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Beyond ritual bronzes: identifying 
multiple sources of highly radiogenic 
lead across Chinese history
Ruiliang Liu, Jessica Rawson & A. Mark Pollard

One of the greatest enigmas in the study of Bronze Age China is the source of highly radiogenic lead 
discovered in the copper-based objects of the Shang period (ca. 1500–1046 BC). Although being relatively 
rare in nature, such lead contributed over half of the lead consumed across a vast area from the Yellow 
River to the Yangtze. Identifying its source and supply network would significantly contribute to our 
understanding of how China achieved the largest metal production across Eurasia. The past thirty 
years of research have seen various proposals for the origin of this lead, including south-western China, 
the middle Yangtze River valley, the Qinling and Zhongtiao mountains, and even Africa. This paper 
attempts to illustrate the tempero-spatial pattern of this highly radiogenic lead using the largest possible 
databank. Furthermore, by going beyond the bronze data and investigating lead isotopes in non-metal 
objects, we confirm that multiple sources of highly radiogenic lead must have been used across Chinese 
history. In turn, this implies the feasibility of a multi-source model for the lead in the Shang bronzes.

A major application of lead isotope geochemistry in archaeology has been in provenance studies, of which metal 
sources employed in the Mediterranean Bronze Age has undoubtedly attracted most attention1,2. Initially, archae-
ologists were encouraged because lead isotopes prove to be constant from ore to object. This offers a great advan-
tage over the trace/minor elements, which can be dramatically altered during the process of mining, roasting, 
smelting and casting. Nevertheless, it was increasingly realized that sourcing metals by lead isotopes is not with-
out difficulties, such as the overlap between different sources3, the variation of isotopes in a single source4,5, or the 
possibility of anthropogenic intervention (e.g., mixing and recycling)6,7.

In recent decades, the discovery of highly radiogenic (anomalous) lead in ancient Chinese bronzes has again 
demonstrated the power of lead isotope studies in archaeometallurgy. A quick comparison of the isotopic ratio 
in bronzes between Europe and China shows a striking discrepancy in the nature of the lead (Fig. 1). The consid-
erable variation in Chinese bronzes potentially offers a better opportunity to disentangle the interaction between 
Bronze Age societies and natural resources. Like many scientific methods in archaeology, however, the applica-
tion of lead isotopes in the Chinese Bronze Age opens up more questions than answers. By broadening out the 
discussion of highly radiogenic lead in China from bronzes to other materials, this paper aims to suggest a possi-
ble way forward in solving the long-term question of where this lead came from.

Lead isotopes in ores
Lead has four stable isotopes (204Pb, 206Pb, 207Pb, 208Pb), all of which were present at the formation of the Earth, but 
three of which (206Pb, 207Pb, 208Pb) are also produced by the radioactive decay of uranium and thorium (respec-
tively 238U, 235U and 232Th). In the absence of unusually high concentrations of uranium and thorium, and in a 
closed geological environment, the isotope ratios of lead in a mineral deposit will evolve along predictable lines 
over geological time, and the geological age of such deposits can be calculated from a measurement of these iso-
tope ratios8,9. Such deposits are termed conformable if they are describable by simple isotope evolutionary models, 
and they tend to have lead isotope ratios close to 206Pb/204Pb ≈ 18.5, 207Pb/204Pb ≈ 13.3, and 208Pb/204Pb ≈ 38.3. 
This is approximately the average lead isotopic composition in the Earth’s crust, and lead-containing minerals 
with such ratios are termed common or ordinary leads. The lead isotope ratios of minerals formed in the presence 
of excess uranium and/or thorium, however, evolve along different lines as a result of the production of additional 
amounts of 206Pb, 207Pb, and 208Pb, the exact enrichment depending on time and the amounts of uranium and tho-
rium present. Such deposits are termed non-conformable, and their ages cannot be calculated from measurements 
of the lead isotope ratios using simple evolutionary models – they can give predicted (model) ages which are in 
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the future and are generally referred to as anomalous (Joplin-type or J-type) leads. The other type of anomalous 
lead, Bleiberg type or B-type, formed in the early stages of the Earth’s evolution but has been remobilised, trans-
ported and re-emplaced at a later date and mixed with younger normal and/or radiogenic leads from sources with 
greater depletion in U/Pb than in Th/Pb (usually in the lower crust). The calculated model age of a B-type deposit 
is typically older than the true age of the secondary emplacement, in contrast to the J-type lead giving a younger 
age than the true age10,11. It is worth pointing out that, in addition to the original lead (206Pb = 18.8, 207Pb = 20.6 
and 208Pb = 58.6 in atom percent, respectively12), all terrestrial lead deposits contain varying proportions of radio-
genic lead. Therefore, the use of the term ‘radiogenic’ in many publications to describe anomalous lead is inap-
propriate. The term ‘highly radiogenic’ is more acceptable (e.g., 206Pb/204Pb >19.5), and has been used in some 
of the archaeological literature (and is used here). But ‘anomalous (Joplin-type) lead’ would be better since the 
ultimate characteristic of this type of lead is that it produces negative (future) ages in the Holmes-Houtermans or 
Stacy-Kramers models13–15.

