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Statistical modelling of 
navigational decisions based on 
intensity versus directionality in 
Drosophila larval phototaxis
Lucia de Andres-Bragado   1, Christian Mazza2, Walter Senn3 & Simon G. Sprecher   1

Organisms use environmental cues for directed navigation. Understanding the basic logic behind 
navigational decisions critically depends on the complexity of the nervous system. Due to the 
comparably simple organization of the nervous system of the fruit fly larva, it stands as a powerful 
model to study decision-making processes that underlie directed navigation. We have quantitatively 
measured phototaxis in response to well-defined sensory inputs. Subsequently, we have formulated 
a statistical stochastic model based on biased Markov chains to characterize the behavioural basis of 
negative phototaxis. Our experiments show that larvae make navigational decisions depending on two 
independent physical variables: light intensity and its spatial gradient. Furthermore, our statistical 
model quantifies how larvae balance two potentially-contradictory factors: minimizing exposure to 
light intensity and at the same time maximizing their distance to the light source. We find that the 
response to the light field is manifestly non-linear, and saturates above an intensity threshold. The 
model has been validated against our experimental biological data yielding insight into the strategy 
that larvae use to achieve their goal with respect to the navigational cue of light, an important piece of 
information for future work to study the role of the different neuronal components in larval phototaxis.

The nervous system is functionally organized to perceive external cues, which are encoded and decoded to make 
the correct behavioural decisions. A way of studying the logic of these decision-making mechanisms is through 
the analysis of robust stereotypical navigational strategies evoked by controlled stimuli (such as light or odour 
cues) in simple model organisms. Indeed, much of our understanding in the fundamental logic of taxis has 
been achieved by studying organisms such as Escherichia coli, Caenorhabditis elegans or larvae of the fruit fly 
Drosophila melanogaster1,2. Navigation in Drosophila larvae has been assessed in response to different types of 
single sensory inputs including vision3,4, olfaction5–8 and thermo-sensation9–11 and a combination of inputs to 
study multisensory integration12,13.

Drosophila larvae show robust navigation towards appetitive and away from aversive cues. However, in the 
absence of an external cue or for a group of blind larvae, the kinematics is essentially random-like14. In the pres-
ence of a light source, we experimentally show that the taxis is still moderately stochastic, being at most three 
times less efficient than ballistic kinematics. Therefore, an underlying Markov chain presents itself as an excellent 
basis for modelling larval kinematics since the external field (light) only introduces a small perturbation that 
allows a quasi-equilibrium description. That Markov chain is biased to take into account the external cue using 
Boltzmann’s probabilities15. Measurable magnitudes can be obtained by averaging them over the simulated tra-
jectories. Therefore, the properly weighted Markov chain that we introduce has to be understood as a statistical 
tool to efficiently obtain averaged values of measurable magnitudes. Larval taxis involves a long-term goal, similar 
to the one discussed by Berman et al. for adult flies16, that is well described in our model by the intervention of 
the Metropolis-Hastings algorithm. Stochastic techniques like the one we are proposing here have been recently 
used to model taxis as a diffusion problem17. The power of such stochastic techniques rests on its capacity to 
tackle complex problems, like diffusion or phase transitions, with a moderate cost in computational time. In 
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particular, the Metropolis-Hastings has been used to efficiently locate global minima of combinatorially-complex 
objective functions such as the travelling salesman problem18. In this work, we show how to introduce generalized 
Metropolis-Hastings weights to bias a Markov chain to extract information from biological experiments where 
larvae take decisions using information gathered from their immediate surroundings.

Previous approaches to model taxis behaviour have divided the animal’s movements into a set of discrete 
behavioural states and have analysed the transitions between these states. One modelling approach has been 
based in a linear non-linear Poisson cascade to model the transition between the larval states12,13. Another 
approach has been to model larval taxis as continuous oscillations whose direction is not controlled by the stimuli 
but by an intrinsic oscillator and where the external stimuli would influence the amplitude of the oscillation19.

Drosophila larval phototaxis provides an excellent model to study behavioural decision-making because their 
exposure to the sensory stimulus of light can be tightly controlled3,4. Larval paths bear a strong connection with 
the intensity of light and to the position of the light source, which in the literature has been termed as light direc-
tionality3. Larvae perceive light through a pair of bilateral eyes, which have been shown to be absolutely essential 
for visually-guided navigation4,20–24. Information from the external field of light is then processed in the brain 
by a genetically hard-wired decision-making algorithm. Our model allows us to characterize that algorithm as a 
combination of a goal-directed behaviour layer on top of a stochastic one.

By focusing on the impact of two key excitation elements, light intensity and light directionality, we present a 
model that studies the interplay between these two components for navigation. We exploit experimental naviga-
tional data obtained from various controlled illumination conditions to define probability weights that we use to 
polarize an underlying Markov chain that has been introduced to analyse larval taxis using stochastic methods. 
Such a statistical model allows us to simulate larval kinematics with a minimal number of free parameters. Our 
model provides a theoretical and experimental framework of the decision-making mechanism functioning in the 
larval brain during navigation.

Results
Impact of light intensity and its spatial gradient on taxis.  The navigation index (NI) has been used 
in the literature as a significant statistically-averaged kinematic parameter describing sensory guided naviga-
tion3,4. Along a given direction (x), the NI is defined as the mean velocity in that direction, vx, divided by the total 
velocity in any direction, v. In other words, since velocities are measured over a common time interval, the NI in 
a certain direction can be taken as the distance moved in that direction, Δx, divided by the length of the stratified 
path, s. For example, the NI along the x axis, NIx, would be defined as = ΔNIx

x
s

 (Fig. 1a). Therefore, the value of 
the NI provides an assessment of the efficiency of larval navigation. In our case, since the source of light was 
located in the +x axis of the agarose plate, the NIx would be approximately −1 for an object moving ballistically 
away from the illumination source (negative values for the NI imply that larvae navigate towards the −x axis). On 
the other hand, we would obtain a NIx of approximately 0 for a random walk taken in the absence of an external 
cue or for blind larvae.

