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Identifying individuals with 
attention deficit hyperactivity 
disorder based on temporal 
variability of dynamic functional 
connectivity
Xun-Heng Wang1, Yun Jiao2 & Lihua Li1

Attention deficit hyperactivity disorder (ADHD) is a common disorder that emerges in school-age 
children. The diagnostic model based on neuroimaging features could be beneficial for ADHD in 
twofold: identifying individuals with ADHD and discovering the discriminative patterns for patients. The 
dynamic functional connectivity of ADHD remains unclear. Towards this end, 100 children with ADHD 
and 140 normal controls were obtained from the ADHD-200 Consortium. The raw features were derived 
from the temporal variability between intrinsic connectivity networks (ICNs) as well as the demographic 
and covariate variables. The diagnostic model was based on the support vector machines (SVMs). The 
performance of diagnostic model was analyzed using leave-one-out cross-validation (LOOCV) and 10-
folds cross-validations (CVs). The diagnostic model based on inter-ICN variability outperformed that 
based on inter-ICN functional connectivity and inter-ICN phase synchrony. The LOOCV achieved total 
accuracy of 78.75%, the sensitivity of 76%, and the specificity of 80.71%. The 10-folds CVs achieved 
average prediction accuracy of 75.54% ± 1.34%, average sensitivity of 70.5% ± 2.34%, and average 
specificity of 77.44% ± 1.47%. In addition, the discriminative patterns for ADHD were discovered 
using SVMs. The discriminative patterns confirmed with previous findings. In summary, individuals 
with ADHD could be identified through inter-ICN variability, which could be potential biomarkers for 
diagnostic model of ADHD.

Attention deficit hyperactivity disorder (ADHD) is a common disorder that spreads in school-age children1. 
According to epidemiological survey, ADHD affects nearly 5–10% of children and 4% of adults2. Patients with 
ADHD always exhibited problematic behaviors (i.e., inattention, impulsivity), academic failure, social dysfunc-
tion in their daily life3. Therefore, accurate diagnosis of ADHD is beneficial for individuals, as well as their related 
family and society. Clinical diagnostic models for ADHD were based on behavioral scales, which was subjective 
during implementation. The structural and functional MRI-based evidences suggested that the brain of ADHD 
might wire differently form healthy controls4–7, thus neuroimaging features might be potential biomarkers for 
diagnostic model of ADHD. Several neuroimaging-based diagnostic models have been established for ADHD 
using machine learning8–18. The diagnostic models could be beneficial for ADHD in twofold: classification of 
patients and discovery of ADHD-related discriminative patterns. However, it is a challenging task to classify 
individuals with ADHD from healthy controls based on brain imaging features. One challenge is the significant 
high dimensions of features in the diagnostic models. Another challenge is extracting novel features that could 
discriminate ADHD. On the one hand, the high dimensional features could increase the complexity of diagnos-
tic models. On the other hand, novel features with low dimensions could be beneficial for diagnostic models of 
ADHD. So far, the dynamic functional connectivity of ADHD remain unexplored.
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Intrinsic connectivity networks (ICN) are spatially independent resting state networks, which are intrinsi-
cally dynamic and anti-correlated spontaneous brain systems19,20. There are about ten to twenty well-established 
ICNs found by independent component analysis (ICA)21–23. The ICNs were related to specific brain functions 
and even correlated to behavioral symptoms24. The ICNs were consistent across different individuals25. Thus, the 
ICNs might be potential biomarkers for brain disorders. The ICN contains two kinds of features: spatial patterns 
and temporal patterns. The spatial maps of ICNs were reliable across resting state sessions based on ICA and 
dual regression26. The complexity of temporal patterns for ICNs exhibited moderate-to-high test-retest reliability 
under different scan conditions27. However, the spatial patterns of ICN included tens of thousands of features, 
which could increase the complexity of the diagnostic models. Notably, the temporal patterns of ICNs included 
appropriate number of features, which could reflect the network-wise brain dynamics. There are two types of 
ICN-based temporal patterns: univariate features within ICN and bivariate features between ICNs. Altered 
intra-ICN amplitude of low frequency fluctuations and inter-ICN functional connectivity were found in children 
with ADHD28. Moreover, the intra-ICN entropy and inter-ICN synchrony might predict the clinical symptoms 
for ADHD29. However, the dynamic inter-ICN functional connectivity for ADHD remains largely unexplored.