In practice, using lead isotopes to characterize metal deposits is not a straightforward task. Very few lead 
deposits are truly conformable, but, conversely, deposits with highly radiogenic lead isotope ratios are rela-
tively rare. Moreover, deposits with highly radiogenic leads can be very heterogeneous. Famously, Cannon et al. 
reported isotopic measurements on a single 10 cm cubic crystal of galena (PbS) from the Tri-State District in the 
Mississippi Valley (USA) which showed half the total variation of the entire deposit (206Pb/204Pb = 21.91–22.92; 
207Pb/204Pb = 15.99–16.11; 208Pb/204Pb = 41.17–42.0216), with the least radiogenic values at the centre of the crys-
tal. This they interpreted as mixing of lead with an increasingly radiogenic signature in the ore-forming fluid 
during crystallization. There may therefore be systematic zoning within the deposit, and anomalous lead ores may 
be very localized, occurring within deposits showing otherwise ‘common’ values of lead.

Lead isotopes in ancient Chinese bronzes. More than thirty years have passed since the first report of 
the finding of highly radiogenic lead in Shang Dynasty Chinese bronzes17. Since then, the use of highly radiogenic 
lead in Bronze Age China has been frequently mentioned and discussed in many important publications18–20. It 
is only recently that detailed attention has been paid to this long-standing issue of Chinese archaeology in the 
English language literature21,22. The most recent and high profile debate on Chinese highly radiogenic lead was 
triggered by Sun et al., who argued that the metal contained in the Chinese ritual bronze vessels unearthed at 
Anyang originated in Africa23. Although extremely eye-catching, this paper provided little evidence which can 
be considered archaeologically valid24. A comprehensive overview of this subject has been offered by the FLAME 
team21, which shows the widespread use of highly radiogenic lead in Chinese ritual bronzes from the Erligang 
(Zhengzhou) period (ca. 1500–1300 BC) until the Yinxu II Period of Anyang (ca. 1200–1046 BC). This remark-
able phenomenon, as shown in Figs 2 and 3, shows that for a period of about 200 years, much of the lead used 
in the casting of these bronzes was highly radiogenic in origin. Even more remarkably, isotopic measurements 
of bronzes from outside the Central Plains of China – that is, from Sanxingdui in Sichuan, from Panlongcheng 
and Xin’gan on the Middle Yangtze River – have shown the virtually simultaneous use of highly radiogenic lead 
in their cast bronzes. Equally intriguing and mysterious, it appears to have disappeared in the subsequent Zhou 
dynasty (Fig. 3).