Previous studies have shown that the intensity of light, its spatial gradient and light directionality are relevant 
factors for visually-guided navigation3. Therefore, we hypothesize that these components may be sufficient to 
explain the observed biological behaviour in our defined experimental framework. First, we experimentally tested 
the dependence of our primary kinematical measurable magnitude (NI) with the two independent variables 
determined by the external light field: the absolute light intensity and its gradient over the agarose plate where the 
larvae are located (intensity is measured using irradiance units, as the radiant power flux received per unit area, 
see Materials and Methods). For this, we used a set of filters where light intensities and their spatial gradients have 
been varied in a controlled and gradual way: f1, f2, f3, f4, f5 and f6 (Fig. 1b). For all these experiments, the angle of 
the source of light was kept constant at 40°. Our measurements show that navigation of wildtype larvae depends 
on the absolute light intensity. Larvae show a very low navigation score when the light intensity is low, such as 
in f1, where NIx = −0.03. As the light intensity increases, the value of the NI increases in a non-linear way and it 
saturates for intensities higher than I > 20 W/m2 to a value below NIx = −0.3 (Fig. 1c). A heuristic expression that 
interpolates the dependence of the measured NI with the absolute light intensity can be written as:

= − . − −NI I e( ) 0 28(1 ) (1)x
I/10

This interpolating function captures the two salient features of this experiment. Firstly, as expected for a kine-
matical process based on a Markov chain, it approaches zero in the absence of external stimulus (I = 0). Secondly, 
it saturates for around I ≈ 20 W/m2 (Fig. 1c).

Moreover, larval navigation also depends on the slope of the intensity in the filter, I′ (Fig. 1d). Same as for the 
light intensity, in the absence of a gradient, navigation is quite random-like, NI (I′ ≈ 0) ≈ 0, and it shows satura-
tion for gradients steeper than I′ > 0.20 W/m2/cm (Fig. 1d). Again, a heuristic interpolating function that only 
depends on the gradient of the field of light can be written as:

′ = − . − − ′NI I e( ) 0 28(1 ) (2)x
I10

The larval speed (about 4 cm/min) is insensitive to different light conditions and shows no correlation to the 
intensity or the gradient of light (Fig. 1e), being the small variation of velocities statistically non-significant (NS). 
Therefore, consistently with our use of the NI, we dismiss that the saturation of the NI could be related to larval 
velocity.

Impact of directionality on phototaxis.  In a natural environment, light emitted from an external cue 
harbours directional as well as intensity information3. To test the relative importance of these two components, 
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we have projected a light pattern labelled as “Tilted” (Fig. 2a) in which the intensity linearly decreases along the 
y-axis, thus perpendicular to the light directionality along the x-axis. Contrary to the series of filters f1-f6, where 
both the light intensity and directionality drive larvae towards the same direction (−x axis), in the “Tilted” pat-
tern, both effects are decoupled into two components: the light intensity artificially decreases in the −y direction 
because of the projected filter, while at the same time it naturally decreases along the −x direction as an effect 
of the increasing distance to the projector (Supplementary Fig. S3). Consequently, in the “Tilted” pattern, NIy 
mainly accounts for larval navigation due to the variation of the light intensity, while NIx could be taken as a 
proxy of the larval navigation away from the light source. We next quantified larval navigation along the x− and 
y-axis independently (Fig. 2b). Wildtype larval phototaxis can be explained both by the light source avoidance 
(Fig. 2b, “Tilted” NIx) and by the avoidance of higher light intensities (Fig. 2b, “Tilted” NIy). However, we find 
a significant difference. Negative phototaxis in the “Tilted” pattern is driven along the x-axis, where light direc-
tionality is most important, more than three times higher (NIx = −0.25) than along the y-axis, (NIy = −0.07), 
which is mostly related to intensity. Since the latter value is quite small, we stablish its significance by compar-
ing with the NIy of visually-blind control glassj60 homozygous mutant larvae, which completely lack eyes (NIy 

Red LEDs

Camera

Projector

-
-
-

-
-

-

<I> (W/m2)

N
av

ig
at

io
n 

In
de

x,
 N

I x

N
av

ig
at

io
n 

In
de

x,
 N

I x

I’ (W/m2)/cm

-
-

-
-

x

y

θ°

θ° = 40°Δx

s

***
p=0.7

p=0.08

p=0.08
p=0.72

***
p=0.7

p=0.08

p=0.08
p=0.72

a. b.

c. d.

e.

