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Stability of graph theoretical 
measures in structural brain 
networks in Alzheimer’s disease
Gustav Mårtensson  1, Joana B. Pereira1, Patrizia Mecocci2, Bruno Vellas3, Magda Tsolaki4, 
Iwona Kłoszewska5, Hilkka Soininen6,7, Simon Lovestone8, Andrew Simmons9,10,11, 
Giovanni Volpe12 & Eric Westman  1,11

Graph analysis has become a popular approach to study structural brain networks in neurodegenerative 
disorders such as Alzheimer’s disease (AD). However, reported results across similar studies are often 
not consistent. In this paper we investigated the stability of the graph analysis measures clustering, 
path length, global efficiency and transitivity in a cohort of AD (N = 293) and control subjects (N = 293). 
More specifically, we studied the effect that group size and composition, choice of neuroanatomical 
atlas, and choice of cortical measure (thickness or volume) have on binary and weighted network 
properties and relate them to the magnitude of the differences between groups of AD and control 
subjects. Our results showed that specific group composition heavily influenced the network properties, 
particularly for groups with less than 150 subjects. Weighted measures generally required fewer 
subjects to stabilize and all assessed measures showed robust significant differences, consistent across 
atlases and cortical measures. However, all these measures were driven by the average correlation 
strength, which implies a limitation of capturing more complex features in weighted networks. In binary 
graphs, significant differences were only found in the global efficiency and transitivity measures when 
using cortical thickness measures to define edges. The findings were consistent across the two atlases, 
but no differences were found when using cortical volumes. Our findings merits future investigations 
of weighted brain networks and suggest that cortical thickness measures should be preferred in future 
AD studies if using binary networks. Further, studying cortical networks in small cohorts should be 
complemented by analyzing smaller, subsampled groups to reduce the risk that findings are spurious.

Graph theory has become a popular tool in neuroimaging, providing methods to study complex brain networks1. 
These networks can be constructed from images of different modalities such as structural magnetic resonance 
imaging (MRI), functional MRI (fMRI), diffusion tensor imaging (DTI), positron emission tomography (PET) 
or electroencephalography (EEG)2. In the past few years, graph theory has been used to study the healthy and 
diseased human brain3. This technique allows automatic quantification of complex properties of networks in large 
cohorts and how these networks are altered in neurodegenerative disorders.

However, there are challenges associated with graph theoretical studies on the human connectome. Some of 
these challenges have been investigated in previous papers, which discuss inconsistent findings across studies4–8. 
There is the challenge of creating biologically meaningful networks by reducing voxel information into a sparse 
and discrete set of nodes4. Nodes and edge definitions vary across studies since no standard method exists yet in 
the graph theoretical community. The number of nodes in a network as well as choice of edge definitions have 
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been shown to greatly influence graph properties6,9. Typically, nodes are defined from region of interests (ROI’s) 
specified by a neuroanatomical atlas and edge weights are often given by an over-simplified measure of associa-
tion, such as Pearson correlation4. This measure has itself been shown to inherently give rise to small-world net-
works5. Thresholding is carried out to remove potential spurious connections in binary networks, but the specific 
threshold value might vary between groups and subjects. This gives the researcher a choice of either comparing 
networks of different densities (i.e. the ratio between the number of connected nodes and the number of possible 
connections), or comparing networks of the same density but at the risk of including spurious connections. This 
is a complicated issue since previous studies have shown that the density of a network can greatly influence net-
work properties9 and that spurious connections can significantly impact graph metrics10. In weighted network 
analysis the issue of thresholding is avoided. However, the weight of an edge can be negative and most traditional 
measures require graph parameters to be between 0 and 11. In such cases, researchers can make a choice between 
using absolute values or setting negative weights to zero. The former alternative only considers the magnitude of 
the negative weights, whereas the latter only (implicitly) makes use of the their sign. This choice is not trivial since 
the two approaches can lead to significantly different network properties. Normalizing with random networks has 
been proposed to overcome associated biases but finding an appropriate reference network is challenging since 
the reference network should be chosen based on both network measure and the measure of connectivity used to 
define the network edges4.

Alzheimer’s disease (AD) has been described as a disconnection syndrome characterized by network disrup-
tions that seem to reflect the spread of pathological changes in the brain11. This makes graph theory an ideal tool 
for studying the progression of AD using different imaging modalities (see12,13 for review). While most papers 
assessing network disruption in AD have used EEG (e.g.14,15), fMRI (e.g.16), PET (e.g.17), or diffusion tensor 
imaging data (e.g.18,19), a few studies have investigated cortical network alteration in the continuum of AD using 
structural MRI data20–27. These studies have shown that both global and nodal network properties are altered 
in patients with AD compared to healthy controls. However, there is little agreement regarding the direction of 
these changes6,7,13. For instance, while some studies have shown an increase in the clustering coefficient in AD 
subjects20,21, others have shown a decrease of this network measure23 whereas a recent study found no signifi-
cant global difference28. Further, the path length was significantly increased in AD subjects in some studies20,21, 
but decreased in another29. Phillips and colleagues showed that depending on edge definition both a significant 
increase and decrease in path length (as well as clustering) in AD subjects could be obtained6.