Dynamic functional connectivity reflected the time-varying properties of brain dynamics. The ICNs exhibited 
dynamic functional connectivity in healthy subjects30. Previous evidence found that there were several dynamical 
states of functional connectivity between ICNs31. Altered dynamic functional connectivity patterns were found 
between eyes-open and eyes-closed conditions32. Moreover, the dynamic functional connectivity might underlie 
spontaneous fluctuations in attention33. Notably, the dynamic functional connectivity could successfully discri-
minant patients with ADHD34. However, those studies focused on the temporal clusters of dynamic functional 
connectivity. Current evidence found that the strength of functional connectivity showed significant fluctuations 
over time35. Given concerns about the temporal variations in time-resolved ICNs, the temporal variability of 
dynamic functional connectivity still remains unclear.

In this paper, we aimed to build diagnostic model for ADHD based on temporal variability of dynamic func-
tional connectivity. We also sought to find the discriminative patterns of dynamic functional connectivity for 
ADHD. To achieve these goals, a cohort of children with ADHD and a cohort of healthy controls were obtained 
from the ADHD-200 Consortium. The diagnostic model was based on SVMs and inter-ICN variability. The 
performances of diagnostic model and the most discriminative patterns were determined by leave-one-out 
cross-validation (LOOCV) and 10-folds CVs, respectively. The prediction accuracy of different inter-ICN features 
were also analyzed for comparison additionally.

Results
Performance of diagnostic models. The diagnostic model exhibited moderate performance based on 
LOOCV. Table 1 shows the performance of LOOCV. Figure 1 shows the receiver operating characteristic (ROC) 
curves based on different measures. The AUC value based on inter-ICN functional connectivity (FC) is 0.81. The 
area under curve (AUC) value based on inter-ICN phase synchrony (PS) is 0.77. The AUC value based on inter-
ICN variability (VAR) is 0.84. Notably, the diagnostic model based on inter-ICN variability outperforms those 
based on inter-ICN FC or inter-ICN PS.

The diagnostic model exhibited well-established performance based on 10-folds CVs with 1000 times of simu-
lations. Figure 2 shows the histograms for performances of 10-folds classifications. Figure 3 shows the histograms 
of AUC values based on different measures. The AUC value based on inter-ICN FC is 0.81 ± 0.01. The AUC value 
based on inter-ICN PS is 0.77 ± 0.01. The AUC value based on inter-ICN variability is 0.81 ± 0.01. Table 2 show 
the mean performance of 10-folds classifications. Specially, the diagnostic model based on inter-ICN variability 
exhibits better performance than those based on inter-ICN FC or inter-ICN PS. Table 3 shows the performance 
of previous methods and our method.

Discriminative patterns for ADHD based on LOOCV. Figure 4 shows the ADHD-related discrimina-
tive patterns of inter-ICN variability discovered by LOOCV. There are 19 negative feature-weights and 26 posi-
tive feature-weights in the ADHD-related diagnostic model. The power weight of inter-ICN variability between 
RFPN and AN is 1.23, which is the most positive discriminative weight. The power weight of inter-ICN variability 
between AN and DMN is −1.32, which is the most negative discriminative weight. Specially, the OVN-related 
inter-ICN variability exhibits discriminated powers. The power weight of inter-ICN variability between RFPN 
and MVN is −0.99. The power weight of inter-ICN variability between OVN and LVN is −0.95. The power 
weight of inter-ICN variability between OVN and CBN is −0.99. The power weight of inter-ICN variability 
between OVN and AN is −0.9. The LVN also shows discriminative powers. The power weight of inter-ICN var-
iability between LVN and DMN is −0.87. The power weight of inter-ICN variability between LVN and CBN is 
−0.88. In addition, the power weight of inter-ICN variability between SMN and CBN is 1.22.

Discriminative patterns for ADHD based on 10-folds CV. Figure 5 shows the frequency of ADHD-related  
discriminative patterns of inter-ICN variability discovered by 10-folds CVs. The results of frequencies are the top 

performance accuracy sensitivity specificity

VAR 78.75% 76% 80.71%

FC 72.92% 65% 78.57%

PS 68.75% 64% 72.14%

Table 1. Performance of the diagnostic model based on LOOCV.
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10 most discriminative features based on 10-folds CVs using 1000 times of simulations. The inter-ICN variability 
between RFPN and AN appears 946 times. The inter-ICN variability between SMN and CBN appears 838 times. 
The inter-ICN variability between DMN and AN appears 835 times. The inter-ICN variability between MVN and 
RFPN appears 599 times. Specially, the OVN exhibits discriminative power during 1000 simulations of 10-folds 
CVs. The inter-ICN variability between OVN and LVN appears 482 times. The inter-ICN variability between 
OVN and CBN appears 475 times. The inter-ICN variability between OVN and AN appears 476 times.

