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Effective lagrangian for axial 
anomaly and its applications in 
Dirac and Weyl semimetals
Chih-Yu Chen, C. D. Hu & Yeu-Chung Lin

A gauge invariant effective lagrangian for the fermion axial anomaly is constructed. The dynamical 
degree of freedom for fermion field is preserved. Using the anomaly lagrangian, the scattering cross 
section of pair production γγ → e−e+ in Dirac or Weyl semimetal is computed. The result is compared 
with the corresponding result from Dirac lagrangian. It is found that anomaly lagrangain and Dirac 
lagrangian exhibit the same E  B pattern, therefore the E  B signature may not serve a good indicator 
of the existence of axial anomaly. Because anomaly generates excessive right-handed electrons and 
positrons, pair production can give rise to spin current by applying gate voltage and charge current with 
depositing spin filters. These experiments are able to discern genuine anomaly phenomena.

Axial anomaly1,2, sometimes referred to as chiral anomaly in proper context, arises from the non-invariance of 
fermion measure under axial γ5 transformation3, it is a generic property of quantum fermion field theory, massive 
or massless. The realization of axial anomaly in condensed matter is first explored by Nielsen and Ninomiya4. It 
is argued that in the presence of external parallel electric and magnetic fields, there is net production of chiral 
charge and electrons move from left-handed (LH) Weyl cone to right-handed (RH) Weyl cone, the induced 
anomaly current causes magneto-conductivity prominent. Aji5 investigated pyrochlore iridates under magnetic 
field. He found that the energy dispersion is linear and the velocity is parallel to the applied magnetic field. 
External electric field which is also parallel to the magnetic field will introduce the imbalance between RH and 
LH particles and thus, Adler-Bell-Jackiw (ABJ) anomaly. Zyuzin et al.6 discussed time reversal and inversion 
symmetries of Weyl semimetal. They used multilayer systems as their model and calculated the current under 
external magnetic field. The origin of the nondissipative current was recognized as the ABJ anomaly. The exper-
imental discoveries of Dirac and Weyl semimetals7–9 facilitate the opportunities for the observation. In recent 
experiments10–13 it is observed that the negative magnetoresistance is optimized when the applied electric field is 
parallel to the magnetic field, or the polarization vectors of the applied fields are perpendicular to each other. It is 
then argued that this is an evidence of anomaly as anomaly typically exhibits E ⋅ B behavior.

It is interesting to note that the A-phase superfluid of 3He possesses a similar type of chiral anomaly. As 
pointed out by Balatskii et al.14, the Fermi surface of 3He-A has two nodes at ekFl where l is the angular momen-
tum of Cooper pairs and e = ±1 serving as the pseudo-charge of the fermions. It plays the role of chirality in 
ordinary fermion theory. The spins of Helium atoms are not relevant here. Therefore, instead of RH and LH 
states, there are states of opposite pseudo-charge near two nodes. Furthermore, there is a fictitious magnetic 
field B = ∇ × l. Balatskii et al.14 were able to show that the anomalous current is in the direction of the magnetic 
field by considering the n = 0 Landau levels. There are certain analogies between our theory and that in ref.14. For 
example, the function of γ5 is the same as the pseudo-charge e in the second term of their equation of motion (Eq. 
(2.9) in14). The axial current in this article is of the same characters as the chiral current of Nielsen and Ninomiya4 
and the anomalous current of Balatskii et al.14.

Previous studies used Chern-Simons term6 to construct an effective lagrangian for axial anomaly in Weyl sem-
imetals by integrating out the fermion degree of freedom, and thus treats the fermion field as a mean field of the 
background. The residual Chern-Simons term exhibits E ⋅ B form and is used to argue that it is a signature of axial 
anomaly in condensed matter. This approach leaves very little room for the study of electron transport properties 
as the degree of freedom for electron has been frozen out. It is the purpose of this work to construct an effective 
lagrangian which describes the axial anomaly in a fermion system, and keep the fermion field dynamical. It can 
be applied to high energy physics or condensed matter physics, such as Dirac semimetal or Weyl semimetal. With 
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such an effective lagrangian which contains dynamical fermion field, it is easy to account for the effect of anomaly 
while keeping fermion dynamics explicit.

