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Friedel-Crafts Reaction of 
N,N-Dimethylaniline with 
Alkenes Catalyzed by Cyclic 
Diaminocarbene-Gold(I) Complex
Hangzhi Wu2, Tianxiang Zhao1 & Xingbang Hu   1

In general, Friedel-Crafts reaction is incompatible with amines due to the Lewis acidity of the catalysts. 
Recently, we reported that cyclic diaminocarbene-Gold(I) can be used as catalyst for the Friedel-Crafts 
alkylation between aromatic amines and alkenes. Herein, a systematically theoretical research was 
performed on this rare Friedel-Crafts reaction. The adopted calculation method is accurate enough to 
reproduce the crystal structure of the catalyst. It was found that the reactions followed the electrophilic 
aromatic substitution mechanism. The gold cation can activate the C=C double bond and generate 
the electrophilic group which can be attacked by the aromatic ring. The para-product is more energy 
favorable which agrees well with the experimental results. The reaction of α-methylstyrene follows 
the Markovnikov rule, and the activation energy to generate the branched product of methylstyrene 
is lower than that producing the linear product. However, the reaction of butanone follows the anti-
Markovnikov rule, and the activation energy to generate the branched product of butanone is higher 
than that producing the linear product. These calculation results reveal the mechanism of this new 
Friedel-Crafts reaction. It can well explain the high para-selectivity and the substrate-dependent of the 
product structures in the experiment.

Friedel-Crafts (FC) reaction is an important method to incorporate carbon skeletons into aromatic system1,2. 
Great successes have been achieved for the hydroarylation of neutral arenes (such as toluene, anisole, and their 
homologues)3–14. Because the FC reactions typically require Lewis acid catalysts, for arenes containing nitro-
gen atom, the substrate scope of FC reactions are quite limited due to the coordination between amine and 
Lewis acid catalyst, except indole and pyrrole15–23. Being profited from the extremely weak basic properties24,25, 
acid-catalyzed additions of indole and pyrrole to alkenes have obtained great achievements15–23. However, the 
hydroarylation of alkaline arenes to alkenes still remains many challenges. Some researches have shown the pos-
sibility of hydroarylation between the parent anilines C6H5NH2 and alkenes26–28. However, the reaction of arenes 
with stronger basicity (such as N,N-dimethylaniline and N,N-diethylaniline29) still is a big problem, due to their 
ability to coordinate with Lewis acid catalyst which can lead to deactivation of the aromatic ring30. Furthermore, 
alkaline arenes can trap the proton in the C-H activation process and the reaction will be terminated as result26.

Recently, Bertrand et al. reported an anti-Bredt cyclic diaminocarbene which showed increased π-accepting 
character without diminishing its σ-donor property31,32. We found that Gold(I) compound derived from this 
new carbene can be used as effective catalyst for the FC reaction between alkenes and N,N-dialkylanilines33. 
Now, these new FC reactions are receiving more and more research interests34–37. As we known, most of the 
electrophilic substitution reactions followed the Markovnikov rule38. For the FC reaction of alkenes, the reac-
tions following the Markovnikov rule should form branched product3,4. Only several examples were reported 
on the formation of linear product by anti-Markovnikov rule39,40. For the FC reactions between alkenes and N, 
N-dialkylanilines catalyzed by carbene Gold(I), both Markovnikov and anti-Markovnikov hydroarylations were 
observed and all these reactions gave high para-selectivity products (Fig. 1)33. The selectivity to the branched or 
linear product was highly depended on the structure of alkenes. The purpose of this paper is to find out the reac-
tion mechanism of this rare FC reaction and understand the origin of the reaction selectivity.
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Results and Discussion
The structure of the catalyst.  To examine the reliability of the theoretical method, the structure of the 
catalyst 1 was fully optimized with both B3LYP and M06-2X methods. The calculated results were compared 
with the x-ray experiment data (Table 1). The calculated structure parameters match well with the experiment 
data. Most of the calculation errors for the bond length and angle are smaller than 1.0% and the maximum error 
is 1.7%. It suggests that the calculation method used here is accurate enough to reproduce the crystal structure 
even though the catalyst contain gold atom. Indeed, methods based on DFT using pseudopotential basis set have 

Figure 1.  The Friedel-Crafts reactions of N,N-Dimethylaniline and corresponding products (5a and 6a are the 
main products in the experiment33).