5 10 15 20

0.25

0.20

0.15

0.10

0.05
0.05 0.10 0.15 0.20

0.25
0.20
0.15
0.10
0.05-

7.0

M
ea

n 
ru

n 
sp

ee
d 

(c
m

/m
in

)

NS
6.0

5.0

4.0

3.0

2.0
f1 f2 f3 f4 f5 f6

f5f4 f6

f1 f2 f3

Figure 1.  Larval navigation depends on the absolute light intensity and the gradient of the light field. (a) 
Experimental set up formed by the agarose plate (x − y plane), light source (projector located at x = 35.5, y = 0, 
and z = 28), forming an angle θ = 40° with respect to the agarose plate, and a video-recording camera. The larvae 
move on the agarose plate and their positions are recorded by the camera. The LEDs placed on the border of the 
plate aid in the image-acquisition process. The navigation index in the x direction (NIx) is calculated by dividing 
the distance moved in the x axis, Δx, by the total length of the stratified path, s. (b) Filters with different light 
intensities and gradients, f1–f6 (Supplementary Fig. S1 and Table 1). (c) NIx and standard deviation plotted 
against the average intensity over the plate for each filter, <I> (W/m2); the resulting curve shows that the 
efficiency of larval navigation depends on <I>. The dashed line is a least-squares interpolation to data used to 
guide the eye (see text). The values for the different filters were compared using the Welch t-test and Benjamini-
Hochberg was used to correct for multiple comparison. (d) Same as (c) as a function of the gradient for each 
filter, I′ (W/m2/cm). (e) Larval mean run speed for the filters f1–f6 takes values from 4.0 cm/min to 4.5 cm/min, 
which is a statistically non-significant difference (NS). The whiskers of the boxplots represent the range of the 
mean run speed for the different filters. Within the boxplots for each filter, the middle band is the median (50th 
percentile), and the length of the boxplots shows the 1st and 3rd quartile (25th and 75th percentile).
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glassj60 = −0.01, p–value = 0.015). This proves that even if the wildtype NIy for “Tilted” is small, it still remains 
light-intensity-driven taxis. Moreover, as expected, the NIx for wildtype larval navigation in this “Tilted” pattern 
is also statistically-significantly different from the NIx navigation of blind larvae (NIx glassj60 = −0.003, p < 0.001). 
Therefore, we conclude that both the NIx and the NIy navigation of wildtype larvae in the “Tilted” pattern are due 
to the visual system and not to other effects.

To further investigate the relationship between directionality and light intensity, we have generated a pattern 
labelled as “Pos” (for positive) where both effects reinforce each other in the same direction and another one 
where they compete in opposite directions along the −x and +x axis, labeled as “Neg” (for negative) (Fig. 2a). 
We observed that navigation is stronger for reinforcing intensity and directionality cues (“Pos”, NIx = −0.27) than 
for competing ones (“Neg”, NIx = −0.18). This also supports our finding from the “Tilted” pattern that the effect 
of light intensity is weaker than the directional one, since the difference in navigation indexes between “Pos” 
and “Neg” is just −0.09 (Fig. 2c and Table 1), which we interpret as the drive towards +x in “Neg” (intensity) 
only subtracting about one third of the drive towards −x in “Pos” (directionality and intensity). Furthermore, 
the effectively blind glassj60 mutant larvae have a NI that is statistically indistinguishable from zero (Fig. 2b,c), 
which proves that besides the different patterns of light, all other conditions are kept the same in all these three 
experiments.

We also explored larval navigation under conditions where the directionality factor is minimal. For this pur-
pose, we set a high-intensity projector forming an angle θ = 90° with the agarose plate (Fig. 3a).

We projected three different patterns. A pair of them compared a similar intensity gradient, but a different 
value of the average intensity (D90-f1 and D90-f2, Supplementary Fig. S5 and Supplementary Table S6). The 
other pair has a similar average intensity, but significantly different gradients (D90-f1 and D90-f3, Supplementary 
Fig. S5 and Supplementary Table S6).

In all these three filters, the WTCS larvae showed a statistically-significant navigation towards the darker areas 
of the agarose plate in comparison with the blind glass mutant larvae.

The difference between the larval navigation for the two filters which have the same slope is small (NIx = 0.12 
for D90-f1 and NIx = 0.14 for D90-f2) and statistically not significantly-different from each other (p-value = 0.42, 
Fig. 3b). The difference in larval navigation in the two filters that have a different slope is larger (D90-f1, 
NIx = 0.12 and D90-f3, NIx = 0.09). Even if the difference is not statistically significant (p-value = 0.24, Fig. 3c), a 
slight tendency can be seen where larvae have a more efficient navigation when exposed to a steeper light gradient 
(D90-f1, NIx = 0.12) than one that is not so steep (D90-f3, NIx = 0.09). This agrees with our model that predicts 
that without directionality, the gradient of light is the main driving force for taxis.

Table 1 provides values for experimental and simulated navigation indexes for all the projected filters.

Simulation of taxis as a function of intensity and directionality.  Next, we propose a statistical model 
for larval phototaxis that allows us to rationalize the experimental results presented above in a unified way. Such 
a model has been built taking into account the following two significant facts: (i) in the absence of light the 
observed kinematics is well described by a Markov chain resulting in a random walk characterized by NI = 0, and 
(ii) even for the higher intensities, the NI takes relatively low values, indicating that the external field amounts to 
a non-negligible but small perturbation on the kinematics. Dealing with a perturbation has the distinctive advan-
tage that we may assume quasi-equilibrium, same as in a diffusive regime on a physical system25. Under these 
conditions, we start building a Markov chain that reproduces well the kinematics in the absence of a field of light, 
and we describe the perturbation caused by the external field by biasing the Markov chain using weights that are 

