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Fabrication of self-assembled 
spherical Gold Particles by pulsed 
UV Laser Treatment
G. Schmidl1, G. Jia  1, A. Gawlik1, J. Kreusch2, F. Schmidl2, J. Dellith1, A. Dathe1, Z.-H. Lin1,  
J.-S. Huang  1,3,4 & J. Plentz1

We report on the fabrication of spherical Au spheres by pulsed laser treatment using a KrF excimer 
laser (248 nm, 25 ns) under ambient conditions as a fast and high throughput fabrication technique. 
The presented experiments were realized using initial Au layers of 100 nm thickness deposited on 
optically transparent and low cost Borofloat glass or single-crystalline SrTiO3 substrates, respectively. 
High (111)-orientation and smoothness (RMS ≈ 1 nm) are the properties of the deposited Au layers 
before laser treatment. After laser treatment, spheres with size distribution ranging from hundreds of 
nanometers up to several micrometers were produced. Single-particle scattering spectra with distinct 
plasmonic resonance peaks are presented to reveal the critical role of optimal irradiation parameters in 
the process of laser induced particle self-assembly. The variation of irradiation parameters like fluence 
and number of laser pulses influences the melting, dewetting and solidification process of the Au layers 
and thus the formation of extremely well shaped spherical particles. The gold layers on Borofloat glass 
and SrTiO3 are found to show a slightly different behavior under laser treatment. We also discuss the 
effect of substrates.

Nanoparticle (NP) plasmonics have gained importance in recent years in a variety of applications. Plasmonic 
nanoparticles exhibit Localized Surface Plasmon Resonance (LSPR). LSPR depends on the size, shape and mate-
rial of the NPs. The applications of LSPR range from enhanced optical spectroscopy, photon management to bio-
photonic sensing1–4. The working principle of nanoparticle plasmonic sensors is typically based on the resonance 
shift due to the change of the surrounding refractive index or induced particle aggregation and can be used as a 
sensor principle, for example in investigation of biological binding kinetics5,6. Other applications of plasmonic 
nanostructures include surface enhanced Raman spectroscopy (SERS), optical storage of information, metallic 
nano-cavities or confinement of electromagnetic fields, as well as broadband solar energy harvesting7–9. The man-
ufacturing processes of nanoparticles with different shapes and sizes can be classified into two routes: bottom-up 
and top-down technologies. They differ, among other things, by their processing complexity. The chemical syn-
thesis as a bottom-up approach is based on growth of nucleation centers whereas organic surfactants stabilize 
the process. It is preferred for large area processing of bioassays10–12, but chemical waste is unavoidable and in 
most cases, the transfer and arrangement onto substrates lacks in reproducibility. The top-down routes such as 
electron-beam lithography and photolithography offer the possibility to produce very small, shape defined and 
exact located particles in the nanometer scale13,14, but are disadvantaged with high costs for large area structuring.

An intermediate route, similar to temperature dependent layer dewetting for NP manufacturing15–17, uses 
laser technologies based on energy transfer from laser pulses into a thin metal layer. Utilizing a laser for ablating 
a solid target or for heating or melting a layer by optical absorption extremely high energy is focused on and 
will be introduced into the metal. These technologies are used, for instance, to turn spherical nanoparticles into 
spheroid shape18, to prepare alloyed nanoparticles19,20 or to produce nanoparticles in liquids or gaseous environ-
ment21–24 by ablation or melting. An interesting point is the fabrication of alloyed particles. For such process the 
energy input by short laser pulses, associated with a strong temperature rise, can be a strong advantage. Another 
advantage of the laser assisted NP fabrication, especially compared to the conventional chemical synthesis of NP, 
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is to generate very pure NPs, since a definite but almost any solid target material with high purity can be used. 
But, especially when ablated NPs are transferred into an ambient liquid medium by ablation, the agglomeration 
has to be avoided by, for instance, introduction of organic compounds into the particle solution. This leads to 
stabilization of the colloid. A surfactant coverage could be overcome by changing the ambient medium to air. A 
lot of different parameters like the target or layer material with its optical penetration depth, the layer thickness 
when an deposited continuous layer on a substrate should convert into particles, the ambient medium of the 
target or of the layer, the wavelength, the laser fluence, the pulse duration and the pulse number affect the particle 
formation process and thus the results in NP size and size distribution. Such parameters can be used to control 
the formation process.