To our knowledge, no studies have assessed the influence of different atlases, anatomical measures or number 
of subjects on global network properties. The aim of this study is to investigate the impact these choices have on 
graph properties in relation to the differences between AD and control networks. Specifically, we tested whether 
similar results would be found when using two anatomical atlases of different resolutions to define nodes: the 
Desikan atlas30 (68 ROI’s) and the Destrieux atlas31 (148 ROI’s). In addition, we compared two types of networks–
one based on cortical volumes and one on cortical thickness–and assessed how the number of subjects in each 
group would affect binary and weighted network findings. Understanding how these different choices affect graph 
measures derived from clinical data is crucial in order to correctly assess and compare graph theoretical findings. 
Investigating the impact group size and group composition have on network properties is of great importance 
in order to understand to what extent graph theoretical result acquired from a cohort can be generalized to a 
larger population. We hypothesized that there is a minimum number of subjects (referred to as MNS from here 
on) required to construct a group-based network and that this number is dependent on the heterogeneity of the 
group. When increasing the group size above the MNS value changes in graph properties should be negligible. 
We investigated the MNS value in AD groups and control groups and expected the MNS to be higher in the AD 
group, due to it being more heterogeneous, than in the healthy control group.

Results
The graph properties studied were the average strength (the average cross-sectional correlation strength between 
brain regions), characteristic path length and global efficiency (measures of integration), together with clustering 
and transitivity (measures of segregation). Network properties of both weighted and binary graphs were com-
puted. In the binary network analyses all measures were assessed over a set of network densities ranging from 
5% to 35%, referring to the ratio between the number of connections in the network and the number of possible 
connections.

To assess the effect group size had on network properties, all measures were calculated for networks gener-
ated from groups of different sizes and group compositions. For each network measure, density (for binarized 
networks only), input measure, group size and composition, we used non-parametric permutation testing to 
determine if the difference between the subsampled AD and control groups was statistically significant with a 
two-tailed p < 0.05.

Characteristic path length was only considered for weighted networks since the binary networks were gen-
erally not fully connected at 35% network density. Further, since all pair of nodes in the weighted networks had 
non-zero edges the clustering coefficient become the same measure as transitivity. For more details, see Methods 
section.

Effect of group size and composition. An adjacency matrix is defined as a square matrix representing the 
nodes and edges of a graph. In a binary graph, a matrix element Aij = 1 means that nodes i and j are connected. 
The average of 1000 binary adjacency matrices A  for 100 and 200 randomly subsampled subjects are shown in 
Fig. 1. When Aij = 0 nodes i and j were never connected. When Aij = 1, i and j were connected for all group com-
positions. Regardless of atlas and input measures, increasing the group size made the edges in the average binary 
networks Aij approach either 0 or 1. Since a value closer to 1 indicates a higher probability of two nodes being 
connected independently of group composition, this suggests that connections were less likely to be spurious due 
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to a few particular subjects. As an example, the cortical thickness of left supramarginal and fusiform are only 
connected 62.7% of the times when creating a graph in the Desikan atlas from 100 AD subjects and 88.5% with 
200 AD subjects in a binary network. The weighted graphs had only non-zero edges which led to that all nodes 
were connected.

We define the minimum number of subjects, MNS, as the number of subjects necessary for each graph prop-
erty to converge to a final value. That is, further increasing the group size does not have a substantial effect on the 
given network property (see Methods for more detailed information). The MNS results and the discriminative 
abilities for each graph measure and construction methods are summarized in Table 1. AD group networks had 
lower MNS values, which implies that fewer AD subjects are needed to generate a network with stable properties 
than a network based on data from healthy controls. The MNS dependence of ROI and edge definitions varied 
depending on assessed graph measure and no combination of atlas and input measure decreased the MNS across 
all graph metrics. For both binary and weighted networks the MNS values were generally lower when using cor-
tical thickness correlations as edges compared to volumes. However, the magnitude of the MNS values within the 
same network property showed no substantial agreement between binary and weighted graphs.

Figure 2 shows an example of how the transitivity measure could vary for different group compositions. 
Here we assessed what happens when we constantly add five more subjects to each subgroup and recompute the 
weighted (left) and binary (right) graph property. This means that all subjects used when forming the group of 
size 145 were also included in the group of 150 subjects. Depending on which specific subjects were used to create 
the group network, the results varied in significance when adding subjects to existing groups. In two specific iter-
ations, #2 converged faster than iteration #1 for the binary case (Fig. 2b) and vice versa for the weighted (Fig. 2a). 
Hence, in iteration #1 for the binary network, the transitivity measurement would falsely indicate no differences 
between the AD and control groups of 100 subjects, while it would nonetheless indicate significant differences in 
iteration #2 with as few as 75 subjects.