Exp.b Calc. CE (%)c

C1-Au 1.987 2.013 [2.013] 1.3 [1.3]

C1-N1 1.329 1.352 [1.342] 1.7 [1.0]

C1-N2 1.375 1.382 [1.375] 0.5 [0.0]

C2-N2 1.470 1.481 [1.472] 0.7 [0.1]

C3-N2 1.488 1.487 [1.479] −0.1 [−0.6]

C4-N1 1.491 1.506 [1.491] 1.0 [0.0]

C5-N1 1.449 1.455 [1.446] 0.4 [−0.2]

C2-C6 1.516 1.532 [1.528] 1.1 [0.8]

C3-C8 1.537 1.549 [1.543] 0.8 [0.4]

C7-C8 1.532 1.557 [1.551] 1.6 [1.2]

∠N1C1N2 116.5 115.4 [115.6] −0.9 [−0.8]

∠C1N2C2 117.5 117.7 [117.6] 0.2 [0.1]

∠C1N1C4 123.7 123.3 [124.1] −0.3 [0.3]

∠C1N1C5 120.9 121.3 [120.6] 0.3 [0.2]

∠N2C2C6 106.0 105.3 [105.4] −0.7 [0.6]

∠C2C6C4 104.4 104.2 [104.2] −0.2 [−0.2]

Table 1.  Some important structure parameters of the carbene gold (I) catalyst 1 obtained by calculation 
and experimenta. aBond length in Å and angles in degree obtained by B3LYP [M06-2X] method; bref.33; cCE: 
Calculation Error = (Calc. − Exp.)/Exp. *100%.
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Figure 2.  The optimized structures of 1+, 1+…2, 1+…3 and 1+…4 (Bond length in Å). All hydrogen atoms have 
been omitted for clarity.

Figure 3.  Different substrate activation models.
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been widely used for the calculation of compound containing gold41–51. Our previous experimental results on the 
hydration of alkynes catalyzed by gold(I) isocyanide were successfully explained by theoretical calculation based 
on DFT41.

According to the experimental results, the conversion of the hydroarylation between N,N-diethylaniline and 
α-methylstyrene is zero when only 1 is used as catalyst. However, the conversion is 97% when chlorine scaven-
ger reagent KBArF was added in the presence of 133. It suggests that the active center in the reaction should be 

Figure 4.  (a) The pathway 1 to produce 5a by the Friedel-Crafts reaction between 2 and 3 without the assistance 
of aromatic amine (Energy in kcal/mol). Energies out of parenthesis were obtained at M06-2X (6–311 + G*/
LANL2DZ). Energies in parenthesis were obtained at M06–2X (6–311 + G*/LANL2DZ) by PCM calculation. 
(b) The structures of the optimized transition states (Bond length in Å). All hydrogen atoms (except the 
transferred H) have been omitted for clarity.
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anti-Bredt carbene-Au+ cation 1+ (Fig. 2). Similarly, other kinds of carbene-Au+ cations have been proposed to 
be the active catalytic species in a series of reactions52–55.

The reaction between 2 and 3.  5a is the main product in the reaction between N,N-Dimethylaniline 
2 and alkene 333. There has two possible pathways to produce 5a (Fig. 3). Pathway 1: the gold cation activates 

Figure 5.  (a) The pathway 1 to produce 5a by the Friedel-Crafts reaction between 2 and 3 with the assistance 
of aromatic amine (Energy in kcal/mol). Energies out of parenthesis were obtained at M06-2X (6–311 + G*/
LANL2DZ). Energies in parenthesis were obtained at M06-2X (6–311 + G*/LANL2DZ) by PCM calculation. 
(b) The structures of the optimized transition states (Bond length in Å). All hydrogen atoms (except the 
transferred H) have been omitted for clarity.
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the alkene 3. Then, the electrophilic alkene attacks the aromatic ring. Pathway 2: the gold cation activates the 
N,N-Dimethylaniline 2.

As we known, FC reaction is a kind of electrophilic aromatic substitution reactions, in which the hydrogen 
atom of aromatic ring is replaced by an electrophile1,56–59. The complex 1+…3 can serve as the electrophilic reagent 
(Fig. 2). It has been known that the gold cation has strong ability to bind alkene60,61. The binding between alkene 3 
and catalyst 1+ is highly exothermic (33.6 kcal/mol). The C=C bond length of alkene 3 was increased from 1.347 
to 1.391 Å, which indicates that the C=C bond was activated after binding with 1+.