Results
Effective Lagrangian. Classical QED has both vector symmetry and axial symmetry, the QED lagrangian is 
invariant under ψ → e−iαψ and ψ ψ→ βγ−e i 5

 respectively. If quantum effect is incorporated, the combination of 
vector symmetry and axial symmetry will be spoiled. Because vector symmetry is tied to particle number conser-
vation, it must be strictly preserved, the axial symmetry is therefore chosen to be broken. The divergence of axial 
current ψγ γ ψμ 5  is not equal to zero and is proportional to the amplitude of anomaly. The axial anomaly can be 
considered as a source generating axial current. It is noted that in the calculation of anomaly Feynman diagrams, 
what is concerned most is the nature of the external currents connected to the vertices, vector or axial, the actual 
material content, such as quarks of electrons, entering into the loop is not that essential to the result.

The construction of effective chiral anomaly lagrangian incorporating fermion follows direct analogy of the 
celebrated case π0 → γγ15,16. The relevant piece in the chiral anomaly lagragian for π0 → γγ takes the form of prod-
uct of axial current and Chern-Simons term, which can be expressed by π ε∂ ∂π

μ
μναβ

ν α βi f A A( / ) 0 , where 
fπ = 93 MeV is the pion decay constant, π∂π

μi f( / ) 0 is the pion axial current and ε ∂μναβ
ν α βA A  is the Chern-Simons 

term for photon. The lagrangian piece obeys the demanded parity symmetry of QED. There are two vector fields, 
two partial derivatives, one pseudoscalar field and one Levi-Civita tensor, which is also a pseudoscalar, together 
they leave the lagrangian piece unchanged under parity operation. By replacing the pion axial current with the 
fermion axial current ψγ γ ψμ 5 , which is automatically parity symmetric, the chiral anomaly lagrangian for fer-
mion is given by

ε ψγ γ ψ= ∂γγ μναβ
μ ν α βL ge A A , (1)

2 5

where e is the electron charge, g is an effective coupling constant representing the quantum effect contributing 
to axial anomaly, ψ is fermion field, A is photon field and the subscript γγ means the vertex being a two-photon 
process. It is in form of axial-vector-vector (AVV) coupling in chiral anomaly. In principle, a generic AVV cou-
pling could have various different forms. However, since photon is a vector current, the axial current can only 
arise from fermion. Moreover, the two photon fields and their associated momenta must be organized in form of 
Chern-Simons term so that the resulting form will reflect the topological nature of chiral anomaly.

From the dimensional analysis perspective, Lγγ is of dimension 4, ψ is of dimension 3/2, A and ∂ are of dimen-
sion 1, and hence g in Lγγ has to be of dimension −2. An effective theory with negative dimension coupling 
constant is only applicable to low energy regime. The application of this effective lagrangian to Dirac or Weyl 
semimetal conforms to this requirement as only physics of energy momentum around the fermi level is of interest 
in condensed matter.

The effective coupling constant g is the only parameter in such effective lagrangian. In principle it can be 
determined by fitting the scattering cross section or decay rate of a physical process described by the effective 
lagrangian. In meson physics, if a process arises from anomaly lagrangian, such as π0 → γγ, it will not receive 
contribution from the kinetic energy term as it is evident from parity argument. Strong and electromagnetic 
interactions respect parity symmetry, a meson is a pseudoscalar and therefore carries negative parity. Physical 
processes given rise from kinetic energy term must be present in even number of mesons in order to respect par-
ity, while processes given rise from anomaly term typically have odd number of mesons as there is a Levi-Civita 
tensor which carries negative parity. Therefore anomaly process is free from background processes arising from 
kinetic energy term. This is not the case for fermion anomaly lagrangian in Eq. (2). Fermion typically manifest 
themselves in bilinear form of fermion fields in lagrangian, and the bilinear form of fermion current can either 
transform as vector current or axial current; the former appears in Dirac term and the later appears in anomaly 
term. As such, an electron-photon interaction could receive contributions from both Dirac term and anomaly 
term. Because of this mixing effect, using the scattering cross section or decay rate of a physical process to fit the 
effective coupling constant g is difficult as the contribution from the anomaly term is buried under the dominant 
Dirac term. Observation of axial anomaly needs to utilize other characteristics which only emerge in anomaly 
sector.