Figure 1. The average binary adjacency matrices of 1000 connectivity matrices binarized at a threshold 
corresponding to 15% network density when randomly subsampling 100 subjects (left) and 200 subjects 
(right) respectively. In each subfigure, the top row are the results from the control group (CTR) and the bottom 
row from Alzheimer’s disease group (AD). These connectivity matrices were constructed from different 
combinations of anatomical atlas and cortical measures (a–d). Each matrix element represents to the probability 
of two nodes being connected, ranging from 0–1 as shown by the colorbar.



www.nature.com/scientificreports/

4SCIENTIFIC REPoRTS |  (2018) 8:11592  | DOI:10.1038/s41598-018-29927-0

Focusing on the effects that group size have on binary networks in terms of discrimination, the general trend 
was that the significance ratio converged to either 0 or 1 when increasing the group size. The significance ratio 
refers to how often the 100 subsampled AD and control group compositions were found to be significantly dif-
ferent. The Figs 3, 4 and 5 show the mean and standard deviations of each binary graph metric from 100 different 
group compositions and how they varied as a function of density (a-h) and number of subjects used to con-
struct the networks (i-p). The results from all weighted measures are shown in Fig. 6. The green lines (denoted 

Graph measure, density
Desikan thickness 
(CTR/AD)

Destrieux thickness 
(CTR/AD)

Desikan volume 
(CTR/AD)

Destrieux volume 
(CTR/AD))

Average strength, weighted 50/50 50/50 100/50 140/80

Global efficiency, 15% 135/50 150/50 130/50 50/50

Global efficiency, 25% 140/50 90/50 50/50 50/50

Global efficiency, weighted 50/50 90/50 130/90 170/140

Transitivity, 15% 120/50 125/60 120/75 180/95

Transitivity, 25% 105/50 135/55 140/50 160/85

Transitivity, weighted 50/50 50/50 60/50 130/50

Clustering, 15% 50/50 60/50 200/75 200/160

Clustering, 25% 50/50 100/50 135/60 180/150

Clustering, weighted 50/50 50/50 60/50 130/50

Char. path length, weighted 70/50 100/50 130/90 170/140

Table 1. Minimum number of subjects (MNS) needed for the average graph measure to be within ± 5% of the 
value for the full group network. The numbers in bold text denote that discrimination between controls (CTR) 
and AD was achieved with less than 293 subjects at the given density, atlas and input measure.

Figure 2. Transitivity computed from a weighted network (a and c) and a binary network at 25% density (b 
and d) when constantly adding five additional random subjects to each subgroup. Iteration #1 (solid lines) 
and Iteration #2 (dashed lines) represent two different iterations that started with 50 different random subjects 
in each group. The top plots show the calculated transitivity values for the two seeds when iteratively adding 
more subjects. The bottom plots show the respective corresponding two-tailed p-values computed with non-
parametric permutations tests, where the dotted horizontal lines denote the threshold of significance of p = 0.05.
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as ps-ratio in the figures) illustrate the probability of acquiring a significant difference between the groups. We 
refer to this probability as the significance ratio. For global efficiency and transitivity around 175 subjects was 
required to obtain a statistical significant difference in 95% of the group compositions with the combination 
Desikan-thickness to form a binary network (Figs 3i and 4m). The corresponding value for Destrieux-thickness 
was 250, but the results in Fig. 3f suggest that the number of subjects required might be less at network densi-
ties <15%. For the weighted networks, the significance ratios converged to 1 with increasing group size for all 
measures. The characteristic path length was the measure that required the smallest group size in order to obtain 
reliable discriminative properties. As a Supplementary Analysis we present the corresponding weighted results 
that have been corrected for average strength by linear regression. These corrections removed the discriminative 
abilities for all weighted network measures–regardless of group size.

The MNS value for controls of the discriminative measures corresponded to a significance ratio between 
0.5–0.9 for binary networks. The corresponding value for weighted networks were below 0.5 since the MNS values 
were generally lower for the weighted analyses, see Fig. 6 and Table 1.

Effect of anatomical atlas and input measure. The general trend of the binary connectivity matrices 
seen in Fig. 1 was that the thickness measures (Fig. 1a,b) provided networks where more matrix elements tended 
to either 0 or 1 than the volumetric measures (Fig. 1c,d). We noted that at network densities of 15% and 25% a 
majority of the constructed networks had disconnected nodes, regardless of atlas and input measure. The average 
strength was stronger when using the thickness measures over volume measures and with the Desikan atlas com-
pared to the Destrieux atlas which is shown in Fig. 6.

Figure 3. Global efficiency results, where blue lines correspond to control groups (CTR), red lines to 
Alzheimer’s disease (AD) patients, and the green line to the significance ratio (ps-ratio). The plots show the 
mean and standard deviations from 100 random group compositions and the ratio of significant 2-tailed p-
values obtained from these random group compositions. (a–d) Results as a function of density with 100 subjects 
randomly subsampled. The horizontal dotted lines correspond to the network densities 15% and 25%. (e–h) 
Results as a function of density with 200 subjects randomly subsampled. (i–l) Results as a function of group size 
at 15% network density. (m–p) Results as a function of group size at 25% network density.
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The effects of atlas and input measure were different for weighted and binary networks. In the case of binary 
graphs, the global efficiency was overall higher with the Destrieux atlas compared to the smaller Desikan atlas, 
whereas the transitivity was lower (see Figs 3 and 4). The same trend was observed for the thickness measures 
compared to the volume measures. The clustering coefficient results showed no distinct trend in terms of atlas size 
or input measure (see Fig. 5). For the weighted networks the trend was more consistent across measures. The com-
bination Desikan-thickness yielded largest values, followed by Destrieux-thickness and lastly Desikan-volume 
and Destrieux-volume. This was true for average strength, global efficiency and transitivity (and thus clustering), 
but with the opposite direction for the characteristic path length.