For pathway 1, both Cc and Cd of alkene 3 attacking the Ca of N,N-dimethylaniline 2 were taken into consid-
eration, which can produce branched and linear product (5a and 5b) respectively. In the case of Cc attacking, the 
activation energy for the Ca–Cc bond formation (TS1A-1) is 27.4 kcal/mol and the Ca–Cc bond length in TS1A-1 
is 1.998 Å (Energies obtained at M06-2X (6–311 + G*/LANL2DZ) by PCM calculation were discussed if not 
mentioned) (Fig. 4). At the same time, the C=C double bond of alkene 3 becomes almost single bond (bond 
length increases from 1.391 to 1.517 Å) in TS1A-1. An unstable intermediate (Int1A-1) is produced via TS1A-1 and 
the Ca–Cc bond length of Int1A-1 is further reduced to 1.647 Å. The formation of Ca–Cc bond makes the Ca-H 
bond active. Meanwhile, the Cc–Cd bond becomes single bond in Int1A-1 (length: 1.562 Å). Though TS2A-1 can 
lead to the final product 5a, a direct proton transfer from Ca to Cd is not energy favorable due to the high overall 
activation energy (40.8 kcal/mol).

It is worth to notice that there is plenty of aromatic amines in the microenvironment33. The aromatic amine 
is a good proton acceptor. It can abstract the proton of Ca-H in Int1A-1 with a barrier of 22.1 kcal/mol (TS2A-1′) 
(Fig. 5). Then, the intermediate Int2A-1′ can re-abstract the proton of ammonium via TS3A-1′ and the correspond-
ing energy barrier is 14.7 kcal/mol. The re-abstracting proton process is vital for the catalytic cycle. If the cata-
lyst cannot re-abstract the proton from the ammonium, the reaction will be terminated. As an example, when 
25 mol% proton-trapping reagent, 2,6-di-t-butyl-4-methylpyridine, was added in the FC alkylation of aniline 

Figure 6.  (a) The pathway 2 to produce 5a by the Friedel-Crafts reaction between 2 and 3 (Energy in kcal/
mol). Energies out of parenthesis were obtained at M06-2X (6–311 + G*/LANL2DZ). Energies in parenthesis 
were obtained at M06-2X (6–311 + G*/LANL2DZ) by PCM calculation. (b) The structures of the optimized 
transition states (Bond length in Å). All hydrogen atoms (except the transferred H) have been omitted for 
clarity.
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catalyzed by acid, no any alkylation reaction can be observed26. TS3A-1′ can lead to the final product 5a and the 
overall energy change from ReaA-1 to ProA-1′ is −24.6 kcal/mol.

As indicated above, N,N-dialkylaniline is not only reactant but also a promoter. It should be the reason why 
excess N,N-dialkylaniline is necessary for the reaction33. The rate determining step is the Ca–Cc bond formation 
process via the transition state TS1A-1 (barrier: 27.4 kcal/mol). This barrier height is reasonable considering that 
the reaction requires a temperature of 135 °C33.

Producing 5a by the pathway that the gold cation activates the N,N-Dimethylaniline 2 and the Ca carbon of 
2 attacks the Cc of alkene 3 is not possible because of the extremely high activation energy (Figs 3 and 6). The 
binding energy between 2 and 1+ is −35.3 kcal/mol. This binding can increase the positive charge on the Ca–H 
proton from 0.112 to 0.214. It makes the Ca–H proton quite active. The external N,N-dialkylaniline 2 can abstract 
the Ca–H proton with quite low activation barrier (12.8 kcal/mol, TS1A-2). However, the following Ca–Cc bond 
formation is extremely energy-unfavorable and the corresponding activation barrier is 60.1 kcal/mol. It indicates 

Figure 7.  (a) The pathway to produce 5b by the Friedel-Crafts reaction between 2 and 3 (Energy in kcal/
mol). Energies out of parenthesis were obtained at M06-2X (6–311 + G*/LANL2DZ). Energies in parenthesis 
were obtained at M06-2X (6–311 + G*/LANL2DZ) by PCM calculation. (b) The structures of the optimized 
transition states (Bond length in Å). All hydrogen atoms (except the transferred H) have been omitted for 
clarity.
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that producing 5a by gold cation activated N,N-Dimethylaniline 2 is not possible. Hence, this pathway is not 
taken into consideration for the producing of 5b, 5c, 6a and 6b.