Filter NIx NIy nix niy T

f1 −0.03 ± 0.02 −0.03 ± 0.01 −0.03 ± 0.004 −0.001 ± 0.005 4.93

f2 −0.08 ± 0.01 −0.03 ± 0.01 −0.08 ± 0.01 −0.002 ± 0.01 8.18

f3 −0.19 ± 0.02 0.02 ± 0.01 −0.19 ± 0.01 0.003 ± 0.01 10.06

f4 −0.18 ± 0.01 −0.01 ± 0.01 −0.18 ± 0.01 −0.003 ± 0.01 19.37

f5 −0.25 ± 0.03 0.01 ± 0.01 −0.25 ± 0.01 0.002 ± 0.01 16.51

f6 −0.23 ± 0.02 0.01 ± 0.02 −0.23 ± 0.01 0.003 ± 0.02 26.51

“Pos” −0.27 ± 0.02 −0.016 ± 0.01 −0.27 ± 0.01 −0.001 ± 0.01 10.95

“Neg” −0.18 ± 0.03 0.02 ± 0.01 −0.18 ± 0.01 0.001 ± 0.01 13.8

“Tilted” −0.25 ± 0.01 −0.07 ± 0.02 −0.25 ± 0.01 −0.07 ± 0.01 8.75

D90-f1 0.12 ± 0.04 0.03 ± 0.04 0.12 ± 0.01 0.00 ± 0.01 9.5

D90-f2 0.14 ± 0.05 0.01 ± 0.06 0.14 ± 0.01 0.00 ± 0.01 7.0

D90-f3 0.09 ± 0.04 −0.01 ± 0.04 0.09 ± 0.01 0.00 ± 0.01 9.5

Table 1.  Experimental and simulated navigation indexes for all the projected patterns of lights used in the 
experiments (f1–f6, “Pos”, “Neg” and “Tilted”). Experimental navigation indexes (dimensionless) in x (NIx) and 
y (NIy) directions, and the corresponding simulated navigational indexes, nix and niy for a given effective 
temperature T (W/m2) using α = − α( )f ( ) 1

180

4
. The standard deviation of the experimental NI was calculated 

for 10 experiments for each illumination condition with around 30 larvae each. The standard deviation for the 
simulated ni was calculated with 30 simulations for each case.
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appropriate to describe the experiments. This is achieved by imposing simple biological considerations operating 
on the larvae; in a transition between states r and r′ in the Markov chain, we define the following weights:

β α→ ′ = Δ → ′ + < > → ′r r r r r rW I I f( ) ( ) ( ( )), (3)

with

α α
= −







f ( ) 1

180 (4)

4

The first term of equation (3) gives the difference in intensity experienced by larvae while taking a step from 
position r to r′, which depends on the gradient of the intensity, ΔI = I(r) − I(r′). The second term is meant to 
describe the directional factor. This term is proportional to the average intensity <I> (in units of irradiance, W/m2)  
for each projected pattern, as it deals with the increased reaction of larvae against brighter sources of light, which 
is hinted by the experimental results in Fig. 1c. It carries an angular dependence through the function f of the 
direction α in the transition r → r′ (Fig. 4a). We have tried different models for f (α) that will be discussed below 
(Materials and Methods, Determination of f (α)) and eq. (4) shows the one that yields a best fit to the experimen-
tal angular distribution probabilities. Finally, β is a free parameter that allows us to balance the unknown relative 
importance between directionality and intensity gradient according to the experimental evidence. This parameter 

Figure 2.  Light directionality plays a big role in larval navigation. (a) Projected filters, “Tilted”, “Pos” and 
“Neg”, used to study the joint effect of light intensity and light directionality. All these filters were projected 
individually in the agarose plate and the light source was always in the +x side as shown in Fig. 1. Light intensity 
varied differently in all of them: in “Tilted” it increased along the the +y axis, in “Neg” it increased along the 
−x axis and in “Pos” it decreased along the −x axis. (b) Wild-type Canton S (WTCS) larvae (dark purple 
boxplot) in the “Tilted” filter have a statistically-significantly different navigation index both in the x direction 
(NIx = −0.25, p > 0.001) and in the y direction (NIy = −0.07, p = 0.0152) compared with the effectively blind 
glass mutants (grey boxplot) navigating in the same filter. The directionality effect (measured in “Tilted” by 
NIx) is stronger than the light intensity effect (measured by NIy) as most of the larval navigation is in the x axis 
(p < 0.001). (c) Navigation index in the x axis (NIx) (left graph) and in the y axis (NIy) (right graph) for the 
filters showed in (A) (“Tilted” in pink, “Pos” in blue and “Neg” in green) for both WTCS (dark purple) and 
the blind glass mutant larvae (grey). Larvae presented with the “Pos” filter have the highest navigation index 
(NIx = −0.27), as both the light intensity and light directionality drive larvae to navigate in the −x direction. 
Larvae navigating in the “Neg” filter have a lower navigation index (NIx = −0.18) as both effects drive them to 
navigate in opposing directions (light intensity towards +NIx and light directionality towards −NIx). The range 
of NIs is given by the whiskers of the boxplots. The median (50th percentile) is represented with the middle line 
and the 25th and 75th percentile are represented by the lower and top bands of the boxplot respectively. p-values 
are calculated with the Welch’s t-test and using the Benjamini-Hochberg procedure to correct for multiple 
comparison, where p < 0.001 is represented by ***, p < 0.01 ** and p < 0.05 by *.
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is obtained from a specifically designed pattern of light (“Tilted”, Fig. 2a), where the first term dominates the NI in 
one direction, while the second term dominates the NI in a perpendicular direction. Such a pattern provides two 
nearly independent experimental values for the NI that can be used to determine the relative importance of the 
two terms in eq. (3). For the case the projector was used forming a 90° angle with the agarose plate, we can write 
β = β′ ∗ cos θ, which takes into account the projection of the source of light (projector) on the larval eyes. Notice 
that eq. (3) is used inside an iterator that propagates the simulated larvae from the origin to the edge of the plate 
through a succession of steps going from r(t1) to r′(t2), t2 > t1.