In terms of discriminative abilities, the computed network properties were generally similar across the 
Desikan and Destrieux atlas. However, for binary networks the properties were highly dependent on input meas-
ure (see e.g. Fig. 4). The volumetric input yielded no significant differences between control and AD groups, 
regardless of network density and group size. In weighted networks we see in Fig. 6 that the discriminative abil-
ities between AD and control groups (as well as the direction of the difference) were similar regardless of atlas 
and input measure. Surprisingly, the combination Destrieux-volumes required the fewest subjects to achieve 
significant difference regardless of group composition. However, if we factor out average strength from the other 
network measures using linear regression, the differences between the groups do not remain, which indicates that 
the average strength seems to be a dominating factor and driving the results of the other network measures. These 
adjusted results are presented as a Supplementary Analysis.

The global efficiency in binary graphs was found significantly increased in AD patients with networks gener-
ated from cortical thickness measures and regardless of atlas, see Fig. 3. The most significant network densities 
were in the range of [0.1, 0.25] when using the Desikan atlas (Fig. 3e), and [0.05, 0.15] with the Destrieux atlas 

Figure 4. Transitivity results, where blue lines correspond to control groups (CTR), red lines to Alzheimer’s 
disease (AD) patients, and the green line to the significance ratio (ps-ratio). The plots show the mean and 
standard deviations from 100 random group compositions and the ratio of significant 2-tailed p-values obtained 
from these random group compositions. (a–d) Results as a function of density with 100 subjects randomly 
subsampled. The horizontal dotted lines correspond to the network densities 15% and 25%. (e–h) Results as 
a function of density with 200 subjects randomly subsampled. (i–l) Results as a function of group size at 15% 
network density. (m–p) Results as a function of group size at 25% network density.
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(Fig. 3f). Transitivity provided the greatest discriminative abilities between control and AD groups for cortical 
thickness measures in binary networks (see Fig. 4). The most stable significant decreases in AD groups were 
found at densities >15% with the Desikan atlas (Fig. 4e) and at densities between [0.1, 0.25] with the Destrieux 
atlas (Fig. 4f). The number of subjects needed to acquire significant results in 95% of the group compositions with 
the Desikan atlas was 225 at 15% (Fig. 4i) and 150 at 25% network density (Fig. 4m). The corresponding numbers 
for the Destrieux atlas were 180 and 175 subjects. The clustering coefficient computed on binary networks did 
not show any promising results in terms of separating control groups from AD groups in this study, see Fig. 5.

Discussion
Our study is the first to assess how different anatomical measures, node definition and group composition affect 
the stability and sensitivity of graph measures in structural brain networks derived from T1-weighted MRI images. 
We showed that all studied graph measures were sensitive to specific group composition within the same diag-
nostic group. These variations make it problematic for studies of smaller cohorts to draw conclusions without an 
inflated risk of acquiring a Type I or Type II error. Weighted network properties generally required fewer subjects 
to stabilize but the network properties were driven by the average correlation strength which limits the amount 
of additional information global network properties can provide. Further, our results showed similar differences 
between AD and control groups across atlases of different resolutions. In weighted networks the direction of these 
differences were maintained regardless of using cortical thickness or volume measures to construct the network. 
This was not the case for the binary networks, where only cortical thickness measures provided reliable significant 
differences. Our findings provide important clues that could potentially explain inconsistent results in previous 
binary network studies on AD and show promising stable features of weighted networks.

Figure 5. Clustering results, where blue lines correspond to control groups (CTR), red lines to Alzheimer’s 
disease (AD) patients, and the green line to the significance ratio (ps-ratio). The plots show the mean and 
standard deviations from 100 random group compositions and the ratio of significant 2-tailed p-values obtained 
from these random group compositions. (a–d) Results as a function of density with 100 subjects randomly 
subsampled. The horizontal dotted lines correspond to the network densities 15% and 25%. (e–h) Results as 
a function of density with 200 subjects randomly subsampled. (i–l) Results as a function of group size at 15% 
network density. (m–p) Results as a function of group size at 25% network density.
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Contrary to our hypothesis, we found that the AD group required a smaller sample size in order to stabilize, 
i.e. showed a lower MNS value. The standard deviations for each group size were of similar order of magnitude 
between the control and the AD groups. This means that both groups were sensitive to group composition but 
that the AD group’s graph properties fluctuate around a fixed value, which it starts converging towards at a smaller 
group size. One explanation could be that the AD subjects showed stronger correlation patterns of atrophy which 
were not as prominent in the control subjects32. These patterns were registered by the Pearson correlation coeffi-
cient and became a dominant feature in the network and its properties. The average strength (i.e. the average cor-
relations between cortical measures across subjects) was higher in the AD networks which supports that theory. 
The MNS values were lower than the number of subjects needed to reach a significance ratio of 0.95 in the dis-
criminative measures. This suggests that the MNS value is too primitive to solely base a recommended minimum 
number of subjects on. We want the significance ratio to have converged at smaller group sizes than the MNS, if 
defined properly. The standard deviations of the different group compositions also need to be taken into account. 
This analysis suggests that the minimum number of subjects needed in each group to obtain robust results for 
binary vs weighted graphs were 150 and 130, respectively. These numbers will vary between cohort and research 
objective, and are likely dependent on the homogeneity within the group and of what magnitude the structural 
differences between the groups are. We recommend future studies comparing cortical networks between groups 
to complement their analysis with a subsampling scheme similar to the one described in this paper. That is, 
randomly select subsamples (without replacement) from each group and compute the graph properties of the 
networks. Repeat this process to assure that significant differences obtained when using full group sizes remain 
when removing a few subjects from each group.