If the alkene terminal carbon Cd can attack the Ca of N,N-dialkylaniline 2 (Fig. 7), anti-Markovnikov product 
5b should be obtained. The activation energy for the Ca-Cd bond formation is only 22.5 kcal/mol (TS1B). Though 
the barrier height of TS1B is lower than that of TS1A-1, the proton abstracting process via TS2B is not easy for 
this anti-Markovnikov reaction. The overall activation energy for the process to produce 5b is 29.5 kcal/mol. 
Furthermore, the energy change from ReaB to ProB is only −1.5 kcal/mol. Hence, comparing with the producing 
of 5a, the generation of the linear product 5b is difficult because the higher activation energy and quite small free 
energy change. Indeed, no 5b was observed for the FC reaction between 2 and 3 in our previous experiment33.

Most of the known FC reactions gave both para- and ortho-products1,62,63. Interestingly, for the reaction 
between N,N-Dimethylaniline 2 and alkene 3, quite high para-selectivity was obtained and 5a was isolated with 
93% yield33. Due to the steric hindrance of the –N(CH3)2 group, the Cc of alkene 3 attacking the Cb carbon of 2 
is difficult (Fig. 8). The energy barrier for the Cb-Cc bond formation is 31.8 kcal/mol (TS1C). Furthermore, the 

Figure 8.  (a) The pathway to produce 5c by the Friedel-Crafts reaction between 2 and 3 (Energy in kcal/
mol). Energies out of parenthesis were obtained at M06-2X (6–311 + G*/LANL2DZ). Energies in parenthesis 
were obtained at M06-2X (6–311 + G*/LANL2DZ) by PCM calculation. (b) The structures of the optimized 
transition states (Bond length in Å). All hydrogen atoms (except the transferred H) have been omitted for 
clarity.
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access of extra aromatic amine is not easy due to the steric hindrance, which makes the abstracting proton from 
Cb not easy comparing with the process to produce 5a. The free energy change from Reac to Proc is −7.9 kcal/mol. 
Considering that the barrier of the rate determining step to produce 5c is 4.4 kcal/mol higher than that to produce 
5a, observing a minute quantity of 5c as byproduct is reasonable33.

The reaction between 2 and 4.  The reaction of olefine ketone 4 is quite different from that of aromatic 
alkene 3. For aromatic alkene 3, the Ca of N,N-Dimethylaniline 2 and Cc of 3 forms C–C bond and the produc-
ing of 5a follows the Markovnikov rule. However, the reaction of olefine ketone 4 follows the anti-Markovnikov 
rule. The C–C bond was formed between the Ca of 2 and the terminal carbon Cd of 4 to produce 6a (Fig. 1)33. To 
fully understand this difference, both Cc and Cd of 4 attacking the Ca of 2 were taken into consideration, which 
can produce branched and linear product (6b and 6a) respectively. The binding between 4 and 1+ can form the 
electrophilic group and this process releases 25.5 kcal/mol energy. The C=C bond length of olefine ketone 4 was 
increased from 1.341 to 1.375 Å during the formation of 1+…4 (Fig. 2).

In the case of Cd attacking, the activation energy for the Ca-Cd bond formation (TS1D) is only 15.2 kcal/mol 
and the Ca-Cd bond length is 2.117 Å in TS1D (Fig. 9). During the Ca-Cd bond formation, the C=C double bond of 
4 was increased from 1.375 to 1.439 Å. For the reaction of aromatic alkene 3, this bond was increased by 0.126 Å 
(from ReaA-1 to TS1A-1). As we know, the structure distortion can induce energy change and enhance the reac-
tion barrier64. Correspondingly, the energy barrier of TS1D is 12.2 kcal/mol lower than that of the same process 
to produce 5a (TS1A). The smaller structure change is responsible for the low barrier of TS1D. Similarly, proton 
abstracting by aromatic amine and re-abstracting the proton of ammonium happen for the producing of 6a. The 
proton re-abstracting process from the ammonium is the rate determining step and the corresponding activation 
energy is 21.1 kcal/mol (TS3D).