Excimer lasers, which emit light in the ultraviolet regime, produce high power pulses with nano-second dura-
tion and are ideal for melting thin metallic layers. It has been shown that excimer lasers can produce NP from 
5 nm and 10 nm semi continuous metal layers on a silicon wafer22. Important processes involved in the NP for-
mation include optical absorption, melting, solidification and ablation of the metal film. A big advantage of using 
pulsed laser for crystallization is the short melting time, which induces fast raising thermal effects, in contrast to 
furnace treatment. This is particularly critical for glass substrates, which have a softening point of about 600 °C. 
Pulsed laser crystallization has been applied, for example, in the manufacturing of polycrystalline solar cells by 
laser crystallization25,26.

The presented work combines UV laser induced fast melting of Au layers on low cost substrates contrary 
to single crystalline SrTiO3 and is a step towards to the fast and cost efficient fabrication of high quality spheri-
cal particles. We investigated the influence of laser fluence, laser pulse numbers and substrate materials on the 
ns-laser assisted particle formation.

Materials and Methods
Au film preparation. Using DC magnetron sputtering, Au layers with a thickness of 100 nm were depos-
ited on single-crystalline SrTiO3-substrates (STO, a(STO) = 0.3905 nm, thermal conductivity: 12 W/m·K (http://
www.azom.com/article.aspx? ArticleID=2362), coefficient of thermal expansion: 9.4·10−6/K (http://www.azom.
com/article.aspx? ArticleID=2362)) as well as on Borofloat glass substrates (amorphous, thermal conductivity: 
1.2 W/m·K (http://www.schott.com), coefficient of thermal expansion: 3.25·10−6/K (http://www.schott.com)) 
without substrate heating. A target-substrate distance (TSD or throw distance) of 95 mm was used in the frame-
work of the present experiments. The argon gas pressure in the deposition chamber was in the range of 15 mTorr 
with a background pressure of less than 1·10−6 Torr. The sputtering power was fixed at 50 W.

Laser setup for nanoparticle preparation. The main parts of the laser treatment setup consist of a KrF 
excimer laser, focusing optics, an intensity attenuator, a beam profile homogenizer and an adjustable sample 
holder. The excimer laser (LPX305, Lambda Physik) emits non-polarized pulses and operates at 248 nm with 
pulse durations of 25 ns. The pulse-to-pulse repetition rate was set to 1 Hz. The laser induced annealing experi-
ments were carried out with energy densities ranging from 300 mJ/cm2 to 1 J/cm2, tuned by an intensity attenu-
ator. The number of laser pulses for production of particles was varied between 1 and 10. A laser spot was set to 
be of about 3.9 × 3.9 mm2 with a top head intensity profile created by the focusing optics and the profile homoge-
nizer. The sample position is controlled by an XY translational stage.

Film and Particle Characterization Methods. For morphological analysis including quantitative anal-
ysis of the surface roughness of the initial film, evaluation of the size distribution and the shape of the obtained 
particles, we have employed atomic force microscopy (AFM, AutoProbe CP AFM system, Park Scientific) and 
field-emission scanning electron microscopy (FE-SEM, JSM-6300F, JEOL). In order to avoid the charging effect 
during the SEM investigations it was deposited a 5 nm carbon layer on the substrates, which are covered with 
particles. During this process the samples were coated at an angle of 60° in a pulsed mode with substrate rotation. 
The AFM is operated in contact mode with sharpened micro lever tips (tip radius below 10 nm). The analysis of 
the particle size distribution was carried out with the help of the program ImageJ using SEM images. ImageJ is an 
open source image processing program designed for scientific multidimensional images. The crystalline structure 
of the initial Au layers was investigated by X-ray diffraction (XRD, Panalytical X’Pert Pro for crystallite size esti-
mation; Bruker D8 advance for texture analysis) with Cu-Kα1,2 (Kα1: 1.5406 Å) radiation. The Scherrer equation 
was applied to estimate the crystallite sizes of the films. For optical characterization of individual nanostructures, 
a microscope (AxioImager.Z1, Carl-Zeiss) in darkfield-configuration and upright illumination27,28 was used with 
an objective (100x, NA 0.75), where spectroscopy was enabled by coupling a spectrometer (SpectraPro2300i, 
Princeton Instruments) into the microscopes image plane by an optical fiber, resulting in a circular detection spot 
of 1 µm in diameter. The raw spectra (I(raw)) are corrected by the background signal next to a particle (I(bg)), the 
light source (I(ls)) and the system dark current (I(dc)) to obtain the particle scattering spectra (I(sca)) according to the 
relation I(sca) = (I(raw) − I(bg))/(I(ls) − I(dc)). The simulations of the spectra and the current distributions were carried 
out by using the Finite-Difference Time-Domain (FDTD Solutions, Lumerical Solution Inc., Canada) methods.

