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Isocorroles as Homoaromatic NIR-
Absorbing Chromophores: A First 
Quantum Chemical Study
Cina Foroutan-Nejad1, Simon Larsen2, Jeanet Conradie  2,3 & Abhik Ghosh  2

Density functional theory calculations of magnetically induced current densities have revealed 
high diatropic ring currents in unsubstituted isocorrole consistent with homoaromatic character. 
An examination of the Kohn-Sham molecular orbitals showed clear evidence of homoconjugative 
interactions in four occupied π-type molecular orbitals as well as in the LUMO. Remarkably, 
substituents at the saturated meso position were found to exert a dramatic influence on the overall 
current density pattern. Thus, whereas bis(trimethylsilyl)-substitution strongly enhanced the peripheral 
diatropic current (consistent with enhanced homoaromaticity), difluoro-substitution engendered a 
strong, net paratropic current (consistent with antihomoaromaticity). In this respect, isocorroles stand 
in sharp contrast to benzenoid aromatics, for which substituents typically exert a small influence on the 
current density distribution.

Isocorroles are fascinating macrocyclic ligands with a sterically constrained N4 cavity characteristic of corroles 
and with the 2– charge of porphyrins (Fig. 1)1–5. With significant absorption in 700–1000 nm range, they are of 
considerable interest as near-IR dyes6. They also exhibit a Soret-like band in the 400–500 nm range, with an inten-
sity comparable to those of porphyrins and corroles. These characteristics are exemplified in Fig. 2, which depicts 
the UV-vis spectra of selected 5/10-methoxy-5,10,15-triphenylisocorrole derivatives, H2[iso-5/10-MeO-TPC] 
and Ni[iso-5/10-MeO-TPC]. In addition, the 1H NMR spectra of many free-base isocorroles (including H2[iso-
5/10-MeO-TPC]) exhibit moderately upfield-shifted β-pyrrole resonances and dramatically downfield-shifted 
NH resonances (relative to analogous corroles) (Fig. 3). These spectroscopic features are suggestive of either 
homoaromaticity or antihomoaromaticity, which are associated with the presence of a ring current in organic 
molecules in which an sp3 atom interrupts the conjugation7–9. Two density functional theory-based approaches 
have been employed here to examine the potential homoaromaticity of select isocorrole derivatives (Fig. 4), mag-
netically induced current density analysis and time-dependent density functional theory (TDDFT) calculations.

Results and Discussion
Current density analyses. Figure 5 depicts B3LYP/def2-TZVP current densities for unsubstituted gold 
corrole (Au[Cor])10 and free-base (H2[10-isoCor]) and nickel 10-isocorrole (Ni[10-isoCor]). Because the current 
density in all fully conjugated porphyrin-type molecules bifurcates at the pyrrole α-carbons, we will use the term 
‘peripheral current’ to refer to the current along either the C9-C10 or the C1-C19 bond. The general features of 
the current density pathways for the molecules examined here are similar to those of other porphyrinoids; diat-
ropic currents circulate along the outer rim of the molecules, while paratropic ones flow around the inner C11N4 
framework11,12. Figure 5 shows that Au[Cor] sustains a strong diatropic peripheral current of ~26 nA·T−1 com-
parable to that of porphyrins. The current density passing between nitrogens and the central Au atom is almost 
negligible, reminiscent of current density pathways in porphyrins11. By comparison, the peripheral ring current 
in the unsubstituted metalloisocorrole Ni[10-isoCor] is ~9.8 nA·T−1 for the C9-C10 bond, which is about a third 
of that calculated for Au[Cor]. The reduced peripheral ring current in Ni[10-isoCor] is nevertheless far from 
insignificant and is just under that calculated for benzene (~11 nA·T−1). Qualitatively similar peripheral currents 
were also observed for the corresponding free-base isocorrole H2[10-isoCor] (Fig. 5). These data strongly sug-
gest that Ni[10-isoCor] and H2[10-isoCor] are homoaromatic. Indeed, an examination of the π-type molecular 
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orbitals of isocorrole derivatives provides conclusive proof of homoconjugation (hyperconjugative interactions); 
as discussed later in the paper, a total of 4 occupied MOs and the LUMO were found to exhibit with significant 
amplitudes at the saturated meso position.