The term in Eq. (1) describes the coupling between two-photon and axial current. This term by itself is not 
gauge invariant. Following Witten trial and error approach17 for the construction of chiral anomaly lagrangian, a 
single-photon term has to be incorporated

ε ψγ γ ψ ε ψγ γ ψ

= +

= ∂ − ∂ ∂ .

γγ γ

μναβ
μ ν α β

μναβ
μ ν α β

L L L

ge A A ige A (2)

A
2 5 5

The lagrangian so constructed is gauge invariant. It is noted that the effective lagrangian retains the dynam-
ical degree of freedom for fermions and hence the detailed behavior of individual fermion can be tracked and 
predicted. Together with the Dirac lagrangian, the kinetic energy term with electron-photon minimum coupling,

ψγ ψ= ∂ +μ
μ μL i ieA( ) , (3)D

they give an effective description of massless fermion interacting with photon incorporating the anomaly effect

= + .L L L (4)D A
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It is noted that in LD the fermion current coupled to photon field is a vector current, in contrast to the axial 
current in LA. The lagrangian is constructed on the premises of fermions being massless, however, it can also be 
applied to QED if a mass term is incorporated.

Pair Production. The electron-positron pair production by two-photon scattering (γγ → − +e e ) will be the 
focus of interest in this work. This process receives contributions from both Dirac and anomaly terms. This makes 
fermion anomaly phenomenon seemingly difficult to be observed as the genuine anomaly signal (theoretically 
suppressed by one-loop effect) will be overwhelmed by the corresponding Dirac term background process, which 
receives contributions from tree level diagrams. In particular, if physical observation measures the average collec-
tive behavior of such phenomenon, such as scattering cross section in which summing over final spin and average 
over initial spin have been performed, the anomaly effect might be completely lost.

Axial current inherits very different nature, in particular in chirality or helicity, compared with that of vector 
current. In Dirac or Weyl semimetal, the effective mass of electron is zero, and hence chirality, the eigenvalue of 
γ5 operator, and helicity, given by σ ⋅ | |pp/ , are well defined and equal. Furthermore, due to fermion is massless in 
Dirac or Weyl semimetal, there is no mass term to mix RH fermion with LH fermion, processes arising from the 
Dirac term in Dirac lagrangian conserve helicity. The anomaly lagrangian serves as the sole source of and gives 
rise to excessive RH fermions. Utilizing this observation, it is possible to discern physical processes arising from 
Dirac term from those arising from anomaly term.

The process of interest, γγ → − +e e , as shown in Fig. 1 bears certain resemblance to the cases studied in Nielsen 
and Ninomiya’s theoretical work4 and recent experiments on negative magnetoresistance10–13. It contains two 
photons, though not exactly the same as the constant applied fields in those cases, and it gives rise to e−e+ in axial 
current form; the scattering cross section might also depend upon the angle between the two photon polarization 
vectors. In the following calculation, the kinematic variables used in the system are k1 and k2 for the momenta of 
the incoming photons, p1 and p2 for the momentum of the outgoing electron and positron, respectively. ε1 and ε2 
are the polarization vectors for photons. The electron and positron spinors are denoted by u(p1, s1) and v(p2, s2), 
respectively. Due to all the particles in the system are massless, the kinematics relations are very simple, 