Results
Starting point for the experiments are continuous gold layers showing a pronounced reflex of the (111) lattice 
plane in XRD spectra after deposition independently on the substrate material as it is in general significant for all 
fcc (face-centered cubic) metals17,29. Furthermore, the layers deposited at 15 mTorr and 50 W grow not only highly 
oriented but also densely packed, resulting in a very smooth surface. The root-mean-square (RMS) noise of the 
surface roughness measured by AFM is about 1.16 nm, confirming the high flatness of the layers.

The laser induced particle formation process in the UV spectral range is very sensitive to the fluence and 
pulse number because the absorption of gold in the UV range is more than twice of that in the visible range. 
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This dependency of illumination conditions, together with the effects of the substrate material, determines the 
morphology of the resulted particles, as visualized in the microscope and SEM images in Fig. 1. It should be 
additionally mentioned that ambient conditions, the kind of materials and the pulse duration21, beside the here 
described parameters laser fluence, number of pulses or substrate material, are also influencing factors for the 
production of metal particles by means of lasers. As described in Haustrup et al.21 fs-pulses can generate smaller 
particles and narrower particle size distributions than ns-pulses. The results are explained by the far more efficient 
process of laser-material interaction when using fs-pulses. In that case the electronic system is strongly heated, 
but an insufficient electron-phonon coupling will be occurred during the time scale of the pulse. That can result 
in a faster and efficient thermal energy transfer into the lattice.

In general, the time of the energy input and the cooling rate is substantially shorter by using pulsed lasers 
than for instance in a furnace process. The fast injection of a big amount of energy into the metal films within 
25 ns pulse duration – a pulse duration we use in further technology processes - leads to absorption, heating and 
consequently melting or ablation of the metal from a specific ablation threshold depending on the material. This 
process is followed by fast solidification of the material after the pulse. This means, the morphology of the resulted 
particles depends on the laser parameters, metal volume and mainly on the cooling rate. The sphere formation 
process is basically driven by the minimization of surface energy. At high laser fluence, the process of ablation can 
occur and is there important for the description of the particle formation.

In a first step we could determine a fluence threshold of FTh = 500 mJ/cm2 – the same for both substrate mate-
rials - at which the particle formation process becomes possible. A fluence below this threshold exceeds the 
melting point of the material in a short time, but it is not enough to convert the gold film into spheres that homo-
geneously cover the surface. The melted film fuses to create semi-spherical or shapeless particles due to surface 
tension without a complete surface dewetting. This behavior can be observed in particular with one laser pulse.

The next fluence dependent regime observed for FTh > 500 mJ/cm2 (Fig. 1) is the window for formation of 
round spheres with different sizes. Such high fluence can heat the films (first laser pulse) or the already formed 