Figure 1. Comparing lead isotopic data in bronzes from Bronze Age Europe and China. The X-Y plot is 
the conventional way of illustrating lead isotope data, with 206Pb/204Pb against 207Pb/204Pb and 208Pb/204Pb, 
respectively; the ternary plot follows the method suggested in31 in order to present the full variation of the three 
radiogenic lead isotopes 206Pb, 207Pb and 208Pb. Original data in Oxford Archaeological Lead Isotope Database 
(http://oxalid.arch.ox.ac.uk) and the online supplementary material.

http://oxalid.arch.ox.ac.uk
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Consideration of the source of highly radiogenic lead in bronzes has occupied Chinese archaeologists and 
archaeometallurgists for around thirty years. As summarized by FLAME21, modern geological data reveals a 
number of regions of China in theory capable of supplying highly radiogenic lead, including the middle Yangtze 

Figure 2. Rise and fall of highly radiogenic lead in Chinese history (n = 1907; 1. Erlitou 2. Zhengzhou 3. 
Panlongcheng 4. Yuanqu 5. Hanzhong (Early Shang) 6. Anyang 7. Northern Shaanxi (Late Shang) 8. Hanzhong 
(Late Shang) 9. Sanxingdui. 10. Haimenkou 11. Yueyang bronzes 12. Xin’gan 13. Northern Steppe Late Shang 14. 
Zhouyuan (Sackler Western Zhou) 15. Zeng State 16. Yu State 17. Guo State 18. Jinsha 19. Jin State 20. Tanheli-
Gaoshaji 21. Northern Shaanxi Western Zhou 22. Yan State 23. Jiang State 24. Shuangyantai 25. Northern 
Shaanxi (Eastern Zhou) 26. Sackler (Eastern Zhou) 27. Yue bronzes 28. Changzhi Fenshuiling 29. Chongqing 
bronzes 30. Upper Xiajiadian 31. Yunnan bronzes 32. Xiaxiangpu 33. Liu’an 34. Qishihuang mausolin 35. Han 
mirrors 36. Non-metal materials Zhou dynasty 37. Non-metal materials Qin-Han 38. Non-metal materials 
Western Wei 39. Non-metal materials Tang to Qing 40. Chronology unknown).

Figure 3. Distribution of highly radiogenic lead in bronzes of Shang and Zhou China (1. Erlitou 2. Zhengzhou 
3. Panlongcheng 4. Yuanqu 5. Hanzhong (Early Shang) 6. Anyang 7. Northern Shaanxi (Late Shang) 8. 
Hanzhong (Late Shang) 9. Sanxingdui 10. Haimenkou 11. Yueyang bronzes 12. Xin’gan 13. Northern Steppe 
(Late Shang) 14. Zhouyuan 15. Zeng State 16. Yu State 17. Guo State 18. Jinsha 19. Jin State 20. Tanheli-Gaoshaji 
21. Northern Shaanxi Western Zhou 22. Yan State 23. Jiang State 24. Shuangyantai 25. Northern Shaanxi 
(Eastern Zhou) 26. Yue bronzes 27. Changzhi Fenshuiling 28. Chongqing bronzes 29. Upper Xiajiadian 30. 
Yunnan bronzes 31. Xiaxiangpu 32. Liu’an; the satellite imagery generated by ArcGIS 10.4.1, https://desktop.
arcgis.com/en/quick-start-guides/10.4/arcgis-desktop-quick-start-guide.htm).

https://desktop.arcgis.com/en/quick-start-guides/10.4/arcgis-desktop-quick-start-guide.htm
https://desktop.arcgis.com/en/quick-start-guides/10.4/arcgis-desktop-quick-start-guide.htm
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River, the Qingling and Zhongtiao mountains, and, most famously (since it was first suggested), the south-western 
part of China, around Northern Yunnan (Fig. 4). Apart from various pitfalls of comparing data of the modern 
ores to archaeological objects25, it is also crucial to note that source here is used as an analytical term. Although 
it conveys different meanings on varying scales (from vast metallurgical province, or a large metalliferous belt, 
to a specific ore body, or even to a small specific mine shaft)26, in this paper, it is primarily used to refer to broad 
regions where major copper/lead mines occur ubiquitously, such as the middle and lower Yangtze River Valley27. 
It can be anticipated, however, that the ongoing mining archaeology studies in China may provide a picture with 
better resolution in the near future.