Discriminative weights of demographic and covariate variables. Table 4 shows the discriminative 
weights of demographic and covariate variables during LOOCV and their frequencies during 1000 simulations of 
10-folds CVs. The LOOCV reveals that the discriminative weight for gender is 1.63. The discriminative weight for 
age is 0.35. Notably, the intelligence quotient (IQ) parameters exhibit discriminative power. The discriminative 
weight for verbal IQ is −0.73. The discriminative weight for performance IQ is −2.17. The discriminative weight 
for full IQ is −1.77. In addition, the discriminative weight for head motion is 1.63.

Moreover, the diagnostic model is simulated 1000 times using 10-folds CVs. Considering the top 10 most 
discriminative features, the gender parameter appears 862 times. The verbal IQ parameter appears 143 times. The 
performance IQ parameter appears 1000 times. The full IQ parameter appears 1000 times. In addition, the head 
motion parameter appears 994 times during 1000 simulations of 10-folds CV.

Discussions
This paper proposed novel inter-ICN variability to identify individuals with ADHD. To the best of our knowledge, 
this is the first study that investigated the inter-ICN variability for ADHD. The inter-ICN variability was based 
on the variance of phase differences. The performance of diagnostic model was based on LOOCV and 10-folds 
CVs. Specially, the 10-folds CVs was simulated 1000 times to reduce overfitting problems. The well-validated 
results suggested that the diagnostic model could identify patients with ADHD from normal controls. The dis-
criminative patterns of inter-ICN variability was found using LOOCV and 10-folds CVs. In addition, the IQ and 
head motion parameters were related to ADHD. Together, ADHD could be discriminated from healthy subjects 
through the inter-ICN variability as well as demographic and covariate variables. The discriminative patterns of 
inter-ICN variability could be potential biomarkers for ADHD.

Performance of diagnostic model. A number of diagnostic models have been built for ADHD based on 
resting state fMRI. Using a relatively small number of subjects, patients with ADHD could be discriminated from 
healthy controls based on feature extraction and support vector machines (SVMs)8,9. ADHD-200 Consortium 
provided a significant large number of samples of ADHD and normal controls10. Based on ADHD-200 samples, 
different kinds of features and machine learning methods were applied to diagnosis ADHD11–13. Using ADHD-
200 samples, the best performance of classification for ADHD is 69.59% based on voxel-wise network features17. 
Total accuracy of 55% was achieved using multimodal features12. The prediction accuracy is 67% for combined 
type and inattentive type of ADHD classification based on combination of functional features36. However, most of 
the current diagnostic models for ADHD exhibited poor performance with either low sensitivity or low specific-
ity. One possible explanation of low prediction accuracy was that the dimensions of neuroimaging features were 
relatively high in most diagnostic models. The regional cortical surface-based morphological patterns could dis-
criminate ADHD patients from healthy controls based on machine learning methods14,15. However, surface-based 
or voxel-based morphological patterns were structural measures, which could not reflect the brain function or 

Figure 1. ROC curves based on LOOCV. The red curve denotes ROC based on inter-ICN functional 
connectivity (FC). The green curve denotes ROC based on inter-ICN phase synchrony (PS). The blue curve 
denotes ROC based on inter-ICN variability (VAR).
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Figure 2. Histograms for performances of 10-folds classifications. Subfigure (A) denotes the total accuracy 
based on inter-ICN variability (VAR). Subfigure (B) denotes the sensitivity based on inter-ICN variability. 
Subfigure (C) denotes the specificity based on inter-ICN variability. Subfigure (D) denotes the total accuracy 
based on inter-ICN functional connectivity (FC). Subfigure (E) denotes the sensitivity based on inter-ICN FC. 
Subfigure (F) denotes the specificity based on inter-ICN FC. Subfigure (G) denotes the total accuracy based 
on inter-ICN phase synchrony (PS). Subfigure (H) denotes the sensitivity based on inter-ICN PS. Subfigure (I) 
denotes the specificity based on inter-ICN PS.