Starting from a state r, the probability of accepting the new state r′ is then defined by the factor, − → ′e r rW T( )/  
(Materials and Methods, generalized Metropolis-Hastings), where T is a parameter that, following a thermody-
namics simile, plays the role of an effective temperature (measured in the same units as W, W/m2). We find that 
the larval effective temperature has higher values for more intense light fields (f6 compared to f1, Fig. 4b). We 
interpret the consequences of this behaviour in the Discussion section. The error bar for T corresponding to the 
darkest filter (f1) in Fig. 3b is larger than for the other cases because in the absence of light, the larval movement 
ceases to be targeted and becomes similar to a random walk, where T is not meaningful anymore and cannot be 
determined. In statistical terms, the effective temperature is obtained from a probability that depends on the 
quotient → ′r rW

T
( ) . In the absence of an external field we have W = 0, and any value of T corresponds to the same 

probability so its value is not well defined (unbiased Markov chain).
The biased Markov chain is not time reversible (principle of detailed balance) since it is driven by an external 

field that imposes a definitive direction over time. However, in a similar process to the equilibration pattern fol-
lowed by a thermodynamics system, we have found both in our simulations and in our experiments that impor-
tant kinematical indicators, like the NI, reach a steady state after some initial fluctuating steps. Therefore, these 
indicators converge to a well-defined value and can be safely compared between simulations and experiments.

The angular part in W, f (α), is a dimensionless function chosen to obtain the best possible fit to the exper-
imental angular probability distributions. We have found that a good choice for f (α) is to make it proportional 
to a power of the angle αn, where α is the angle formed in the plane of the agarose plate between the attempted 
direction r′ and the x axis (Fig. 4a), and the power n can be taken as a free parameter that is chosen to obtain the 
best fit to experiments. In particular, we have found that n = 4 is an optimal value. Possible choices for f (α) are 
described in more detail below (Materials and Methods, Determination of f (α)).

Our statistical model yields more targeted paths when the intensity and its gradient are higher (Fig. 4c, f6 
compared to f1) which leads to higher values for NI. Furthermore, we notice that simulated larval paths look 
similar to the experimental ones (Fig. 4d) although such a similarity cannot be pushed too far since it cannot be 
precisely quantified. On the other hand, the similarity of the angular distribution for the experimental larvae and 
the simulated ones proves that our model quantitatively reproduces experimental results under different light 
conditions. Figure 4e shows the agreement between experimental (grey curves) and simulated (green curves) 
angular distributions obtained with the non-linear α = − α( )f ( ) 1

180

4
 for filters f1 to f6.

Discussion
Larvae respond differently to different intensities and light gradients.  Our results show that larval 
navigation depends on light intensity and its gradient and, that larvae navigate more efficiently (larger NI) when 
the light intensity is higher and when the gradient of the intensity is steeper. Furthermore, this non-linear behav-
iour (Eqs (1) and (2)) saturates for intensities higher than I > 20 W/m2 (Fig. 1c) and for intensity gradients higher 
than I′ > 0.2 W/m2/cm (Fig. 1d). As commented above, we do not assign such a saturation behaviour to a lack of 
physical response from the larvae since the mean velocity is nearly independent of the illumination conditions, 
but rather to a limited capacity for processing information in the underlying neural network in the larval brain. 
From a biological point of view, larvae make decisions to take a step from position r to r′ or not, based on the local 
conditions surrounding them. These conditions are the only ones that larvae can probe with their limited visual 

Figure 3.  Larval navigation in the absence of directionality. (a) Source of light (projector) is located in a 
zenithal position (θ = 90°) (b) D90-f1 compared with D90-f2: different absolute intensities but same gradient 
result in similar NI (c) D90-f1 compared with D90-f3: similar absolute intensities but different gradients affect 
the navigation index in agreement with the prediction of the proposed model.
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Figure 4.  The model yields simulated larvae with similar navigation characteristics to the experimental larvae. 
(a) Coordinate axis used within the agarose plate to define larval movement. The angle α was defined within the 
x − y plane of the agarose plate with respect to the x axis, where 0° and 180° are the direction towards and away 
from the light source respectively. (b) The effective temperature T (W/m2) increases proportionally to the 
average intensity <I> (W/m2) of the light field. The dashed line is a linear interpolation to guide the eye. The 
error bars for the effective T have been calculated using the experimental error for the navigation index (NI) and 
calculating the T for NI plus and minus this error. (c) Simulated larval paths for f1 and f6. Each path shows one 
simulated larva, which starts at (0, 0) and moves towards the −x side of the plate, avoiding the projector which 
is located on the +x side of the agarose plate (right hand side). The model yields simulated larval paths 
reflecting the stochastic underlying Markov chain, but also targeted navigation to get away from the light source 
and from the regions of high light intensities. Taxis is more targeted for higher intensity conditions (f6) same as 
observed in the experiments. (d) Experimental larval paths for the f6 filter (30 experimental larvae are shown); 
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organ and the only ones that they can process in their brains without requiring an expensive memory process 
to record a string of magnitudes all along their paths. Saturation regarding the light intensity can be understood 
from a limited ability to process the input signal of too many photons. On the other hand, the experimental evi-
dence that larvae navigate differently depending on the gradient of the intensity implies that larvae must read the 
gradient of the field of light (I′). Such an operation needs to measure the intensity in two close points and then 
proceed to compare them. Therefore, it involves a memory process if it is to be done at two subsequent times along 
the larval path.

Similarly, in the model, whether a transition in the Markov chain happens or not is based on variables that can 
be locally obtained using only the larval starting and intended positions.