= = = =k k p p 01
2

2
2

1
2

2
2 . The polarization vectors are transverse, and the temporal gauge, A0 = 0, is adopted, 

therefore in the CoM frame ( = −k kj j
1 2 ) they lead to ε ε⋅ = ⋅ =k k 01 1 2 2  and ε ε⋅ = ⋅ =k k 01 2 2 1 . The condi-

tion of being transverse for polarization is not equivalent to Lorenz gauge, nor Coulomb gauge where the gauge 
condition reads =μ

μk A 0 and ∇ ⋅ =A 0, in which Aμ = Aμ(x). Also because the fermion fields are massless, the 
normalization conditions obey ∑ = ∑ =u p s u p s v p s v p s p( , ) ( , ) ( , ) ( , )s s  and the propagator becomes −p k( )1 1  
/(2p1 ⋅ k1).

The amplitudes for the Feynman diagrams depicted in Fig. 1 are given by
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Summing over all the final spin, the transition matrix is given by

∑ φ| | =M g e k32 sin ,
(6)s s

A
,

2 2 4 4 2

1 2

Figure 1. Feynman diagrams of e−e+ pair production by two-photon scattering involving anomaly lagrangian. 
(a) Arises from the two-photon contact term in Eq. (2), while the other diagrams are mixtures of one vertex 
from the single-photon term in LA and one vertex from LD. The circle stands for the anomaly vertex and the 
solid dot stands for Dirac vertex.
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where k is the photon energy in the CoM frame, φ is the angle between the polarization vectors of two incoming 
photons and the subscript A denotes the contribution arising from anomaly. The corresponding differential cross 
section is then

σ α φ


 Ω



 =

d
d

g k2 sin ,
(7)A

2 2 4 2

where α is the fine structure constant.
It is interesting to note that the contributions from ∼M M2 5 terms (see Fig. 1), contributions arising from the 

mixture of a single-photon vertex from anomaly and a single-photon vertex from Dirac term, all vanish in the 
final transition matrix element. The transition matrix receives contribution only from M1, Feynman diagram (a) 
in Fig. 1, which arises from the two-photon contact term in the LA. It is a reminiscence of the γγ → π0π+π− pro-
cess in pion physics. It receives contribution only from the two-photon contact term in chiral anomaly. All the 
contributions arising from single-photon vertex γ → π0π+π− which exhibits in the same chiral anomaly lagran-
gian, together with another photon absorbed by either π− or π+ in the aforementioned vertex cancel each other 
because the amplitudes are the same but the signs of electromagnetic coupling are opposite.

The transition matrix depends only on the photon energy k and the angle φ between two polarization vectors. 
It is isotropic in all directions, no angular dependence on the angles between the momenta of photons and the 
electron, unlike what is observed in the negative magnetoresistance experiments in which the axial current tends 
to move along the direction of aligned E and B. This is easy to be understood as the two photons convert to e−e+ 
pair axial current after the scattering process, they will no longer affect the direction of axial current. But the 
transition matrix is optimized when φ π= /2, which means that the anomaly process prefers to have polarization 
vectors being perpendicular to each other, or E is parallel to B. This result seems to bolster previous theoretical 
and experimental arguments that E ⋅ B is the signature of anomaly.

As aforementioned, the Dirac term also contributes to the γγ → e−e+ process. There are two Feynman dia-
grams (see Fig. 2) which contributes to the process. Their amplitudes read
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where superscript D represents Dirac. The transition matrix element then can be simply derived as before

π
φ| | = .M e

8
sin

(9)D
2
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2

The corresponding differential cross section is given by

σ α φ

 Ω



 = .

d
d k

sin
2 (10)D

2 2

2

Contribution arising from the Dirac term exhibits the same angular dependence as that from the anomaly 
term. Moreover, as anomaly term is of one-loop order effect, as a rule of thumb, it is typically one order of magni-
tude smaller than the tree level contribution. The signal of anomaly is overwhelmed by the Dirac contribution for 
γγ → e−e+. The reason why this is happening is because originally anomaly is of axial current and Dirac term is 
of vector current in nature, which are discernible in this regard. But when summing over all the final spins of fer-
mion in the calculation, the pattern which originally could be used to tell the difference is averaged out. However, 
the genuine anomaly effect still can be detected. The details are presented in next subsection.