Figure 3. Histograms of AUC values based on 10-folds CV. Subfigure (A) denotes histogram of AUC values 
based on inter-ICN functional connectivity (FC). Subfigure (B) denotes histogram of AUC values based on 
inter-ICN phase synchrony (PS). Subfigure (C) denotes histogram of AUC values based on inter-ICN variability 
(VAR).
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topology of ADHD. Notably, the diagnostic model based on hyper-connectivity could classify ADHD with total 
accuracy of 82.9%, sensitivity of 83.9% and specificity of 81.6%18. However, the performance of classifiers was 
not validated using sufficient simulations of 10-folds CVs. Moreover, the mathematical implementation of the 
aforementioned study was more complex than conventional methods. With novel inter-ICN variability, this study 
could identify patients with ADHD based on LOOCV and 10-folds CVs. Using LOOCV, the total accuracy was 
78.75%, the sensitivity was 76%, and specificity was 80.71%. Using 10-folds CVs, the average prediction accuracy 
was 75.54% ± 1.34%, the average sensitivity was 70.5% ± 2.34%, and the average specificity was 77.44% ± 1.47%. 

performance accuracy sensitivity specificity

VAR 75.54% ± 1.34% 70.5% ± 2.34% 77.44% ± 1.47%

FC 72.75% ± 1.43% 65.95% ± 2.46% 77.6% ± 1.59%

PS 70.04% ± 1.58% 64.21% ± 2.58% 74.2% ± 1.88%

Table 2. Performance of the diagnostic model based on 10-folds CV.

Study Features Classifier
Number of 
features

Subjects 
(ADHD/TD) Cross-validation Acc. Sen. Spec.

Zhu et al.8 Regional Homogeneity PCA-FDA >50k 9/11 LOOCV 85% 78% 91%

Wang et al.9 Regional Homogeneity SVM >50k 23/23 LOOCV 80% 87% 74%

Dai et al. 11 Regional Homogeneity SVM >50k 222 /402 10 folds 66% 23% 90%

Colby et al.12 Multi-modal SVM >50k 285/491 10 folds 55% 33% 80%

Cheng et al.13 Multi-modal SVM >50k 101/143 LOOCV 76% 63% 85%

Peng et al.14 Cortical features ELM 340 55/55 LOOCV 90% — —

Qureshi et al.15 Cortical features H-ELM 320 106 /53 10 folds 61% — —

Jie et al.18 Hyper-connectivity SVM — 118/98 LOOCV 83% 84% 82%

Present study Dynamic FC SVM 50 100/140 LOOCV 79% 76% 81%

Present study Dynamic FC SVM 50 100/140 1000 times of 10 folds 76% 71% 77%

Table 3. Performance of previous methods and our method.

Figure 4. Discriminative patterns based on LOOCV. Red squares denote decreased inter-ICN variability in 
ADHD. Blue squares denote increased inter-ICN variability in ADHD.
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The diagnostic model exhibited balanced accuracies of sensitivity and specificity. Therefore, the diagnostic model 
could be beneficial for clinical applications. In addition, we proposed a novel neural metrics with relatively low 
dimensions of features, which could reduce the complexity of the diagnostic models. Specially, the results were 
based on 1000 times 10-folds CV, while most of the previous methods were based on LOOCV or one run of 
10-folds CV. In summary, our method could open a new perspective for diagnosing ADHD.

Discriminative patterns of dynamic functional connectivity for ADHD. Discriminative patterns 
of inter-ICN variability were found for ADHD. In the discriminative model, the positive weights indicated the 
increased inter-ICN variability in ADHD, while the negative weights indicated the decreased inter-ICN var-
iability in ADHD. Most of the discriminative patterns were with positive weights, which suggested increased 
inter-network activity in ADHD. Previous evidence found that there were enhanced brain activities in ADHD 
than normal controls4. Altered brain topologies were found in ADHD based on graphical measures37. Of note, 
our previous study also found altered brain topologies based on inter-ICN functional connectivity28. In this study, 
the diagnostic model identified certain features of variability between ICNs (i.e., AN-RFPN, AN-DMN) that 
exhibited discriminative powers. The DMN-related cortex exhibited altered resting state regional homogeneity9. 
Enhanced DMN-related activities were correlated to sustained attention deficits38. The RFPN-related variability 
might be related to the prefrontal-striatal-cerebellar circuit in ADHD39. In addition, the visual-related ICNs (i.e., 
MVN, OVN) were found with discriminative powers. The ICN-based evidences noted that the sensory- and 
visual-related brain networks might contribute to ADHD28. Previous evidence also found enhanced brain activi-
ties in sensory-related brain regions4. In summary, the informative discriminative patterns could be beneficial to 
diagnostic model of ADHD.

Figure 5. Frequency of discriminative patterns based on 10-folds CVs. The numbers and squares denote the 
frequency of top 10 discriminative patterns based on 10-folds CV.