Distinct larval directional tendency to move away from the light source.  The combination of our 
experiments with our statistical model shows the detailed relationship between light intensity and directionality 
for larval phototaxis for the first time. The analysis of the “Tilted” pattern by our statistical model tells us that 
the main reason for larval phototaxis, in about a one to three ratio, is to get away from the source of light, rather 
than to simply move to darker regions. This is in part due to the saturation process shown in Fig. 1c,d, that limits 
the effect of the first part in eq. (3). The weights defined in our model show, in a quantitative way, that larvae can 
process the relative orientation of light. Such a capacity to discriminate different angles explains the larval ability 
to move maximizing the distance to the source of light by simply giving a higher probability to angles around 180° 
(away from the light source) than to angles around 0° (towards the light source).

We have also shown that larvae still navigate in the absence of directionality (Fig. 3) and that the difference in 
navigation in the absence of directionality seems more triggered by a different light intensity slope rather than by 
absolute intensity. The fact that under these conditions the slope is more important for larval navigation than the 
absolute light intensity agrees with the prediction of our model.

Larval phototaxis and the proposed statistical model.  An interesting feature of our statistical model is 
that it only requires three adjustable parameters: the relative balance between intensity and directionality β, eq. (3);  
the power n telling how sensitive the larvae is to changes in the light direction, eq. (4); and the effective tempera-
ture T that determines the stochastic exploration (see eq. (5) below). The reason for needing so few parameters is 
probably linked to the general principles governing the generalized Metropolis-Hastings algorithm, which takes 
care of the statistical behaviour in a way that is known to work well for many different complex systems found in 
nature. The model is based in principles so well accepted in different contexts that except for particular details in 
eq. (3), it should work for other organisms and other sensory cues.

The related Metropolis-Hastings algorithm has been successfully used to efficiently locate global minima of 
combinatorially-complex objective functions such as the travelling salesman problem18. In contrast, we remark 
that our biological experiments mostly bring information about larval decisions taking into account local data 
(intensities and gradients in the immediate surroundings of the organism) and proceed with a limited amount of 
neural circuitry. Therefore, the weights governing the simulation in eq. (3) should be interpreted more as a local 
solution to the problem rather than a global one.

The value of the effective T in the simulations is adjusted so that the currents of larvae going towards the light 
source and in the opposite direction match the experimental NI measured under some particular light conditions. 
Therefore, this T determines a quasi-equilibrium condition, similar to the one found in a chemical reaction where 
reactants convert into products, and vice versa, in ratios that match the actual production at a given temperature. 
On the other hand, such a parameter lends itself to a biological interpretation; it controls the larval probability of 
taking risks by either going to higher intensity regions or by getting closer to the source of light. Such a behaviour 
is known to be a useful way to avoid being trapped in local minima, as it has been proved when simulated anneal-
ing has been applied to find the global minimum of a given objective function. Our results show that the effective 
temperature grows with light intensity and its gradient. These are conditions that from a biological point of view 
should require more vigorous action from the organism to quickly find a more convenient position. In turn, when 
conditions are not so harsh, organisms prefer taking conservative decisions, hardly moving to worse regions in 
order to explore their environment more efficiently.

Regarding the different models that we have tried for f (α), the functions that reproduce the experimental data 
better are the power-like ones. Linear functions of the angle do not agree well with experiments; all reasonable 
candidates have been highly non-linear functions. Therefore, the larval behaviour reveals a complex and rich 
neural network behind the process of taking decisions, which works on a non-linear function, which is a common 
feature to neural circuits organized in layers26.

So far, the model does not take into account the larval dimensions. However, it would be possible to add terms 
to the weights W (r → r′) in eq. (3) to take into account the size of the larva, for example, by artificially increas-
ing the value of these weights when two larvae would overlap on the new position r′. In this case, we could take 

these paths are similar to the simulated ones seen in (c). (e) Comparison of the relative probability of orientation 
with respect to the light source (located at the right, at 0°) both for simulated (green) and experimental (grey) 
larvae for the different light conditions (f1, f2, f3, f4, f5 and f6). Larvae are oriented at 180° when they navigate 
away from the light source, and at 0° when they navigate towards the light source. For the analysis, both the 
experimental and the simulated larval angular probability distributions, P(α), were binned in 30°. The simulated 
larvae have been calculated using α = − α( )f ( ) 1

180

4
. Error bars are shown for the experimental angular 

distributions and they were obtained from the Matlab output files from the MAGAT Analyzer.
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into account the fact that they cannot go to places already occupied by other larvae and even the attraction or 
repulsion between individuals could be modelled27,28. This would open the possibility to study simulated group 
behaviour, although at a higher computational cost.

An additional feature of larval taxis, studied for chemotaxis, is weathervaning, which is defined as miniature 
head-sweeping during runs resulting in curved tracks29. Whether weathervaning plays a role in phototaxis or not 
remains unclear. Since our statistical model is based on the local values of weights for the underlying Markov 
chain, weathervaning is not directly taken into account. The model is based on larval runs and turns with a single 
underlying mechanism governed by the weights in eq. (3). Moreover, Davies et al.30 have studied weathervaning 
for larval chemotaxis to conclude that it is the least crucial navigational parameter according to their model.