Proposed Experiments. Chirality is conserved in the Dirac term but not in the anomaly term. As a result, 
net RH electron and RH positron are only created in the axial current generated by anomaly. This is illustrated in 

Figure 2. The Feynman diagrams for pure Dirac term contributions.
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Fig. 3(a) where two equally likely events A and B are shown. On the other hand, there are four similar events 
which are generated by the Dirac term. They are events C, D, E and F in Fig. 3(b and c). To interpret them more 
clearly, the spin directions of all the particles are explicitly depicted so that one can tell the helicities of various 
particles. For the massless fermions in our case, the chirality and helicity are the same. A positron can also be 
viewed as a hole. Similarly, its momentum, spin and chirality are opposite to those of the missing electron. Note 
also that for antifermions, the helicity and chirality are defined oppositely to those of fermions, namely, the eigen-
value of σ ⋅ | |pp/  is −1 in the RH state of antifermions. A RH positron (hole) can be understood as a filled LH 
electron band with one electron removed. For example, in the event A in Fig. 3(a), the RH positron is equivalent 
to a filled band with one spin-up, negative-momentum electron missing. It is easily seen that the charge current 
produced in event A is canceled by that in event B. Since the transition matrix elements are isotropic, the charge 
current produced by electrons cancels that given rise by positrons in average and it seems no significant result can 
be extracted.

Experiments which are able to detect the axial current, or excessive RH electrons and positrons, generated by 
anomaly are then desired and proposed. Positive gate voltage is applied at both the upper end and the lower end 
(dark regions) as shown in Fig. 4(a). Negatively charged electrode can be placed under the sample so as to collect 
positrons. The goal of this is to suppress the upward positron current in event A and downward positron current 
in event B. There is still no net charge current, but there is net spin current. On the other hand, four similar events 
generated by the Dirac term, C, D, E and F in Fig. 3(b and c) have equal probability, and hence the resulting cur-
rent vanishes due to complete cancellation even if the gate voltage mentioned above is applied. One can conclude 
that if spin current is observed in Fig. 4(a), it is definitely caused by axial anomaly. In fact, if the circuit is removed, 
there will be accumulation of up-spins at the upper end and down-spins at the lower end. They can be detected 
by magneto-optic Kerr effect.

In another setup, shown in Fig. 4(b), spin filters18 are deposited on upper and lower side (dark regions) of 
the sample, both with downward spins. This will reduce the resistance of the current in event A and enhance 
the resistance of the current in event B. Thus the contribution of event B is suppressed and charge current can 
be detected. Conventional spin filters can produce current with spin polarization as high as 50%19. More recent 
experiments showed that it can be nearly 100%. For a review, see for example, the work of Moodera, Santos and 
Nagahama20. Hence, it can give rise to significant spin-polarized charge current. Since the contributions from 
the Dirac term completely cancel each other, any measured signal comes from the axial anomaly. Even partially 
polarized current suffices the proof of the existence of axial current easily.

Figure 3. (a) The events of anomaly. The chirality is not conserved. (b and c) The events due to the Dirac term. 
The chirality is conserved. e+ and e− denote positrons (holes) and electrons respectively. RH and LH denote 
right-handed and left-handed particles. Long arrows indicate the directions of momenta of fermions and wiggle 
lines denote photons. Short arrows indicate the directions of spins.