Whilst the exact source of such lead has so far eluded definitive identification, perhaps more interesting is 
the dilemma which the widespread observation of this highly radiogenic lead poses for archaeologists. We must 
assume that Bronze Age metallurgical workers in China (as elsewhere) had no means of distinguishing lead with 
anomalous isotopic values, beyond the unwitting selection of such metal by the preferential use of raw materials 
from a particular source. In this case, the observation that all of the major sites approximately contemporary with 
Shang, stretching from the Yangtze River to the Central Plains, used highly radiogenic lead for a maximum period 
of three hundred years is in itself remarkable. This widespread and synchronous pattern has at least two possible 
explanations:

 (i) Highly radiogenic lead was exploited from a single source, accessible by a variety of local powers, of which 
the Shang was probably the most important, and it was subsequently distributed across a supply network 
controlled by the Shang, or:

 (ii) There were multiple sources of highly radiogenic lead exploited between 1400 and 1200 BCE, accessibly by 
many groups of people across a vast area, of which the supply mechanism remains unknown.

Neither of these explanations appears particularly convincing. Variations are possible between these two 
extremes, such as the Shang empire exploiting more than one source of highly radiogenic lead, but, nevertheless, 
the basic conundrum remains – how and why did bronze casters over a large region synchronously start and stop 
using radiogenic lead, when they had no means of identifying such lead?

We argue that it is unlikely that the solution to this dilemma, let alone the identification of the source(s) of 
such lead, will be revealed simply by analysing more bronzes from the Chinese Bronze Age, beneficial though that 
would be for other reasons. Further elucidation may come from looking at the isotopic ratios of lead in bronzes 
from later periods, and, more critically, from lead in other materials, which is what this paper sets out to do. We 
think that the debate centred on highly radiogenic lead should consider not only where this lead came from, but 
also how it became so accessible to a range of regional powers during the same period. In other words, it is not 
necessarily a dilemma but more an opportunity to further our understanding. The occurrence of highly radio-
genic lead is clearly a potential aid to provenance, but, equally importantly, provides a sensitive proxy for metal 
movement, human interactions and social organization.

Lead isotopes in Chinese materials other than Bronze. Through a large survey of the existing pub-
lished literature in various languages, we have expanded our Chinese lead isotope database to include non-metal 
materials (n = 259) which contain varying amounts of lead, including glass, leaded glaze and pigments (Data 
listed in Online supplementary material). There are three questions to consider:

Figure 4. (a) Summary of Lead Isotopic Data of modern copper/lead deposits in China24, (b) copper/lead 
deposits containing highly radiogenic lead with the base map of uranium distribution in China from32.
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 (1) Do these non-metallic materials contain highly radiogenic lead?
 (2) If so, what temporal/spatial patterns can be illustrated by these data?
 (3) Is it possible to further infer the provenance of such lead from these data?

Surprisingly, the total number of the lead isotopic data for all non-metal materials (n = 259), relative to that 
of bronzes (n = 1648), is rather small. More disappointingly, the majority of these data are from unprovenanced 
objects, making it extremely difficult to address questions 2 and 3 above. The lack of secure archaeological context 
severely limits the potential information that can be drawn from these data.

However, at a broad level, there are still some important observations to be made. Undoubtedly, the use of anom-
alous lead is not a unique feature of bronzes. The right-hand side of Fig. 2 shows that, for a variety of periods and 
dynasties, almost every kind of non-metal material contains anomalous lead. It is therefore surprising that there is 
very little discussion of its presence in Chinese glass beads/faience, leaded glazes, or pigments in the primary literature. 
Nevertheless, this finding, when connected to the data on ritual bronzes in the Shang period, is extraordinary (Fig. 2).