Relevance for the neuronal network involved in larval phototaxis.  Statistical models of larval nav-
igation provide the first step towards understanding the underlying mechanisms that operate in the larval neu-
ronal network to lead to decision-making. Next steps in understanding the neuronal basis of visual navigation 
may include to combine current information of the connectome with behavioural data and to correspondingly 
adapt a mathematical model31,32. This generalized Metropolis-Hastings-based model could also be used for other 
stimuli, the only requirement being that the intensities and gradients of these stimuli should be measured and 
quantified properly to define the details of the weights in eq. (3). Once these weights have been found for other 
stimuli, multi-sensory experiments could be carried out to see if these factors are additive towards larval naviga-
tion as suggested by Gepner et al.12.

Materials and Methods
Fly strains.  Wild-type Canton S (WTCS) D. melanogaster larvae (courtesy of R. Stocker), and glass60j mutants 
(Bloomington 509) were used for these experiments. All the fly stocks were kept at 25 °C in a 12-hour light-dark 
cycle. The stocks were fed with a conventional cornmeal medium containing molasses, fructose and yeast.

Behavioural experiments.  Larvae were selected for experiments after four days since the egg-laying of 
the parental flies, ensuring that they would correspond to the 3rd larval stage (L3). Larvae were kept for at least 
10 minutes in the dark with food before the phototaxis experiments were carried out. Thirty larvae were isolated 
from the food for each experiment and placed in water droplets with a paintbrush. The maximum time for the 
larval selection was 10 minutes and it was done under red light conditions. The larvae were left in the agarose 
plate without food and their tracks were recorded for 11 minutes. The first minute was not taken into account to 
let the larvae get used to the new conditions. The behaviour experiments were always carried out within the larval 
12 light-hours.

Tracking system.  The experimental setup for all the experiments carried out with the projector forming a 
40° angle (f1–f6 and Tilted, Pos and Neg) consists of a 23 × 23 cm agarose plate where the larvae can move freely 
(Fig. 1a). Larval movements were recorded with a Basler acA2500-14 gm camera equipped with a 1:14/12.5 mm 
Fujinon lens and placed directly above the tracking arena. The lens was incorporated with a red filter (635 nm, 
Qualimatest SA, Geneva, Switzerland). The agarose plate was illuminated with red LEDs that do not influence 
larval behaviour but enable the image recollection with the camera (Fig. 1a).

For the experiments f1–f6 and Tilted, Pos and Neg, an EB U04 projector was located at x = 35.5 cm, y = 0 cm, 
z = 28 cm. The projector was equipped with a 2″ Square BG40 coloured glass bandpass filter 335–610 nm and was 
placed forming a 40° angle with respect to the x − y plane formed by the agarose plate (zenithal angle, θ, Fig. 1a).

The experiments where the projector formed a 90° angle (D90-f1, D90-f2 and D90-f3) were carried out using 
a FIM table33, where we placed a 32 × 32 cm agarose plate. An ac2500-14 gm Basler camera with a 1:1.4/12.5 mm 
FUJINON lens was used to image. The lens was equipped with an LP 830 Near-IR longpass filter. The FIM table 
has 24 infra red LEDs on each side of the table to enable image acquisition with the camera due to the Frustrated 
Total Internal Reflection (FTIR) principle.

For these experiments, an Optoma X600 projector was used and it was placed forming a 90° angle (zenithal 
angle, Fig. 3a) with the agarose plate. The projector was located at x = −11.5 cm, y = 0 cm, z = 80 cm. Same as 
before, a 2″ Square BG40 coloured glass 335–610 nm bandpass filter was placed in front of the projector.

The custom-made LabView software3,34 was used to record the larval movies.

Light intensity measurement on the agarose plate.  Different light patterns were projected to obtain 
the different experimental scenarios against which the simulations could be validated. The intensity field var-
ied in a different way in all of them. f1–f6 were uniform filters where the intensity variation was merely due to 
variation of the photon flux with the distance to the projector (Figs 1b and S1). In the patterns “Pos”, “Neg”, and 
“Tilted” used to explore directionality, an artificial modulation in the light gradient along the x or y directions was 
introduced and therefore there was a steeper change in light intensity. In “Pos”, the maximum light intensity was 
closer to the light source, same as in all the f1–f6 patterns, but the light intensity decreased along the −x axis with 
a gradient that was about 5 times steeper (Supplementary Tables S2 and S4). “Neg” was a 180° rotation of “Pos”; 
therefore, the intensity field decreased along the +x axis and the brightest area was located further away from 
the light source. “Tilted” was a 90° rotated version of the “Pos” pattern. In this case, the light gradient artificially 
varied along the y direction, therefore the intensity field decreased along the −y axis (Figs 2a and S3c).

Light intensities created by the different projected patterns were measured on the agarose plate using an Ocean 
Optics USB400 spectrometer. Three equally-spaced points along the x axis (y = 0) were measured for the filters 
used to study light intensity (f1-f6, Supplementary Fig. S1) and nine points equally covering the x and y directions 
for the patterns related to directionality (“Pos”, “Neg”, and “Tilted”, Supplementary Fig. S3). Several measurements 
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were taken for each point on different days and standard errors were calculated. The total intensity (W/m2) was 
obtained by integrating these spectra between 380 and 570 nm to include the blue and green wavelength regions 
of the spectrum relevant for Rh5 and Rh6 absorption spectra, but to exclude the red one (Supplementary Figs S1 
and S3). Integrals have been performed by first defining an interpolating polynomial going through all the exper-
imental points, and then using an accurate Gaussian-Konrod rule for integration35.