Figure 1. Dependency of particle formation on laser fluence and number of laser pulses. Dark-field microscope 
images (×50) and the corresponding SEM images (insets: secondary electron image, acceleration voltage = 
5 kV) of the laser treated gold layers deposited on Borofloat glass (a) and on STO substrates (b). The number of 
laser pulses is indicated on the top of each column.
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particles (subsequent laser pulses) above the evaporation threshold. Ablation can occur and a plume of metal 
atoms and clusters is observed in the experiment. Clusters can be scattered back to the substrate, because the air 
serves as a transport barrier. Thus, additional nanoparticles could be formed on the surface or can also adhere on 
the coarse particles (see Fig. 1(a) top right). In terms of size, shape and size distribution, the process of particle 
formation is obviously strong dependent on the substrate material in the investigated energy range but also dif-
ferent with regard to the effect of fluence and puls number in these both cases. In Fig. 1 two energy densities above 
500 mJ/cm2 are presented. In case of glass substrates using one pulse a lot of small particles with a diameter in the 
range between 200 nm and 500 nm cover the total surface beside some bigger but not spherical ones. By increas-
ing the fluence to 1 J/cm2 these still small particles are reduced in size and increased in number. This behavior 
is partially different in case of STO substrates. Here, the substrate surface is still dewetted using one pulse. An 
increase in laser energy transferred the particles with a diameter between 500 nm and 1 µm also into smaller par-
ticles with diameters ≤500 nm. The effect of an increasing laser fluence above the threshold of 500 mJ/cm2 is for 
both kinds of substrates not recognize so significant than using multiple pulses. As can be seen in the overview 
in Fig. 1 and in the tilted SEM images in Fig. 2 the number of pulses is also decisive for the surface dewetting and 
particle formation process. Multiple laser pulses are required to impinge the sample in order to further improve 
the spherical morphology of particles. The transition from one to five pulses is particularly significant. A single 
laser pulse is responsible for initializing the dewetting of a continuous metal film and forms only coarse spheres 
accompanied by a number of smaller particles on the surface in between the bigger ones. Figure 1 shows clearly 
the difference between particles form on the two substrates, confirming that this process also depends on the sub-
strate material and Fig. 3 summarizes the statistics on the size of particles under various experimental conditions.

As previously noted, while most of the particles with a diameter bigger than 500 nm are formed on the STO 
substrate even already with one laser pulse (Fig. 3b), very small particles down to the tens of nm range are created 
on the glass substrate (Fig. 3a). Each subsequent pulse tunes the already formed particles. In general, the number 
of gold spheres with larger diameters increases with number of laser pulses whereas the surface especially of the 
glass substrate is still wetted with very small spheres.

A possible explanation for the decrease in number of smaller particles and an increase in number of larger 
particles, seen clearly in the SEM images and histograms in Fig. 3, is that after fully dewetting further laser pulses 
supply kinetic energy to the particles, which leads to the migration of particles and merging of small particles 
to larger ones. The smaller particles move farther and get melted by the laser pulse easier compared to the larger 
ones.

Moreover, higher number of pulses in general leads to a higher number of spheres with smaller size formed on 
the coarse particle’s surface. This coverage with small particles was mostly observed on glass substrate and could 
be attributed to a mass transfer from the repeatedly melted coarse particles to the finer one21.

Furthermore, the higher the number of pulses the more pronounced a wave like system around every particle 
is. Such wave-like structure is shown significantly in the SEM image in Fig. 2(c), where a glass substrate was used. 
The thermal load on the glass surface may be greater than on STO due to the lower thermal conductivity, so that 
a surface softening can be presumed (thermal conductivity: STO: 12 W/m·K; Borofloat glass: 1.2 W/m·K). In 
fact, the surface of STO are found to be smooth and dewetted, in contrast to that of the glass substrate, where the 
remaining surfaces are covered by several tens of nanometer-sized particles after laser treatment, even after the 
application of 10 pulses. At the same laser conditions the particle formation process is determined by the surface 
energies of the substrate materials. When material disappears at high laser energies, this will happens by ablation.

On STO substrates the increase in pulse number leads additionally to an increasingly cracking of the surface. 
These cracks along the crystal axes can be attributed to the higher thermal expansion of the STO compared to 
that of glass (coefficient of thermal expansion: STO: 9.4·10−6/K; Borofloat glass: 3.25·10−6/K). Since high laser 
energies are used here, it cannot be ruled out that substrate material is also ablated, which could form a shell 
around spheres.