Figure 6. Results of weighted graph analysis, where blue lines correspond to control groups (CTR), red 
lines to Alzheimer’s disease (AD) patients, and the green line to the significance ratio (ps-ratio). The plots 
show the mean and standard deviations from 100 random group compositions and the ratio of significant 
2-tailed p-values obtained from these random group compositions. The different columns represents different 
combinations of neuroanatomical atlas and cortical input measure. Each row shows the results of a different 
graph metric.



www.nature.com/scientificreports/

9SCIENTIFIC REPoRTS |  (2018) 8:11592  | DOI:10.1038/s41598-018-29927-0

On the effect of neuroanatomical atlas and number of ROI’s, Van Wijk et al. studied how path length and clus-
tering varied in binary networks with increasing number of nodes n and fixed density9. The authors concluded that 
the clustering coefficient is relatively insensitive to network size whereas the non-normalized path length decreases 
with n. Our binary network results are in line with their findings when comparing the results from the Desikan 
(n = 68) and Destrieux atlas (n = 148) in terms of network size. No trend in the different atlas results was observed 
for the clustering coefficient but the global efficiency was increased in the larger Destrieux atlas. Seeing the global 
efficiency as the inverse counterpart to the path length, a decrease in path length with greater n infers an increase in 
global efficiency. Due to the similarity between clustering and transitivity equations it was expected that the transi-
tivity results would behave in a similar way as the clustering coefficient across the atlases. However, there was a trend 
of decreasing transitivity with increasing n, albeit small compared to how the measure was affected by the choice 
of input measure. This could suggest that the decrease between atlases is due to the anatomical differences in how 
the ROI’s are defined rather than the number of nodes (the Desikan atlas is generated from gyri-based parcellation 
whereas the Destrieux atlas is constructed from a mixed sulco-gyral-based parcellation31). However, it is not possible 
to separate the effect of the different number of nodes from the effect of different parcellation schemes in our anal-
yses. Studying the isolated effect of network size requires a systematic analysis on simulated data9. Investigating the 
isolated effect of parcellation scheme is more challenging but can potentially be done by comparing atlases defined 
through different anatomical landmarks but with the same number of ROI’s. Since modifying the atlas resolution 
would require also modifying the parcellation method it is difficult to investigate the combined effect of network 
size and different ROI definitions. A previous study has reported consistent relative differences between controls and 
epilepsy subjects in covariance networks across two atlases33. This, together with the results in this paper, may sug-
gest that group network differences can persist across parcellation atlases, but not the actual graph measure values. 
However, more systematic studies on this topic are needed to draw any further conclusions, including what impact 
feature extraction using other software packages (such as SPM or FSL) have on graph properties.

The networks created using cortical thickness produced different results compared to cortical volumes. This 
is not surprising since the volume of a ROI, which can be seen as a combination of the thickness and the surface 
area, has been shown to be dominated by the latter34. Neither do cortical thickness and volume measure neces-
sarily follow the same age-related decline35. Further, a recent study showed that when using cortical thickness, 
instead of volumes, different brain regions become important in terms of diagnostic separability in AD36.

In terms of discriminative properties between controls and AD networks, we observed statistically significant 
differences when using cortical thickness measures, whereas the volumetric measures only provided significant 
results for the weighted networks. One explanation for this can be that cortical thickness measures have been 
shown to better discriminate controls from AD subjects, and it is possible that they reflect the patterns of brain 
atrophy associated with AD better37. The average binary network results also showed that the volumetric measures 
were more sensitive to a specific group composition. From our results it is not possible to discard cortical volumes 
when studying binary structural networks alterations in AD. The low MNS value for the volumetric measures 
might still make it a good input measure for other neurodegenerative diseases. It is also possible that different 
graph construction methods and measures might show good discriminative abilities with cortical volumes.