Remarkably, substituents at the saturated meso position C10 by fluoro and trimethylsilyl groups were found to 
result in striking changes in the calculated current densities (Fig. 6). Thus, fluoro substituents effectively quench 
the diatropic ring current; indeed, the difluorinated compound Ni[10-F2-isoCor] sustains a net paratropic periph-
eral current and is legitimately viewed as antihomoaromatic. The paratropic current in this compound flows 
largely around the 15-membered inner C11N4 ring, paralleling similar behavior observed for other antiaromatic 

Figure 1. Isocorroles (with atom numbering of the carbon skeleton) as hybrid ligands with characteristics of 
both porphyrins and corroles.

Figure 2. UV-vis spectra of representative isocorrole derivatives.
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porphyrinoids13. Trimethylsilyl groups on the other hand behave oppositely; the hypothetical bis(trimethylsilyl) 
compound Ni[10-(Me3Si)2-isoCor] sustains a greatly enhanced diatropic peripheral current and may be regarded 
as strongly homoaromatic. This diverse range of behavior is relatively simply attributed to the hyperconjugative 

Figure 3. 1H NMR spectra of representative isocorrole derivatives.

Figure 4. Corrole and isocorrole derivatives examined in this study.
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effects of C-F σ* orbitals and of C-Si σ orbitals, as discussed by von Schleyer and coworkers14,15. Nevertheless, 
given that substituent effects on ring currents in aromatic systems are typically quite small16–20, the present dra-
matic variations as a function of substituents at the saturated meso carbon are unusual indeed.

TDDFT calculations. Molecular orbital and TDDFT21,22 analyses were carried out on a number of isocor-
role derivatives with all-electron OLYP/STO-TZP calculations. The various systems chosen yielded very similar 

Figure 5. Current density pathways (a, c, and e) and plots (b, d, and f) for Au[Cor], Ni[10-isoCor], and H2[10-
isoCor]. The plots refer to a displacement of 1 bohr above the molecular plane, where the π ring current is most 
intense. Colors ranging from blue (corresponding to 0.001 au) to red (0.0 au) represent stronger to weaker 
current densities.
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qualitative insights; the discussion below is based on our results for nickel 10,10-dimethyl-5,15-diphenylisocorrole, 
Ni[iso-Ph2MeCor]. The ground-state calculations readily identified four π-type occupied MOs and the LUMO 
as having significant hyperconjugative interactions, i.e., relatively large amplitudes at the saturated meso position 
(Fig. 7). The TDDFT results (Table 1 and Figs 8 and 9) led to several additional insights. First, the energy spacing 
of the Kohn-Sham MO eigenvalues clearly does not correspond to Gouterman’s four-orbital model23. That said, 
the HOMO-4, HOMO-3, LUMO, and LUMO + 1 do resemble the four frontier orbitals of a porphyrin or corrole 

Figure 6. Integrated current densities (a, c, and e) and current density plots (b, d, and f) for Ni[10-F-isoCor], 
Ni[10-isoCor], and Ni[10-(Me3Si)2-isoCor]. The plots refer to a displacement of 1 bohr above the molecular 
plane. Colors ranging from blue (corresponding to 0.001 au) to red (0.0 au) represent stronger to weaker current 
densities. Negative values in entry (c) indicate net paratropic currents.
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in terms of qualitative shape24,25. Of these, the HOMO-4 and LUMO exhibit significant hyperconjugative inter-
actions, i.e., relatively large amplitudes at the saturated meso position. The most intense calculated transitions all 
involve substantial HOMO-1/HOMO → LUMO/LUMO + 1 character as well as smaller amounts of HOMO-4 
character. The lowest-energy transition exhibits a Q-like transition energy of ~2.0 eV and has predominantly 
HOMO-3 → LUMO character. Furthermore, multiple transitions with a similar intensity then cluster in the 
typical Soret region (~3.0 eV), whose cumulative effect is a deceptively porphyrin-like overall spectrum. Finally, 
since the LUMO has large amplitudes at the meso positions and the majority of the low-energy transitions have 
significant LUMO character, it stands to reason that the UV-vis-NIR spectra should exhibit a strong dependence 
on meso substituents, as is indeed observed1–5.