In the next step, we wanted to show how the laser treatment affects LSPR. Exemplary scattering spectra of sin-
gle particles with a diameter of some hundred nanometers up to some micrometers as well as the corresponding 
dark-field images and SEM images of selected surface areas are shown in Fig. 4. For these dark-field scattering 
experiments non-polarized illumination was used. Localized surface plasmon resonances could be well detected. 
The spectra partially featured a pronounced additional maximum at ~450 nm. This indicates multipole excitation. 
The broadening most probably is due to the large particle size but could also arise from overlapping of different 

Figure 2. Selected SEM images in a tilted view showing the dependency on the number of pulses. Particles on 
Borofloat glass, (a) 1 laser pulse, (b) 5 laser pulses and (c) 10 laser pulses are treated by pulsed laser with energy 
density of 800 mJ/cm2. SE images, acceleration voltage = 5 kV, tilt: 45°.
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LSPR frequencies. Such a hybridization of modes can be caused by adhesion of smaller particles to the big ones or 
by interaction of particles close to each other, in particular on glass substrates. Furthermore, in contrast to lithog-
raphy methods the size distribution is broader by self-assembling. Thus the peak positions can differ strongly 
from particle to particle – especially using glass substrates. But the position can also be influenced by ablation 
residues from the substrates. These effects could not be clearly separated in this work.

Since the individual particles prepared under different laser treatment conditions and on different substrates 
show significant differences in shape, size and spatial arrangement it is important to obtain clear microscope 
images and SEM images, which provide critical geometrical information to understand their dark-field scatter-
ing spectra by numerical simulations. For interpretation of the complex spectral behavior, we have carried out 

Figure 3. (a) SEM images (left: A–F) and corresponding size distributions of particles on Borofloat glass (right) 
referring to the same area size, (b) SEM images (left: G–L) and corresponding size distributions of particles on 
STO (right) referring to the same area size. Laser fluence: 800 mJ/cm2 and 1 J/cm2. Laser pulse numbers: 1, 5 and 
10. SE images, acceleration voltage = 5 kV. Scale bar of 10 µm is valid for all images.
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simulations using finite-difference time-domain (FDTD Solutions, Lumerical Solution Inc., Canada) method to 
undertstand the scattering peaks. The FDTD calculations shown in Fig. 5 were solved for the particles far-field 
response as well as for the current density distributions (Jx, Jy, Jz) inside the gold spheres recorded at the xy-plane 
and xz-plane cutting through the center of the sphere. The simulations allow us to understand the resonance and 

Figure 4. Dark field images and corresponding SEM images of pulsed UV laser induced sphere formation. 
(A) on STO substrates. Laser fluence of 800 mJ/cm2 (a,b) and 1000 mJ/cm2 (c,d) has been used. (B) On glass 
substrates. Laser fluence of 800 mJ/cm2 (e,f) has been used. Laser pulse numbers are 5 and 10 @ 1Hz repetition 
rate. Numbers (green circles) indicate investigated particles and b (blue dots) the location of the corresponding 
background measurement. Lower panels: Corresponding normalized scattering spectra of single particles.
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the changes in the spectra caused by size and substrate. In Fig. 5(a) the influence of the sphere size on top of a STO 
substrate is presented. The particle size used for simulation is between 100 nm and 2 µm. Representative diame-
ters are used according to the actual size distribution of the particles produced with our laser treatment method.

There are three major size effects. First, increasing the size shifts the resonance to longer wavelength. For 
example, the fundamental dipole-mode of a 100 nm sphere is at around 545 nm. This mode shifts to 630 nm when 
the diameter increases to 200 nm (red trace in Fig. 5(a)). Secondly, higher order modes emerge as the size of 
the sphere becomes significantly larger than the effective wavelength of light. With increasing particle diameter 
higher modes are getting more pronounced in the spectra. This is visible in the formation of additional reso-
nances at different wavelengths.