LOOCV 10-folds CV

Gender 1.63 1000

Age 0.35 0

Verbal IQ −0.73 143

Performance IQ −2.17 1000

Full IQ −1.77 1000

FD 1.63 994

Table 4. Discriminative powers of demographic variables.
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Temporal variability of dynamic functional connectivity. The temporal variability of dynamic func-
tional connectivity exhibited better discriminative power than conventional measures of connectivity. A possi-
ble explanation was that the inter-ICN variability might reflect the dynamic properties of brain networks. The 
inter-ICN functional connectivity and phase synchrony was static measures, which contained less information of 
brain dynamics than inter-ICN variability. Previous evidence suggested that the brain should exhibited dynamic 
activities during resting state. Seven temporal clusters of dynamic functional connectivity were found based on 
sliding-window and machine learning methods31. Moreover, the dynamic functional connectivity between ICNs 
were related to visual attention (i.e., eyes-open/closed states)32. However, the aforementioned studies were based 
on temporal clustering, which could not reflect the temporal fluctuations of dynamic functional connectivity. A 
previous study applied amplitude of low frequency fluctuations (ALFF) on temporal dynamic functional connec-
tivity to predict brain maturity40. However, the results were based on sliding-window method, which has certain 
limitations (i.e., manually selection of sliding-window length). Given current concerns on temporal variability of 
dynamic functional connectivity, the proposed inter-ICN variability was based on the phase differences, which 
did not depend on sliding-window. Thus, the inter-ICN variability might be potential biomarkers for human 
connectome.

IQ and ADHD. Previous evidences found that the IQ was related to ADHD. The developments of cortical 
thickness and white matters might be delayed in ADHD with low IQ41. The IQ scores also correlated to ALFFs 
within ICNs, implying that the IQ might contribute to ADHD28. A recent study found that functional connectiv-
ity between ICNs could predict the IQ scores for ADHD42. In this paper, the IQ scores exhibited discriminative 
power for ADHD, suggesting that the IQ might play an important role in ADHD. Without the IQ scores, the 
diagnostic model achieved total accuracy of 71.67% based on LOOCV, which was much lower than that with the 
IQ scores. The personal characteristic features (i.e., IQ) could outperform neuroimaging data in diagnostic mod-
els for ADHD43. Moreover, the IQ scores were negatively related to ADHD in our diagnostic model. The results 
implied that the ADHD group exhibited lower IQ scores than healthy group.

Head motion and ADHD. Given current concerns on head motion in resting state fMRI, the head motion 
parameter was taken as supplementary feature in the diagnostic model. The power weight of head motion was 
1.63, which means that patients exhibited more head motion than normal controls. Without head motion param-
eter, the diagnostic model achieved total accuracy of 74.17% using LOOCV, which was lower than that with 
head motion. Thus, ADHD might possess distinctive head motion during resting state. The head motion has 
been identified as an important confound in resting state fMRI. Previous studies suggested that the subjects with 
Frame-Displacement (FD) more than 0.5 mm should be discarded44,45, since the functional signals were cor-
rupted with severe head motions. The original sample size for this study was 245 subjects. Only 5 subjects exhib-
ited severe head motion, resulting in 240 subjects for diagnostic model. Thus, the preprocessed subjects could 
represent the original samples. Besides, we used FD as a covariate in the diagnostic models. Previous studies 
suggested that head motion should be considered as a covariate variable in statistical models44,45. Moreover, head 
motion might affect the test-retest reliability of resting state features27,46. For group-wise analysis, the mean FD 
was computed as head motion parameter47,48. In this study, head motion significantly improved the performance 
of diagnostic model. The results suggested that head motion should be carefully considered in ADHD research.

Advantages. One advantage of this study was applying inter-ICN variability to diagnosis ADHD. The fea-
ture dimensions of inter-ICN variability was much lower than regional- or voxel-wise measures. Moreover, the 
inter-ICN variability outperformed conventional connectivity estimators in the diagnostic model. Thus, the 
inter-ICN variability could be beneficial for classification of ADHD. Another advantage of this study was apply-
ing 1000 simulations of 10-folds CVs on the diagnostic models. The results were well-validated compared to 
previous studies. Moreover, the prediction accuracy was balanced with equal sensitivity and specificity. The third 
advantage of this study was applying SVMs to discover the discriminative patterns for ADHD. The linear SVMs 
found certain discriminative features, which could be potential biomarkers for ADHD. The fourth advantage of 
this study was applying the IQ scores as the predictors in the diagnostic models. The IQ scores were related to 
ADHD, and could significantly improve the performances of the diagnostic models. The fifth advantage of this 
study was applying head motion as a predictor in the diagnostic models. The head motion parameter was found 
to be associated with ADHD. The diagnostic models exhibited better performances with head motion parameter. 
Overall, the inter-ICN variability, IQ scores and head motion might contribute to diagnosis of ADHD. Moreover, 
the diagnostic models with balanced performances was well-validated using 1000 simulations of 10-folds CVs.