Whilst highly radiogenic lead decreases markedly in bronzes after phase III at Anyang21, it is clear that it contin-
ues to be used in vitreous materials and pigments through the Warring States, Han, Three Kingdoms and Western 
Wei, only seeming to disappear in the Tang and later material (but note that this observation is based on a very lim-
ited number of samples). Three subsets of data quickly attract our attention, not only because of the highly radio-
genic signatures they show but also because the locations of the material are recorded in the original literature.

Pigments from Tianlongshan Cave. Brill et al. have reported lead isotopic data in seven black pigments 
(plattnerite, PbO2) from different locations in the Buddhist wall paintings of the Tianlongshan cave in present-day 
Shanxi province (Fig. 5)28. The paintings are stylistically dated to the Western Wei dynasty (AD 537–557), with no 
obvious signs of being repaired or repainted. All seven analyses indicate the use of highly radiogenic lead (Fig. 5). 
This was also noted by Brill and colleagues but articulated there in different terms28. Considering the large scatter 
between individual results from these seven samples, Brill and colleagues suggested that more than one source of 
lead could be involved, and that mixing had probably occurred. They also speculated that unnoticed repainting 
may also have taken place. They further commented that “the Tien Lung Shan (Tianlongshan) leads are a new 
type of lead to us. Except for the Chinese glasses, the authors know of no parallels”. In fact, this observation is 
supported by the comparison shown in Fig. 5, where these data appear rather different from the highly radiogenic 
leads of the Shang bronzes, particularly in the higher values of 208Pb/204Pb. To date, this is the first clear evidence 
for a source of radiogenic different to that of Shang bronzes. However, no direct information has as yet been found 
enabling us to associate the pigments with any ore source.

Glass from the Chu State. The other two provenanced subsets of data are glass materials. The isotopic 
analyses of eleven glass objects from the tombs of the Chu state (Warring States period, 475–221 BC) in Changde 
(Hunan province) have been published by Cui et al.29. In spite of the typological differences (Bi/disk-shaped wares 
and eye beads), all of these samples are lead-barium glass, which is a technology unique to China. It is interesting 
to see that three out of the eleven samples show a highly radiogenic signature, and that all eleven isotope ratios 
coincide with the data from the Shang bronzes (Fig. 5).

Figure 5. Discoveries of highly radiogenic lead in non-materials of post Chinese Bronze Age (the satellite 
imagery generated by ArcGIS 10.4.1, https://desktop.arcgis.com/en/quick-start-guides/10.4/arcgis-desktop-
quick-start-guide.htm).

https://desktop.arcgis.com/en/quick-start-guides/10.4/arcgis-desktop-quick-start-guide.htm
https://desktop.arcgis.com/en/quick-start-guides/10.4/arcgis-desktop-quick-start-guide.htm
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Glass from the Lijiaba site. The data by Cui et al. from another set of eight glass-based objects (seven ear 
pendants and one eye bead dated to the Eastern Zhou period) unearthed from the site of Lijiaba in the Sichuan 
Basin are also considerably important. They are all lead-barium glass, and five of them contain highly radiogenic 
lead30. The Sichuan basin in the Bronze Age is well-known for the use of such lead in bronzes. Over half of the 
bronzes discovered at Sanxingdui have been found to contain highly radiogenic lead, and the slightly later Jinsha 
site is so far the latest Bronze Age site in China which shows a dominant proportion of such lead. Its occurrence 
in these glass objects therefore undoubtedly extends this picture into the later period.