If the Cc of olefine ketone 4 can attack the Ca of N,N-dialkylaniline 2 (Fig. 10), Markovnikov product 6b 
should be observed in the experiment. In the case of Cc attacking, the activation energy for the Ca–Cc bond for-
mation is quite high (TS1E: 30.8 kcal/mol). At the same time, the C=C double bond of 3 becomes almost single 

Figure 9.  (a) The pathway to produce 6a by the Friedel-Crafts reaction between 2 and 4 (Energy in kcal/
mol). Energies out of parenthesis were obtained at M06-2X (6–311 + G*/LANL2DZ). Energies in parenthesis 
were obtained at M06-2X (6–311 + G*/LANL2DZ) by PCM calculation. (b) The structures of the optimized 
transition states (Bond length in Å). All hydrogen atoms (except the transferred H) have been omitted for 
clarity.
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bond in TS1E (increasing from 1.375 to 1.461 Å). The proton abstracting by the aromatic amine and re-abstracting 
from the ammonium is easy to achieve in this pathway. However, the producing 6b is not competitive to 6a. The 
activation energy of the rate determining step to produce 6b is 9.7 kcal/mol higher than that of 6a. That is why the 
anti-Markovnikov linear product 6a was observed in the experiment33.

Conclusion
The Friedel-Crafts alkylation of N,N-dimethylaniline with alkenes catalyzed by cyclic diaminocarbene-Gold(I) 
complex were theoretically investigated. The calculation method adopted here is accurate enough to reproduce 
the crystal structure of the catalyst. The gold cation can activate the C=C double bond to produce the electro-
philic [R-C=C…Au-L]+. Then, the [R-C=C…Au-L]+ attacks the aromatic ring, following the electrophilic aro-
matic substitution mechanism. Being different from previous result that alkaline arenes will trap the proton and 
the reaction will be terminated as result26, herein, it was found that the alkaline N,N-dimethylaniline can assist 
the reaction. Based on the obtained reaction mechanism, we can well understand why the reaction was high 
para-selevtivity, and why branched and linear products were obtained for different substrates: (1) Producing the 
para-product is more energy favorable comparing with the ortho-product. (2) The reaction of α-methylstyrene 

Figure 10.  (a) The pathway to produce 6b by the Friedel-Crafts reaction between 2 and 4 (Energy in kcal/
mol). Energies out of parenthesis were obtained at M06-2X (6–311 + G*/LANL2DZ). Energies in parenthesis 
were obtained at M06-2X (6–311 + G*/LANL2DZ) by PCM calculation. (b) The structures of the optimized 
transition states (Bond length in Å). All hydrogen atoms (except the transferred H) have been omitted for 
clarity.
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follows the Markovnikov rule. The activation energy to generate the branched product of α-methylstyrene is 
lower than that producing the linear product. Besides, the reaction leading to branched product is highly exo-
thermic. (3) The reaction of butanone follows the anti-Markovnikov rule. The activation energy to generate the 
branched product of butanone is higher than that producing the linear product.

These theoretical results are quite useful for designing more effective catalysts for this rare FC reaction 
using alkaline arenes as substrates. Based on the understanding of the reaction mechanism, the development of 
none-noble metal catalyst for this FC reaction is on going in our group.

Computational Methods.  All the structures were fully optimized with B3LYP based on Density Functional 
Theory (DFT) (See SI for structure details). This method is a good choice for the calculation of organometallic 
systems65–75. The following combination of basis sets were used for geometric configuration optimization and 
frequency calculation: 6–31G basis set for all atoms except Au and LANL2DZ basis set for Au (abbreviated as 
6–31G/LANL2DZ)41,75. LANL2DZ basis set includes the relativistic effect of the heavy element65,76. The calcula-
tion method adopted here can well reproduce the crystal structure of the carbene-gold used for the FC reaction 
of basic arenes with alkenes (Table 1). Because B3LYP method often suffers from incorrect energies, especially for 
systems containing non covalent bonds. A higher level method M06-2X was used to generate more accurate ener-
gies. The energy calculations were performed using 6–311 + G* basis set for all atoms except Au and LANL2DZ 
basis set for Au (abbreviated as 6–311 + G*/LANL2DZ). The influence of solvent was performed in condensed 
phase with the Polarizable Continuum Model (PCM) using 6–311 + G*/LANL2DZ basis set. This method cre-
ates the solute cavity via a set of overlapping spheres. Aniline was used as solvent to simulate the environment of 
N,N-dimethylaniline.

The computed stationary points have been characterized as minima or transition states by diagonalizing the 
Hessian matrix and analyzing the vibrational normal modes. In this way, the stationary points can be classified as 
minima if no imaginary frequencies are shown or as transition states if only one imaginary frequency is obtained. 
The particular nature of the transition states has been determined by analyzing the motion described by the 
eigenvector associated with the imaginary frequency. All calculations were performed with the Gaussian 03 suite 
of programs77.
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