Conclusion
A first detailed DFT investigation has clearly implicated homoconjugation as a critical determinant of the 
observed spectroscopic features of isocorroles. Thus, the calculations indicated unsubstituted free-base 
10-isocorrole and its nickel complex as clearly homoaromatic. That said, substituents at the saturated meso carbon 
were found to dramatically affect the homoconjugation. Thus, while fluoro substituents were found to quench the 
diatropic peripheral current, leading in some cases to net antihomoaromatic character, trimethylsilyl substitu-
ents were found to greatly enhance homoaromatic character. The calculations further revealed homoconjugative/
hyperconjugative interactions in four π-type occupied MOs as well as in LUMO. The strong Soret-like feature of 
isocorroles was found to arise from the clustering of several near-degenerate transitions with individual Q-like 
intensities. Finally, the large amplitude of the LUMO at the meso positions provides a simple rationale for the 
observed large variations in the UV-vis-NIR spectral profiles of isocorroles as a function of meso substituents.

Figure 7. OLYP/STO-TZP π-type MOs of Ni[IsoPh2MeCor], which involve homoconjugative interactions at 
the C10 meso position, along with their orbital energies (eV).
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Methods
All structures were fully optimized at B3LYP26–28/def2-TZVP29 computational level by Gaussian 09 rev. D130. 
(All optimized Cartesian coordinates are listed in the Supplementary information.) Eigenvalues of the Hessian 
matrix of energy were checked to ensure that all structures correspond to local minima. To obtain current density 
plots and intensities GIAO NMR computations were performed at the same level of theory by Gaussian 09 rev. 
D1 and the wave function of the NMR computations were further analyzed by AIMAll (version 16.05.18) suite 
of programs31. The current density were obtained within the context of quantum theory of atoms in molecules 
as developed by Keith and Bader32–36. TDDFT calculations were performed with ADF201737,38 on OLYP27,39/
STO-TZP optimized geometries.

Free-base H2[iso-5/10-MeO-TPC] was synthesized according to the method described by the Kadish and 
Paolesse groups2. Although both isomeric free bases were isolated in reasonable yields, only the 10-methoxy 
compound (surprisingly) proved readily amenable to nickel insertion.

E (eV) Symmetry λ (nm) f From To % contribution

1.988 B 624 1.46 × 10–1 HOMO-3 LUMO 84.0

HOMO-2 LUMO + 1 6.4

HOMO LUMO 3.9

HOMO LUMO + 2 2.7

HOMO-3 LUMO + 2 0.6

3.033 A 409 8.87 × 10–2 HOMO LUMO + 4 54.9

HOMO-4 LUMO 10.0

HOMO-3 LUMO + 1 8.9

HOMO-8 LUMO 6.3

HOMO-9 LUMO 5.4

3.081 A 402 9.63 × 10–2 HOMO LUMO + 4 40.1

HOMO-9 LUMO 27.8

HOMO-4 LUMO 8.4

HOMO-3 LUMO + 1 6.2

3.166 B 392 6.84 × 10–2 HOMO-4 LUMO + 1 37.7

HOMO-7 LUMO 24.2

HOMO-11 LUMO 16.0

HOMO-14 LUMO 9.9

3.169 A 391 8.16 × 10–2 HOMO-9 LUMO 35.1

HOMO-10 LUMO 19.4

HOMO LUMO + 6 9.4

HOMO-4 LUMO 7.1

HOMO-8 LUMO 5.6

Table 1. TDDFT (OLYP/STO-TZP) results for the main “Q” and “Soret” transitions of Ni[Iso10Me2–
5,15Ph2C].

Figure 8. TDDFT oscillator strengths (f) plotted against wavelength (λ, nm) and an artificially broadened 
spectrum with Gaussians with FWHM = 30 nm.
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Synthesis of H2[iso-5/10-MeO-TPC]. To a solution of 5,10,15-triphenylcorrole (46.7 mg) in a mixture of 
dichloromethane (20 mL) and methanol (10 mL) was added DDQ (20.4 mg, 1 eq) and the resulting solution was 
stirred for 10 min. The solvents were removed under vacuum and the solids were washed down through a plug of 
silica with dichloromethane. The two isomers were then separated with preparative thin-layer chromatography on 
silica plates employing 2:1 dichloromethane/hexane as solvent. Yields: 32 mg of the 5-isomer (64.8 %) and 5.5 mg 
(11.1%) of the 10-isomer.