The global efficiency metric has, to our knowledge, only been assessed once in gray-matter AD networks, 
where no significant difference was found between the control and AD group using volumetric input28. This is 
consistent with the results in our study. Most previous studies have opted for the path length using binary net-
works. Our results showed a stable and significant increase in global efficiency in AD which suggests a decrease 
in the path length: its inverse measure. However, previous studies on binary networks have typically showed an 
increase in path length6,20,21. These studies differ in several notable ways. Partial correlation was used to construct 
the networks in20, graphs were not fully connected in6, and volumetric input measures from a different atlas were 
used in21. Phillips et al.6 obtained both increased and decreased path length in AD for different graph construc-
tion methods. The fully connected weighted networks allowed for studying both characteristic path length and 
global efficiency. An interesting finding was that the weighted path length required the least number of subjects to 
obtain a reliable discrimination between control and AD groups. Contrary to the results derived from binary net-
works, cortical volumes defined by the Destrieux atlas provided the best discrimination for weighted measures. 
However, the MNS value was high and the increasing path length due to group size in Fig. 6h is not a desirable 
property in a stable and reliable network measure. A robust, significant decrease in transitivity in binary AD 
networks compared to controls was found in this study. The only two studies that have used transitivity to dis-
criminate between controls and AD in structural gray-matter networks are on the ADNI data set24 or on the same 
combined cohort as in this study23. Not surprisingly–since also the same network construction methods were 
used–both studies showed a significant decrease in transitivity in the AD group compared to the control group. 
From the stability and discriminative properties of the transitivity measure shown in this study we recommend 
future studies on AD to use it. On the other hand, the weighted networks showed an increase in transitivity which 
means that the direction of changes is not consistent between binary and weighted networks. An increase of clus-
tering in binary AD networks has previously been reported20,21, whereas a recent study obtained a decrease23, and 
another paper showed both an increase and a decrease depending on graph construction method6. In this study 
we did not observe any stable or significant differences in clustering between binary control and AD networks. 
Based on our findings, we advise future studies on binary gray matter networks to be particularly cautious when 
investigating the clustering coefficient of their networks.

Two of the most commonly reported graph properties in AD papers, path length and small-worldness, were 
not investigated in this project for binary graphs. The rationale behind this was that these measures are only 
meaningful in connected networks1, and the subsampled binary graphs in this study were generally disconnected 
at network densities ≤25%. A method to circumvent this issue is to only compute the measures on the fully con-
nected subgraph within the network38,39. However, this would mean that when comparing two group networks it 
is likely that their respective (fully connected) subgraphs would be of different sizes and consist of different nodes. 



www.nature.com/scientificreports/

1 0SCIENTIFIC REPoRTS |  (2018) 8:11592  | DOI:10.1038/s41598-018-29927-0

Since it has previously been shown that network size has a non-negligent effect on path length, it was deemed 
not meaningful to use these measures to compare topological properties for networks from different group com-
positions when these networks did not share the same nodes9. Therefore, the characteristic path length was only 
computed for weighted networks. An alternative to the characteristic path length measure is the global efficiency, 
related as the average inverse path length1. The limitations of the small-world measure in disconnected graphs 
have been discussed in e.g.39,40 where alternative measures based on efficiency instead of path length are proposed. 
We hope the brain network community adopts an alternative standard measure to the small-worldness measure 
that is not limited to fully-connected networks (see41 for a longer discussion). This would further increase the 
ability to compare results derived from different studies performing graph analysis in neuroimaging.

Comparing the stability and discriminative properties of binary and weighted graphs, we observed that both 
provide advantages and disadvantages in the analyses of AD networks. The weighted network measures required 
fewer subjects to stabilize (i.e. had a smaller MNS value) which would suggest that weighted networks are to be 
preferred when comparing groups with less than 150 subjects. However, the weighted network properties were 
driven by the average correlation strength, which implies that more complex information about the network is 
not gained. It further suggests that the choice of normalization schemes and covariate adjustments will have a 
large impact on the weighted network properties. Some measures, such as clustering and small-worldness, have 
several weighted definitions (e.g.42–45) with different properties that might solve this issue. We believe that the lower 
MNS value alone merits further investigations on weighted gray matter networks since they could possibly capture 
smaller structural changes (such as in preclinical AD25,26) better than binary networks because potentially impor-
tant information from edge strengths is not lost46. On the other hand, binary networks have been more extensively 
investigated than weighted gray matter networks and are not dominated by the average strength13. This may imply 
that binary networks are more capable of capturing complex network patterns, but as new weighted brain network 
measures are redefined this could change in the future. Future studies using different cohorts and construction 
methods are needed to establish which approach (binary or weighted) should be preferred in brain network anal-
yses as we can not know how our results would translate to different disease cohorts and construction methods.

The main limitation of this study was the finite sample size. To make the permutation tests between the sub-
sampled groups unbiased, all subsampling was done without replacement. This causes a limitation in that the 
standard deviations are likely to decrease with increased group size by the mere fact that large groups are likely 
to have more overlap in subjects. For instance, when subsampling 290 out of 293 subjects two different group 
compositions will at least share 287 subjects which leads to a non-negligible decrease in the standard deviation 
compared to an infinite data set. The limited sample size probably also causes the MNS to be underestimated for 
the studied graph measures.