Limitations. There were several limitations which should be noted in this study. One limitation was that the 
neuroimaging datasets were obtained using different scan parameters. There were more than three different scan 
protocols for this dataset. Due to the limited information for this public datasets, we introduced the scan differ-
ence (i.e., Peking_1, Peking_2, Peking_3, Peking_1_test) as a covariate. However, the performance of diagnostic 
model with scan differences was a little lower than that without scan differences. The diagnostic model with scan 
differences exhibited accuracy of 76.67%, sensitivity of 72%, and specificity of 80%. One possible explanation 
was that there were five different scan protocols for anatomical images in Peking_3. Thus, the covariate of scan 
difference might be mislabeled in the diagnostic models. The effects of scan parameters should be taken into 
account in future study. Another limitation was that the diagnostic model was based on Chinese children in order 
to remove the effects of populations and versions of clinical scales. We tested our diagnostic model on datasets 
from the NYU site. However, the diagnostic model only achieved total accuracy of 54.08%. We also applied our 
method on the NYU children using LOOCV, which achieved total accuracy of 58.67%. One explanation was the 
training and testing models were based on different populations. Another explanation was the different scan 
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parameters of the two datasets. The third explanation was the two datasets were based on different versions of 
clinical scales. Therefore, we should test our model on an independent dataset of Chinese children in future 
study. The parameters of classifiers should be optimized to improve the performance of the diagnostic model. The 
third limitation was not considering the subtypes in the diagnostic model, since the subtypes contained the label 
information. The diagnostic model for combined type of ADHD and normal controls exhibited total accuracy 
of 69.44%, sensitivity of 73.0% and specificity of 65.7%. The diagnostic model for inattentive type of ADHD and 
normal controls exhibited total accuracy of 77.3%, sensitivity of 77.4% and specificity of 77.1%. The fourth lim-
itation was based on single modal of neuroimaging features. The performance of the diagnostic model could be 
improved with multi-modal imaging methods (i.e., anatomical MRI, diffusion MRI, arterial spin labeling MRI). 
The fifth limitation was not considering the eyes-open/closed conditions in the diagnostic model. The eyes-open/
closed conditions could affect functional connectivity. The subjects in this study were asked to have their eyes 
opened or closed. However, we cannot control this confounding variable due to limited information provided by 
ADHD-200 website. Additionally, the inter-ICN biomarkers should be validated using an independent dataset for 
clinical approach. Thus, we plan to test the diagnostic model using different features and populations in further 
study. We also plan to obtain multimodal imaging datasets in further study. Moreover, the performance of the 
diagnostic model should be improved using different machine learning methods (i.e., extreme learning machines, 
Bayesian-based classifiers, and neural networks).

Conclusion
This paper investigated the temporal variability of dynamic functional connectivity to diagnosis children with 
ADHD based on machine learning methods. The diagnostic models could discriminate patients with ADHD 
using cross-validations. Moreover, the discriminative patterns of inter-ICN variability were discovered by the 
diagnostic model. In summary, individuals with ADHD could be identified by machine learning based on the 
inter-ICN variability, which could be potential biomarkers for ADHD.

Methods
Participants and MRI protocols. The ADHD-200 Consortium provided a great number of individuals 
with ADHD and normal controls (http://fcon_1000.projects.nitrc.org/indi/adhd200/). ADHD-200 Consortium 
were consisted of datasets from eight sites (i.e., New York University, Peking University, etc.). To remove the 
effects of sites, the participants in this study were based on datasets from the Peking site. There were 245 partic-
ipants using datasets combined from Peking_1, Peking_2, Peking_3 and Peking_1_test. The demographic and 
covariate information could be found in Table 5. The participants were diagnosed using ADHD Rating Scale 
(ADHD-RS) IV. Participants were selected using the following criteria: 1) right-handedness; 2) without loss 
of consciousness caused by head trauma; 3) without history of neurological disease and other mental disorder 
(i.e., schizophrenia, affective disorder, pervasive development disorder, or substance abuse). In addition, the IQ 
score for each subject was greater than 80 evaluated by Wechsler Intelligence Scale for Chinese Children-Revised 
(WISCC-R). All research of this study was approved by the Research Ethics Review Board of the Institute of 
Mental Health, Peking University. The guidelines and regulations of experiments were carried out in accordance 
with institutional review boards of the Institute of Mental Health, Peking University. Informed consent was pro-
vided by the parent of each participant and all of the children agreed to participate in this research.