Spectroscopic data for H2[iso-5-MeO-TPC]. 1H NMR (400 MHz, CDCl3, δ): 16.19 (s, 1H, NH), 15.85 
(s, 1H, NH), 7.72 – 7.67 (m, 2H, 5-o-Ph), 7.53 – 7.48 (m, 2H, 15-o-Ph), 7.48 – 7.37 (m, 9H, 10-o-Ph and Ph), 
7.25 – 7.22 (m, 2H, Ph), 6.93 (d, J = 4.6 Hz, 1H, β-H), 6.84 (d, J = 4.5 Hz, 1H, β-H), 6.56 (dd, J = 3.6, 2.6 Hz, 1H, 
β-H), 6.53 (d, J = 4.6 Hz, 1H, β-H), 6.50 (d, J = 4.6 Hz, 1H, β-H), 6.27 (dd, J = 4.3, 2.0 Hz, 1H, β-H), 6.11 (dd, J = 
4.3, 2.6 Hz, 1H, β-H), 6.03 (dd, J = 3.6, 2.5 Hz, 1H, β-H), 3.43 (s, 3H, 5-MeO). UV-Vis (CH2Cl2) λmax [nm; ϵ × 10−4 
(M−1cm−1)]: 337 (2.42), 401 (3.93), 678 (0.60), 739 (0.56). MS (MALDI-TOF): m/z calcd for C38H28N4O 556.2263 
[M+]; found 556.2272.

Spectroscopic data for H2[iso-10-MeO-TPC]. 1H NMR (400 MHz, CDCl3, δ): 15.58 (s, 2H, NH), 7.69 
(d, J = 7.0 Hz, 2H, 10-o-Ph), 7.59 – 7.55 (m, 4H, 5,15-o-Ph), 7.48 – 7.42 (m, 6H, 5,15-m-Ph and 5,15-p-Ph), 7.25 
– 7.16 (m, 3H, 10-m-Ph and 10-p-Ph), 6.69 – 6.67 (m, 4H, β-H), 6.61 (d, J = 4.3 Hz, 2H, β-H), 6.40 (d, J = 4.3 Hz, 
2H, β-H), 3.49 (s, 3H, 10-MeO). UV-Vis (CH2Cl2) λmax [nm; ϵ × 10−4 (M−1cm−1)]: 351 (2.24), 430 (4.09), 668 
(0.49), 721 (0.53). MS (MALDI-TOF): m/z calcd for C38H28N4O 556.2263 [M+]; found: 556.2272.

Synthesis of Ni[iso-5/10-MeO-TPC]. Free-base isocorrole (12.8 mg, mixture of isomers) and Ni(OAc)2 ∙ 4H2O  
(48.9 mg, 6 eq) were dissolved in dry DMF (5 ml) and refluxed for 1 h. The solvent was removed under vacuum 
and the solids were washed down with dichloromethane through a silica gel plug. The resulting product, upon 
preparative thin-layer chromatography on a silica plate with 2:1 dichloromethane/hexane as eluent, yielded a 
brown band composed of Ni[5,10,15-triphenyl-10-methoxyisocorrole]. Yield 1.2 mg (8.5%).

Spectroscopic data for Ni[iso-10-MeO-TPC]. 1H NMR (400 MHz, CDCl3, δ): 7.86 (d, J = 7.6 Hz, 2H, 
Ph), 7.45 – 7.35 (m, 13H, Ph), 6.41 (d, J = 4.5 Hz, 2H, β-H), 6.27 – 6.23 (m, 4H, β-H), 6.15 (d, J = 4.5 Hz, 2H, β-H), 
3.39 (s, 3H, 10-MeO). UV-Vis (CH2Cl2) λmax [nm; ϵ × 10−4 (M−1cm−1)]: 356 (1.23), 430 (2.51), 533 (0.45), 818 
(0.18), 909 (0.39); MS (MALDI-TOF): m/z calcd for C38H26N4ONi: 612.1460 [M+]; found 612.1638.
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