In this paper we have shown that group-based, cortical gray-matter networks are highly sensitive to which 
specific subjects are used to construct the connectivity matrix. These variations due to group compositions 
overpowered the difference between elderly controls and patients with Alzheimer’s disease, particularly at small 
group sizes. Our results suggest that more than 150 (130) subjects were needed to construct binary (weighted) 
group-based networks in this cohort of AD subjects and controls in order to reduce the risk of spurious findings. 
This recommendation is likely dependent on cohort and research question, but we believe that the systematic 
investigation presented in this paper adds to the picture of the behavior of gray matter networks and their prop-
erties. We advise future studies to rerun analyses on smaller, subsampled groups to ensure that significant results 
still are significant and thus more likely to be generalizable to a larger population. This study was carried out on a 
large cohort of controls and AD patients, but we believe that our findings are relevant to studies on other neurode-
generative disorders as well. Our study further showed, by comparing binary and weighted networks constructed 
from different parcellation atlases and cortical measures, that node and edge definitions have substantial effects 
on the graph properties. We believe that standardized methods in graph theoretical studies on brain networks 
would facilitate meaningful comparisons of findings across studies and greatly benefit the field.

Methods
Subjects. Data used in the preparation of this article were obtained from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-pri-
vate partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to 
test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological 
markers, and clinical and neuropsychological assessment can be combined to measure the progression of mild 
cognitive impairment (MCI) and early Alzheimer’s disease (AD).

AddNeuroMed is part of InnoMed (Innovative Medicine in Europe) and data was collected at six sites across 
Europe with the aim to develop novel biomarkers for AD and validate existing ones47,48.

In this project we combined data from ADNI and AddNeuroMed to increase the sample size. The inclu-
sion and diagnostic criteria were similar in both studies. In short, to be eligible as a control a Mini Mental 
State Exam (MMSE) score > 24, a total Clinical Dementia Rating (CDR) of 0 and no signs of depression were 
required. The AD diagnoses were based on the criteria for probable AD of the National Institute for Neurological 
and Communicative Disorders and Stroke-Alzheimer’s Disease and Related Disorder Association (NINDS/
ADRDA) together with CDR >0.5. For both groups, no history of drug abuse, organ failure, significant neu-
rological or psychiatric illness (except AD) was required. No MRI data was used in order to make the diagno-
ses. Written informed consent was given by all participants (or by authorized representatives) in the ADNI and 
AddNeuroMed cohorts, in accordance with the Declaration of Helsinki. Both studies were approved by all partic-
ipating centers’ respective institutional review board. The methods used in this study followed approved relevant 
guidelines and regulations. For more detailed information regarding inclusion and exclusion criteria for ADNI 
and AddNeuroMed, see e.g.23,49.
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The demographics of the combined cohort are described in Table 2. It was important that the total number of 
control and AD subjects were equal in order to make the stability analyses comparable and unbiased. Since the 
number of control subjects included in the two cohorts was greater than the number of AD subjects, 43 out of the 
336 controls were selected randomly and discarded from all further analyses to ensure equal group sizes of 293 
subjects.

MRI acquisition and image preprocessing. The AddNeuroMed study was designed to be compatible 
with the ADNI cohort49, and these two cohorts have successfully been combined in previous projects23,50–52. 
The acquisition and preprocessing of the MRI images followed the same procedure as in50. Briefly, all partic-
ipants underwent a 1.5 T MRI scan acquired sagitally using a T1-weighted MPRAGE sequence with 9–13 ms 
repetition time (TR), 3.0–4.1 ms echo time (TE), 1000 ms inversion time (IT), 8° flip angle (FA) and voxel size of 
1.1 × 1.1 × 1.2 mm3.

The T1 weighted images from the included subjects were preprocessed using the FreeSurfer 5.3.0 pipeline, 
freely available at http://surfer.nmr.mgh.harvard.edu/. In short, this involved motion correction and averaging53, 
removal of non-brain tissue54, intensity normalization55, Talairach transformation and segmentation of gray/
white matter structures with automatic topology correction and optimal localization of tissue borders56–60. This 
was followed by deformation processes to register each subject to an individual spherical atlas based on cortical 
folding patterns61, parcellation of the cerebral cortex62 and calculating thickness and volumes measures60 from 
cortical regions specified by either the Desikan30 or the Destrieux atlas31. We extracted the cortical thickness and 
cortical volumes from 68 regions of the Desikan atlas and from 148 regions of the Destrieux atlas. All data was 
preprocessed through The Hive Database system (theHiveDB)63 and all output data was quality controlled.

Network construction and graph analysis. The cortical thickness and volume measures extracted from 
FreeSurfer were used to define the nodes of the structural networks. Using the Desikan atlas, we built networks 
with 68 nodes, whereas for the Destrieux atlas we built networks with 148 nodes. The thickness and volume data 
from each region or node were corrected for the effects of age and gender using linear regression and the residual 
values were used to construct the connectivity matrices. For the cortical volumes, the intracranial volume was 
used as an additional covariate. The linear regressions were performed using data only from the control sub-
jects. The reasoning behind generating a model based on controls only is that we wanted to detrend the effects 
of healthy aging and not the disease related changes we were interested in studying, as discussed in50,64. These 
residuals were used to calculate the edges between the nodes of the different atlases by computing the Pearson 
correlation between every pair of regions or nodes using the structural covariance method65. This resulted in 
68 × 68 and 148 × 148 connectivity matrices for the Desikan and Destrieux atlas, respectively. For the binary 
networks, these matrices were binarized using a range of thresholds to ensure the networks had the same density 
(0.05–0.35, in steps of 0.01). At these network densities we noted that all correlations among the 35% strongest 
connections were positive (and greater than the absolute value of the smallest negative correlation) and therefore 
we did not consider the negative correlations. Following the procedure of a recent study, the absolute values of all 
correlations were used as weights in the weighted network analyses to avoid negative values28.