Both anatomical MRI and resting state fMRI were scanned for each subject. The neuroimaging datasets were 
obtained from a SIEMENS TRIOTIM syngo 3-T MRI scanner. The anatomical MRI data was a high-resolution 
T1-weighted MPRAGE 3D volume, which was defaced to protect patient identity. The parameters of the anatom-
ical MRI could be found in Table 6. The resting state fMRI data was a standard T2-weighted EPI 4D volume. The 
parameters of the functional MRI could be found in Table 7. During each scan, the participants were required to 
keep relax, stay still with their eyes either open or closed. A black screen with a white fixation cross was presented 
to each participant during the scan. The additional information could be obtained from the website of ADHD-
200 Consortium.

Data preprocessing. The anatomical and functional MRI datasets were preprocessed using scripts from 
1000 functional connectome project. The preprocessing scripts were based on AFNI and FSL. The anatomical 
MRI datasets were skull-stripped, segmented into three kinds of brain tissues (i.e., white matter, gray matter, and 
cerebrospinal fluid), nonlinearly deformed into standard MNI brain space. After discarding the first five vol-
ume, the resting state fMRI datasets were preprocessed using the following steps: slice-timing correction, motion 

ADHD Normal p-value

Number of subjects 100 140 —

Gender (male: female) 88:12 81:59 <10−3

Handless (R: L) 140:0 140:0 1

Age (year) 12.1 ± 2.05 11.44 ± 1.86 0.0093

Verbal IQ 111.44 ± 15.57 120.46 ± 13.3 <10−5

Performance IQ 99.03 ± 13.65 111.29 ± 14.33 <10−9

Full IQ 106.36 ± 13.02 118.02 ± 12.12 <10−10

Table 5. Subjects’ demographic and covariate variables.
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correction, skull stripping, regressing out nuisance signals (i.e., white matter, cerebrospinal fluid, and Friston-24 
motion parameters) as well as linear and quantic trends, nonlinearly wrapped into standard brain space, band-
pass filtering (0.01–0.1 Hz), spatially smoothing (FWHM = 6 mm). Of note, after motion correction, the mean 
frame-wise displacement (FD) was computed as the motion covariate for each subject. Five participants with 
mean FD larger than 0.5 mm were discarded, resulting in 240 subjects for diagnostic model. According to statis-
tics, 37 subjects (37%) were combined type of ADHD. 1 subject (1%) was hyperactive/impulsive type of ADHD. 
62 subjects (62%) were inattentive type of ADHD.

Time-courses of ICNs. In this study, ten well-established ICNs were taken as spatial templates. The tem-
plate ICNs were obtained using meta-analysis of the BrainMap database. The names and abbreviations of the 
ten ICNs were present in Table 8. The time-course of each ICN was computed using the spatial regression step 
of dual-regression. First, the 3D image of the corresponding ICN was extracted from the ten template ICNs. 
Second, the 3D image of a functional volume was extracted from the 4D resting state fMRI sequence. Third, the 
3D images of ICN and functional volume were reshaped into two one-dimensional vectors. Fourth, the beta value 
was obtained by spatial regression between the two vectors. Finally, the time-courses of each ICN were obtained 
by combining the beta values along the timeline of the functional sequence. The detailed steps of spatial regres-
sion could be found in previous studies22,49.

Inter-ICN variability. The inter-ICN variability was based on Hilbert transform with the following proce-
dures: 1) obtain pair-wise time-courses of ICNs; 2) apply Hilbert transform on the two time-courses; 3) obtain 
the instantaneous phases of each time-course; 4) compute the instantaneous phase differences between the two 
time-courses; 5) transform instantaneous phase differences into –pi to pi; 6) the compute the variance of the 
instantaneous phase differences. Finally, after looping through the ten ICNs, a vector with 10 × 9/2 = 45 features 
were obtained for each subject. In addition, the conventional functional connectivity (FC) and phase synchrony 
(PS) were computed for comparisons.

Peking_1 Peking_2 Peking_3 Peking_1_test

TR/TE (ms) 2530/3.39 2530/3.45 5 protocols 2530/3.39

Slices 128 176 5 protocols 128

Thickness(mm) 1.33 1 5 protocols 1.33

FoV read(mm) 256 256 5 protocols 256

Fov phase 100% 81.3% 5 protocols 100%

Flip angel (degree) 7 7 5 protocols 7

Table 6. Scan parameters for anatomical MRIs.