The expected variation of light intensity on the plate by a uniform source of light is described by assuming 
a steady rate of generation of photons. For the actual parameters of the geometrical setup, this has the impli-
cation of an approximate linear variation, which has been corroborated by measuring intensities on the plate 
(Supplementary Figs S1 and S3). Therefore, the spatial variation of intensities has been represented by a linear fit 
with

= + +I x y a a a( , ) (5)x y0 1 1

where a0 is the value at x = y = 0 and a1x, a1y are the slopes along the x and y directions. Values for these coeffi-
cients are given in Supplementary Tables S2 and S4.

The air conditioning was turned on at 25 °C during the experiments to ensure a constant temperature in the 
agarose plate. Measurements of the temperature on the plate always yielded temperatures in the interval between 
25 °C and 26 °C.

Tracking data analysis.  The acquired images of the larval tracks were analysed with the MAGAT Analyzer3. 
The features of each larva (head, tail and midline) were extracted from the videos and these data were analysed 
using a custom-made software written in MATLAB36.

Statistical analysis of the data was calculated using the Welch’s unpaired t-test to compare results with dif-
ferent genotypes and a regular unpaired t-test was used to compare larvae with the same genotype. The 
Benjamini-Hochberg procedure was applied to correct for multiple comparison. The statistical difference of 
results compared with zero was calculated using a one-sample t-test.

Generalized Metropolis-Hastings chains.  In our simulations, we assign transition probabilities between 
states in the Markov chain according to the Boltzmann distribution. Probabilities are assigned in the following 
way37:
	 1.	 We keep a description of possible system configurations and the options presented to the system. These are 

determined by giving:

		  a.	� The initial position of the larvae, r = (x, y) and the final attempted position, r′ = (x′, y′), where 
x′ = x + Δx and y′ = y + Δy

		  b.	 The light intensity at both points: I(r) and I(r′)

	 2.	 A generator of random changes in the configurations. We chose the next position using two independent 
Gaussian deviates with zero mean (Δ = 0) and standard deviation one (σ = 1) for the independent 
increments in the x and the y direction, Δx and Δy respectively. This defines a discrete-time continu-

ous-space Markov chain of transition kernel ′ = − ′−

r rk e( , )0
r r 2

2 .
The standard deviation sets up a length scale that we adjust to the observation that the larvae approxi-
mately advance a distance equivalent to the length of its body in about ten moves. Therefore, the standard 
deviation is equivalent to approximately 0.1 mm.

	 3.	 The larval local moves are described by a discrete-time continuous-space Markov chain of transition Kernel:

→ ′ = → ′ × − → ′
r r r rk k e( ) ( ) (6)

r rW
T0

( )

where W(r → r′) = ΔI(r → r′) + β < I > f(α(r → r′)) (Eqs 3 and 4). Algorithmically, the new r′ is chosen as follows:

•	 Choose r′ according to the Gaussian model (k0), r′ = r + μ, where μ is a bivariate Gaussian deviate with 
zero mean (Δ = 0) and standard deviation (σ = 1) in both dimensions.

•	 If W(r → r′) < 0, then r′ is accepted with probability P = 1
•	 If W(r → r′) > 0, then r′ is accepted with probability = − → ′

P e
r rW
T

( )

	 4.	 A control parameter T. This parameter controls the weights so that the simulation can reproduce the 
experimental navigation index for a given light intensity pattern. T has irradiance units, same as W, and in 
a thermodynamics system it would be the equilibrium temperature. High values of T leads to small values 
of the argument in the exponential weight − → ′

e
r rW
T

( )
, and the related transition step will occur with a 

probability near to 1 (W > 0).

The experimental recording stops tracking larvae that hit the border of the agarose plate. Accordingly, we 
introduce a similar boundary condition in our simulations and we stop tracking larvae that after N accepted steps 
have reached a distance to the origin greater or equal to 1150 σ ≈ 11.5 cm. Depending on the illumination condi-
tions, this usually happens after a few thousands accepted steps. At that point, the Markov chain has an absorbing 
state. We have checked that the averaged NI and the angular probability distributions reach a quasi-stationary 
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state before the experiment is terminated. For a given light pattern, each simulation was carried out with 30 indi-
vidual larvae, and the average NI and its standard error have also been computed for a 30 larvae ensemble, making 
sure that the given NI is statistically significant.

Determination of f(α).  The angular part in eq. (3) has been modelled to take into account the experimen-
tal angular distributions. The angle α is measured with respect to the x axis, being 0° the direction towards the 
projector and 180° the direction away from it (Fig. 4a). Two types of models for f (α) were tried: power-like mod-
els proportional to αn and models based on cosn (α), taking into account that cos(α) = Δx/Δl (Supplementary 
Fig. S8). Each model was assessed calculating the standard deviation of the angular probability distribution of the 
simulated paths compared to the experimental ones. Both the experimental and simulated paths were binned in 
30° angles and the probabilities for both experimental and simulated cases were compared. The best fit to exper-
iments across all the different projected patterns was found for f(α) = 1 − (α/180)4, as shown in Supplementary 
Table S7, where we give the root-mean-squared (RMS) deviation between experimental and simulated angular 
distributions for all models tried for f (α).

Determination of β.  The value for the parameter β (β = 1.4/100) was determined by taking the “Tilted” 
pattern as a case where the two terms of the objective function (intensity and directionality) are most decoupled. 
Consequently, first the NIy in the “Tilted” pattern was simulated assuming that only the first term in the objective 
function would exist. That procedure yields a value for the effective T. Afterwards, the experimental value for NIx 
was used to find a value for the parameter β. As a final consistency check, both the NIy and the NIx were simulta-
neously recalculated using the two parts of the objective function, obtaining a refined value for T that fits the two 
available experimental values at the same time.

Data availability.  The datasets generated and analysed furing the current study are available from the cor-
responding author upon request.
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