The global efficiency, clustering coefficient and transitivity were calculated from the binary networks across 
the different densities. For the weighted network analyses average strength, characteristic path length, global 
efficiency and transitivity were computed.

Network measures. Since most network measures have both weighted and binary versions we denote meas-
ures only referring to weighted networks with a superscript w and analogously with a superscript b for binary 
networks. Measures that are defined the same for both binary and weighted networks have no superscript.

The characteristic path length is a measure of integration and is defined as
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Variable Controls AD p-value

ADNI - number of subjects: 197 172 —

AddNeuroMed - number of subjects: 96 121 —

Total number of subjects: 293 293 —

Age (years) 74.9 ± 5.7 75.5 ± 6.9 0.11

Gender (female ratio) 0.49 0.46 0.19

Education (years) 14.3 ± 4.4 12.0 ± 4.8 <0.001

MMSE score 29.1 ± 1.1 22.3 ± 3.7 <0.001

CDR score 0 ± 0 0.9 ± 0.4 <0.001

Table 2. Demographics of the studied cohort. The p-values provided are two-tailed and computed using 
permutation tests.

http://surfer.nmr.mgh.harvard.edu/
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where N is the set of all nodes in the network, n is the total number of nodes, and dij
b (dij

w) is the shortest (weighted) 
distance between node i and j defined as
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w ) representing the shortest (weighted) path between the two nodes in the network computed using 

Dijkstra’s algorithm. The mapping f(wuv) is essentially the inverse (wuv)−1, but with f(0) = ∞. Since the dij is 
infinite for disconnected nodes it is not a meaningful global measure for disconnected graphs1. Instead, the global 
efficiency Eb (Ew) can be used as a measure of integration where the inverse distance is used instead as
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where an infinite nodal path length corresponds to nodal efficiency of zero40.
Clustering and transitivity are measures of segregation and quantify the presence of interconnected groups in 

a network. For binary networks these measures are based on the number of triangles around a node ti
b which 

corresponds to the number of closed loops where node i is connected to two nodes j and k, which are also con-
nected to each other. The weighted analogue is based on the geometric mean of triangles around node i defined 
as = ∑ ∈t w w w( )i

w
j N ij ih jh

1
2 ,

1/3 which require >w 0ij  for all i, j to avoid complex values of ti
w. Clustering is described 

mathematically as
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where ki is the degree of node i, i.e. how many nodes it is connected to. The nodal degree ki is defined in the same 
way for both weighted and binary networks as = ∑ ∈k ai j N ij, where aij = 1 if the connection strength is non-zero 
and aij = 0 otherwise. Transitivity is similar to the clustering measure and defined as
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The difference between these measures is that the clustering measure is normalized at nodal level, which 
makes it sensitive to nodes with lower degree, whereas the transitivity measure is normalized at a network level1. 
This is expected to make the clustering coefficient less robust in low density networks, which makes them interest-
ing measures to compare in terms of stability. Note that in the special case in weighted networks where all edges 
are non-zero (leading to ki = (n − 1) for all i), clustering is equal to the transitivity measures.

The network measures were computed using the Matlab based software BRAPH24, freely available at www.
braph.org.

Statistical analysis. For each density, we carried out non-parametric permutation tests to assess the dif-
ference between the control and AD subgroups with 50 subjects at a two-tailed p-value < 0.05. Once the graph 
measures were computed for all densities, five (ten for weighted networks) additional control and AD subjects 
were added to their respective subgroup and the network measures were computed again on the new networks. 
This procedure was repeated until 290 subjects had been added to each group. To examine the effects of group 
composition, the above procedure was repeated 100 times where 50 new random subjects from each group were 
subsampled as starting group. This means that both subsampling (to study the effect of group composition) and 
permutation tests (to assess the discriminative ability between the subsampled control and AD group) were used 
in the analyses.

The MNS value was computed for each graph measure, density and diagnostic group. It was defined as the 
smallest group size where the average network measure value was within ±5% of the full group size value. That is, 
increasing the group size would only cause the graph measure to fluctuate ±5% around a stable and representative 
group value. This definition assumes that the graph measure is stable and representative at the maximum group 
size of 293 subjects. It does not take into account how large the fluctuations due to group composition are, or how 
they affect the discriminative abilities between the control group and the AD group. To investigate these effects 
we used the two-tailed p-value from the permutation tests, computed for each density and group size over 100 
randomized AD and control group compositions. This was performed in order to investigate the probability of 
obtaining significant differences (p < 0.05) for each group size, network density and graph measure, and thus the 
risk of making Type I and II errors.

Data availability. Image data analyzed in the current study from Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database is publicly available, see adni.loni.usc.edu. The data from the The AddNeuroMed 
image is available from the corresponding author on reasonable request.

http://www.braph.org
http://www.braph.org
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