Peking_1 Peking_2 Peking_3 Peking_1_test

TR/TE (ms) 2000/30 2000/30 2000/30 2000/30

Slices 33 33 30 33

Thickness(mm) 3.5 3 4.5 3.5

FoV read(mm) 200 200 220 200

Fov phase 100% 100% — 100%

Flip angel (degree) 90 90 90 90

volumes 240 240 240 239

Table 7. Scan parameters for functional MRIs.

index Names of ICNs Abbreviations

ICN1 Medial visual network MVN

ICN2 Occipital visual network OVN

ICN3 Lateral visual network LVN

ICN4 Default mode network DMN

ICN5 Cerebellum network CBN

ICN6 Sensorimotor network SMN

ICN7 Auditory network AN

ICN8 Executive control network ECN

ICN9 Right frontoparietal network RFPN

ICN10 Left frontoparietal network LFPN

Table 8. Names of template ICNs.
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Diagnostic model. The original features were consisted of inter-ICN variability, IQ scores, age, sex and head 
motion. The diagnostic model could be denoted as the following formula:

∑ ∑= + + + + +
= =

label w VAR w IQ w sex w age w mFD b
i

i i
i

i i
1

45

1
1

3

2 3 4 5

In the diagnostic model, the label denotes the diagnostic information of each subject (i.e., 1 for ADHD, 0 for 
normal controls). The VARi denotes the ith inter-ICN variability, and w1i denotes the weight of the ith inter-ICN 
variability. The IQi denotes verbal IQ, performance IQ or full IQ, and w2i denotes the weight the ith IQi. The sex 
denotes the gender of subject, and w3 denotes the weight of sex. The age denoted the biological age of subject, 
and w4 denotes the weight of age. The mFD denotes mean frame-wise displacement, and w5 denotes the weight 
of head motion.

The diagnostic model was analyzed using support vector machines (SVMs), which was proposed by Cortes 
and Vapnik in 199550. SVM was designed for classification of two classes. The advantage of SVM was solving 
small sample problem, nonlinear problem and high dimensional pattern recognition. The basic idea of SVM 
was searching an optimized hyperplane which can classify different kinds of samples. In this paper, sequential 
minimal optimization (SMO) was applied on training and testing datasets to search the optimized hyperplane. 
SMO was an iterative algorithm with fast speed to effectively solve the optimizing problems of SVMs51. The trick 
of SMO was analytically solving a set of smallest possible sub-problems instead of the original SVMs. SMO signif-
icantly improve the performance and computation times of SVMs. Moreover, SMO exhibits good performance 
for linear SVMs. Here, SMO with linear kernels was applied in the diagnostic model. The implementation of SMO 
procedure was based on WEKA, which is a popular machine learning software (www.cs.waikato.ac.nz/ml/weka). 
In addition, the weights of features were considered as their contributions to the diagnostic model52. The positive 
weight means increased inter-ICN variability in ADHD, while the negative weight means decreased inter-ICN 
variability in ADHD.

Performance of diagnostic model. To evaluate the performance of diagnostic model, cross-validation 
(CV) was applied in this study. In an n-fold CV, the original samples were first divided into n-folds. Then, 
one-fold of samples were selected as testing samples, leaving the rest instances as training samples. Third, a diag-
nostic model was built on the training samples. Fourth, the trained diagnostic model was tested using testing 
samples. Finally, n diagnostic models were trained and tested based on n-fold CV. In this paper, leave-one-out 
cross-validation (LOOCV) and 10-folds CV were applied to evaluate the performance of diagnostic model. 
Specially, 1000 simulations of 10-fold CV were performed to validate the effects of random seeds in partitions of 
folds.

The performance of classification was evaluated by total accuracy (Acc.), sensitivity (Sen.) and specificity 
(Spec.). Here, let TP denotes the number of children with ADHD correctly classified as patients. FP denotes the 
number of healthy controls incorrectly classified as ADHD. TN denotes the number of correctly identified healthy 
subjects. FN denotes the number of incorrectly identified patients. Total accuracy is defined as the proportion of 
correctly predicted instances (i.e., accuracy = (TN + TP)/(TN + FN + TP + FP)). Sensitivity is the proportion of 
correctly classified positive instances (i.e., sensitivity = TP/(TP + FN)). Specificity is the proportion of correctly 
classified negative instances (i.e., specificity = TN/(TN + FP)).

Data availability. The MRI datasets could be obtained from a public database (http://fcon_1000.projects.
nitrc.org/indi/adhd200/).
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