Figure 4. Proposed experimental setups for observing the effect of anomaly. (a) The dark areas indicate the 
places where positive gate voltage is applied. (b) The dark areas indicate the places where spin-down spin filters 
are deposited.
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Conclusion
In summary, a gauge invariant effective lagrangian for axial anomaly is constructed. It retains the dynamical 
degree of freedom of electron field and hence detailed electron behavior can be calculated and predicted. Using 
such effective anomaly lagrangian, it is found that the scattering transition matrix of γγ → e−e+ arising from the 
Dirac term and the anomaly lagrangian behave the same. As a result, the often-mentioned E ⋅ B signature may 
not serve as an evidence of axial anomaly in Dirac or Weyl semimetal. Experiments which can discern the phys-
ical effects of vector current generated by Dirac term and axial current generated by anomaly are proposed. It is 
interesting that in the presence of axial current, by applying electric gate voltage, it gives rise to spin current; and 
by applying magnets, it produces charge current.

References
 1. Adler, S. L. Axial-vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969).
 2. Bell, J. S. & Jackiw, R. A pcac puzzle:π0 → γγ in the σ-model. Il Nuovo Cimento A 60, 47–61 (1979).
 3. Fujikawa, K. Path-integral measure for gauge-invariant fermion theories. Phys. Rev. Lett. 42, 1195–1198 (1979).
 4. Nielsen, H. B. & Ninomiya, M. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).
 5. Aji, V. Adler-Bell-Jackiw anomaly in Weyl semimetals: Application to pyrochlore iridates. Phys. Rev. B 85, 241101 (2012).
 6. Zyuzin, A. A., Wu, S. & Burkov, A. A. Weyl semimetal with broken time reversal and inversion symmetries. Phys. Rev. B 85, 165110 

(2012).
 7. Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).
 8. Liu, Z. K. et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nature Materials 13, 677–681 (2014).
 9. Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).
 10. Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3d weyl semimetal TaAs. Phys. Rev. X 5, 

031023 (2015).
 11. Xiong, J. et al. Evidence for the chiral anomaly in the dirac semimetal Na3Bi. Science 350, 413–416 (2015).
 12. Li, C.-Z. et al. Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires. Nature 

Communications 6, 10137 (2015).
 13. Li, H. et al. Negative magnetoresistance in Dirac semimetal Cd3As2. Nature Communications 7, 10301 (2016).
 14. Balatskii, A., Volovik, G. & Konyshev, V. On the chiral anomaly in superfluid 3He-A. JETP 63, 1194 (1986).
 15. Carroll, S. M., Field, G. B. & Jackiw, R. Limits on a lorentz- and parity-violating modification of electrodynamics. Phys. Rev. D 41, 

1231 (1990).
 16. Lin, Y.-C. Prediction of the anomalous magnetic moment of the nucleon from the nucleon anomaly. Phys. Lett. B 354, 470 (1995).
 17. Witten, E. Global aspects of current algebra. Nucl. Phys. B 223, 422 (1983).
 18. Filipe, A. et al. Spin-dependent transmission of electrons through the ferromagnetic metal base of a hot-electron transistorlike 

system. Phys. Rev. Lett. 80, 2425–2428 (1998).
 19. Tedrow, P. M. & Meservey, R. Spin polarization of electrons tunneling from films of Fe, Co, Ni, and Gd. Phys. Rev. B 7, 318–326 

(1973).
 20. Moodera, J. S., Santos, T. S. & Nagahama, T. The phenomena of spin-filter tunnelling. Journal of Physics: Condensed Matter 19, 

165202 (2007).

Acknowledgements
This work is partially supported by Ministry of Science and Technology, Taiwan under grant 104-2112-M-002-
007-MY3.

Author Contributions
All the authors implemented the analytical calculation, discussed the results and reviewed the manuscript. Y.C.L. 
developed the theoretical scheme.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Effective lagrangian for axial anomaly and its applications in Dirac and Weyl semimetals
	Results
	Effective Lagrangian. 
	Pair Production. 
	Proposed Experiments. 

	Conclusion
	Acknowledgements
	Figure 1 Feynman diagrams of e−e+ pair production by two-photon scattering involving anomaly lagrangian.
	Figure 2 The Feynman diagrams for pure Dirac term contributions.
	Figure 3 (a) The events of anomaly.
	Figure 4 Proposed experimental setups for observing the effect of anomaly.