As can be seen in Fig. 5(b), for a 100 nm sphere, the dipole resonance is dominant, while multiple peaks start 
to show up as the diameter of the sphere increases to 400 nm. These peaks correspond to higher order modes30–32. 
For spheres with diameter larger than 500 nm, the mode order is very high and the current distribution becomes 

Figure 5. Normalized simulated far-field scattering spectra (a,c) and specific current density distributions 
(b,d) at several resonance frequencies of Au spheres. (a,b) Comparison between spheres with different size 
(diameter from 100 nm to 2 μm) on the same STO substrate. (c,d) Comparison between different substrates 
(air (n = 1), SiO2 (n = 1.47) and STO (n = 2.4)) with the same diameter of 500 nm. To better visualize the 
current distribution, the images for the sphere with diameter of 100 nm on STO substrate show a square area of 
110 × 110 nm2 on the xy- and xz-cross sectional planes. All other images of current distribution show an area of 
550 × 550 nm2.
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very complicated. The modes cannot be easily assigned by considering the current distribution only in xy -plane or 
xz-plane cutting the sphere. Here, we show both the distribution of three current components in xy- and xz- plane 
cutting through the center of the sphere to illustrate the resonance of different modes. Although some modes 
show similar current distributions in xy-plane, the current distributions in xz-plane are not the same. These 
modes are higher order spherical harmonic modes of surface plasmon on large gold spheres. Three-dimensional 
current distributions are needed to fully understand the modes, which is beyond the scope of this work. Thirdly, 
for large gold spheres with a radius larger than the penetration depth of light, the gold sphere becomes more like a 
spherical shell resonator because the currents can only be induced within a shell of finite thickness, as can be seen 
from the current distribution in Fig. 5(b). This makes the analysis of the mode even more complex.

For the substrate effect, a gold sphere (diameter = 500 nm) has been put onto three different substrates, namely 
air (n = 1), SiO2 (n = 1.47) and STO (n = 2.4). The simulated scattering spectra are summarized in Fig. 5(c) and 
the current distributions in xy- and xz-plane are shown in Fig. 5(d). The dependency of the peak position on the 
surrounding medium indicates that the higher the refractive index, the more the dipole mode is red shifted. For 
example, the major peak of the sphere in air around 585 nm red-shifts to 615 nm for SiO2 substrate and to 635 nm 
for STO substrate. This red-shift is due to the fact that the effective wavelength of the excitation light reduces as 
the index of surrounding medium increases, leading to the increase of the effective sphere size. In the case of glass 
substrates, the emerging of additional resonance peaks might be due to the influence of closely spaced particles. 
The experimental spectra are more complex than the simulated ones because the experimental spectra are not 
obtained from single particles. In principle, a coupling of more than two particles, for instance of “piggyback par-
ticles”, can also be responsible for a spectral broadening and observation of additional resonances by formation of 
hybridized modes. More detailed simulations and modelling are needed to understand the spectrum of large gold 
spheres, which are however beyond the scope of this work about laser treatment fabrication.

Conclusions
It has been demonstrated that starting from a 100 nm thick gold layer spherical Au particles from smaller than 
hundreds of nanometers to a few micrometers can be produced on glass as well as on SrTiO3 substrates. The fab-
ricated single spheres, which were formed during a self-assembling process show LSPR spectra dependent on the 
particle size. The homogeneity of the particle size distribution and thus the reproducibility of the LSPR spectra 
of the individual particles can be influenced by the treatment conditions, including the laser fluence and number 
of pulses. The described fast fabrication process based on an excimer laser treatment is connected with a rapid 
induce of a big amount of heat into metal films leading to metal melting up to an ablation threshold dependent 
on the laser fluence and with a fast solidification. A limit of 500 mJ/cm2 was determined to initialize a particle for-
mation. We also found that multiple laser pulses are needed to form well shaped gold spheres. In contrast to STO 
substrates, the laser treatment of a gold layer on glass substrates is accompanied with the generation of nm-sized 
nanoparticles in between the bigger ones. This method can be automatized by placing the film on a positioning 
stage to assemble the irradiated areas and to create a large particle-coated area. An interesting point for using 
short laser pulses is the fabrication of alloyed particles. For such process the short and high energy input associ-
ated with a strong temperature rise and a short solidification phase can be a strong advantage. In this publication 
we focused mainly on tuning the laser conditions to obtain optimal particle formation. The possible impact of 
the original film thickness is indeed another factor influencing the process of laser assisted particle fabrication. 
The volume of material can be important with respect to the heating and, thus, to the melting and solidification 
process. It can influence the dewetting behavior and can result in different sizes of nanoparticles. Moreover, thin 
discontinuous films (islands) can introduce more random fluctuation compared to a continuous films and influ-
ence so the optimal laser conditions.
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