.840 0.849 0.559

AUROC 0.980 0.979 0.831

Table 1. Chemical shift information shows discriminative potential in the MTBLS1 dataset. However, it cannot 
enhance the excellent results given by concentration information during random forest classification.

Both sets of 
information

Concentration 
information

Chemical shift 
information

Active UC vs Inactive UC

Accuracy 0.863 0.826 0.876

kappa 0.635 0.555 0.698

AUROC 0.870 0.811 0.917

Active CD vs Inactive CD

Accuracy 0.801 0.808 0.721

kappa 0.505 0.526 0.331

AUROC 0.768 0.777 0.661

Active UC vs Active CD

Accuracy 0.730 0.717 0.668

kappa 0.462 0.438 0.339

AUROC 0.768 0.743 0.682

Inactive UC vs Inactive CD

Accuracy 0.808 0.771 0.797

kappa 0.617 0.545 0.594

AUROC 0.870 0.810 0.841

Control vs Active UC

Accuracy 0.890 0.860 0.882

kappa 0.773 0.714 0.762

AUROC 0.948 0.914 0.926

Control vs Active CD

Accuracy 0.867 0.861 0.790

kappa 0.719 0.707 0.556

AUROC 0.921 0.916 0.839

Control vs Inactive UC

Accuracy 0.882 0.804 0.892

kappa 0.753 0.596 0.775

AUROC 0.926 0.823 0.943

Control vs Inactive CD

Accuracy 0.806 0.787 0.782

kappa 0.589 0.550 0.551

AUROC 0.854 0.825 0.81

Table 2. Adding chemical shift information to concentration information improved the classification between 
the five different kinds of sample in the MTBLS237 dataset. Several quality indicators of the models generated 
with only concentration information, only chemical shift information and both sources of information are 
shown for the eight comparisons between the five subclasses (control, active UC, inactive UC, active CD, 
inactive CD).

Both sets of 
information

Concentration 
information

Chemical shift 
information

Accuracy 0.899 0.806 0.883

kappa 0.797 0.614 0.766

AUROC 0.950 0.856 0.937

Table 3. Adding chemical shift information to concentration information provides the best classification of 
samples in the MTBLS374 dataset. Several quality indicators of the models generated only with concentration 
information, only with chemical shift information and with both sources of information are shown.
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are caused by differences in metabolite concentrations. It has been theoretically demonstrated that classifi-
cation in fingerprint data can be influenced by class-dependent signal misalignment (i.e, that the differences 
found between classes are actually caused by having the metabolite signals located in different bins). However, 
approaches to minimize this problem (like the use of signal alignment algorithms36) are still not prevalent in the 
metabolomics field and were not applied in any of the datasets analysed.

In the three datasets analysed, the results of the univariate analysis in fingerprint data were compared before 
and after signal alignment using the CluPA algorithm37 (the analysis workflow is available in Supplementary 
Information). Signal alignment decreased the number of significant bins in all datasets (MTBLS374, −42%; 
MTBLS1, −7%; MTBLS237, −5%). This decrease means an improvement in the quality of classification models, 
as it can be ensured that the differences between classes are caused by potential biomarkers and not by signal 
misalignment.

Results confirmed the effect that class-dependent signal misalignment can exert on the results of fingerprint-
ing data. Therefore, they further recommend the adoption of profiling approaches enabled by recent open-source 
profiling tools to minimize the generation of non-reproducible results. If the fingerprinting approach is still pre-
ferred, the implementation of signal alignment algorithms can minimise non-reproducible results; nonetheless, 
this alignment will involve losing the information given by chemical shift information.

Future directions and challenges. Our study workflow uses publicly available datasets and performs data 
preprocessing, profiling and statistical analysis with open-source tools following community recommendations38. 
By sharing this workflow we hope to make the use of chemical shift information in NMR studies more straight-
forward and more widespread. In addition, we hope the resulting reproducibility helps assess some aspects that 
need to be taken into account to take maximum advantage of chemical shift information:

•	 Some matrices present considerable variations in dilution, which can greatly influence their pH and ionic 
strength (and, therefore, chemical shift). In addition, chemical shift variability is reduced by adding phos-
phate buffers (sometimes with added chelators such as EDTA) to the sample39. Both dilution variability and 
the use of buffers may mask the effects on the chemical shift produced by the condition studied. Conse-
quently, the fact that the discriminative potential observed in MTBLS1 and MTBLS237 datasets was lower 
than the potential of the MTBLS374 dataset may be due to the higher dilution variability in the matrices 
studied (human urine and faecal extracts). The use of buffers or chelators should be minimized and sample 
dilution variability should be reduced if maximum advantage is to be taken of the properties of chemical shift 
information.

•	 It has been suggested that chemical shift information could also be translated to sample pHs and ionic con-
centrations, hence maximizing the information extracted from a dataset8. Nonetheless, the limitations men-
tioned above raise concerns about the correct use of this information in several commonly studied matrices. 
In addition, the fact that these matrices commonly use a signal to reference spectra that is not resilient to pH 
(such as the TSP signal) may further distort the translation of chemical shifts to pH and ionic concentration 
values. There are several affordable techniques (e.g., pH meter or potentiometer) for directly measuring pH 
and ion concentrations that make this challenging translation unnecessary.

•	 Studies aiming to take advantage of chemical shift information should ensure consistent sample preparation 
and spectra acquisition in all samples in order to prevent the discrimination between sample classes being 
mediated by differences in the preparation or acquisition protocol.

•	 Further improvements in the quality of the classification models generated may be made by extracting more 
chemical shifts from NMR datasets and filtering noise in the chemical shift information (caused by low reso-
lution with the consequent signal overlap in 1H-NMR) prior to model training. High-resolution spectra (e.g., 
2D NMR) could help isolate more signals (with their associated chemical shifts) from different nuclei and 
prevent noise.

Figure 2. Signals can be misaligned in some sample classes. Low pH mediated by the condition studied 
increases the chemical shift of the signals. The resulting class-dependent signal misalignment can distort the 
results of the analysis of fingerprint data: features can show significant differences caused by differences in 
chemical shift (mediated by pH or ionic strength) rather than by differences in metabolite concentration.
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