Discussion and Conclusions
Scholars have been debating since the last century the meaning of the presence of highly radiogenic lead in the 
Shang Bronzes, specifically whether a single source or many sources are represented, and where these sources 
might be. Whilst it is true to say that the addition of new data from later non-metallic materials does not yet 
emphatically resolve this issue, it does add further evidence which potentially shifts the balance of the debate. 
From the data shown above, the presence of highly radiogenic lead in China is not a fleeting phenomenon seen 
only in Shang dynasty bronzes. It continues in other materials until at least the Tang dynasty. The paucity of 
analyses of bronzes from the Warring States onwards does not yet allow us to know if it becomes a characteristic 
of vitreous materials only, or whether it does in fact continue in later bronzes. The fact that these later vitreous 
materials, where we have provenance information, originate from all over China strongly suggests that multi-
ple sources of highly radiogenic lead were available to, and indeed used by, these artisans. That this statement 
probably also applies to metal craftsmen in the Bronze Age is supported by the observation that it is not only 
the bronzes of the Central Plains which show highly radiogenic lead, but that contemporary metal objects from 
elsewhere also show such a signal.

This argument mitigates against the idea that highly radiogenic lead in Bronze Age China was procured from 
one source region, presumably under the control of the Shang, and distributed to other metal consumers. It does, 
however, beg the question of how metalworkers across China simultaneously started to use highly radiogenic lead, 
and, more critically, stopped using it at almost the same time. If we believe that, as is the case in Europe, sources of 
highly radiogenic lead are rare compared to those of common leads, and that ancient craftspeople had no ability 
to differentiate the two sorts of lead, then a simple combined probability argument suggests that the likelihood of 
more than one highly radiogenic source being independently discovered and extracted at the same time appears 
virtually impossible. As has been shown by a synthesis of the modern geological data (Fig. 4), however, highly 
radiogenic lead is sporadically available across all of the metalliferous mining regions in China. Multiple sources 
of highly radiogenic lead could certainly have been available from many of the mining regions exploited during 
the Bronze Age, although we must await further field data before we can be certain where and when such ores 
were exploited.

Importantly, we need to examine more carefully the assertion that bronze workers all over Bronze Age China 
simultaneously adopted and then rejected highly radiogenic lead. The only region for which sufficient data exists 
over an extended time period is, of course, the Central Plains. This shows the absence of anomalous lead during 
the Erlitou period (ca. 1750–1500 BC), the adoption of highly radiogenic lead in the Erligang (Zhengzhou) phase 
of the Early Shang (ca. 1500–1300 BC), and the decline towards the end of the Yinxu III phase at Anyang21. For all 
other areas, we simply have a temporal snapshot which shows the use of highly radiogenic lead during a period 
broadly contemporary to that of the Shang, based on the typologies of bronze and pottery. Very little data exist 
before or after this period (exceptions include Jinsha in early Western Zhou). So in fact all we can be really sure 
of is that there was a short period in the Central Plains during which highly radiogenic lead was used, and that it 
was also heavily used in other areas at approximately the same time. This is consistent with the observation that 
multiple sources of anomalous lead were available across Chinese history, and does not – until further data are 
available – require an explanation for the assumed synchronicity.

In summary, the isotopic data of non-metal objects in later periods has greatly expanded the occurrence 
of highly radiogenic lead in archaeological materials, both temporally and geographically. This points to the 
exploitation of multiple sources of highly radiogenic lead across Chinese history to produce various kinds of 
objects, not only the ritual bronzes of the Shang, but also pigments, leaded glaze and glass in later periods. 
Notably, the lead isotope data of the non-metal objects, although admittedly as yet few in number, show a surpris-
ing consistency with the picture from the earlier bronzes. Although it does not solve the long-standing question 
of the origin of such lead in Shang bronzes, it does put the question into a much broader perspective. A combi-
nation of further geological and archaeological fieldwork is required to identify these sources exploited in antiq-
uity. Moreover, a programme of chemical and isotopic analysis of more well-provenanced material of all types is 
required, to include later bronzes.
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