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An approach to predict the height 
of fractured water-conducting zone 
of coal roof strata using random 
forest regression
Dekang Zhao1,2 & Qiang Wu1,2

Water inrushes from coal-roof strata account for a great proportion of coal mine accidents, and the 
height of fractured water-conducting zone (FWCZ) is of significant importance for the safe production 
of coal mines. A novel and promising model for predicting the height of FWCZ was proposed based on 
random forest regression (RFR), which is a powerful intelligent machine learning algorithm. RFR has 
high prediction accuracy and is robust in dealing with the complicated and non-linear problems. Also, it 
can evaluate the importance of the variables. In this study, the proposed model was applied to Hongliu 
Coal Mine in Northwest China. 85 field measured samples were collected in total, with 60 samples (70%) 
used for training and 20 (30%) used for validation. For comparison, a support vector machine (SVM) 
model was also constructed for the prediction. The results show that the two models are in accordance 
with the field measured data, and RFR shows a better performance on good tolerance to outliers and 
noises and efficiently on high-dimensional data sets. It is demonstrated that RFR is more practicable 
and accurate to predict the height of FWCZ. The achievements will be helpful in preventing and 
controlling the water inrushes from coal-roof strata, and also can be extended to various engineering 
applications.

In mining activities, mine water has always been a great threat to the coal mine safety. According to statistics, 
more than 25 billion tons of coal resources are at the risk of water inrushes in China1. With increased mining 
depths in recent years, the hydrogeological conditions of mining become more and more complicated, and the 
water inrushes from coal-roof strata are increasingly serious2,3. During coal extraction, the strata overlying the 
coal seams move significantly downward due to the rock pressure, forming multiple fractures and fissures in the 
coal-roof strata. Once these fractures are interconnected and the impermeability of aquitards is destroyed, various 
kinds of water bodies from coal-roof strata, including surface water, goaf water and aquifer water, will flow into 
the mining area through the fractures, resulting in water-inrush accidents. The accidents may cause tremendous 
loss of life and property. Therefore, in order to effectively prevent water inrushes and ensure the safe production 
of the coal mines, it is essential to accurately predict the height of fractured water-conducting zone (FWCZ) of 
coal-roof strata.

Aiming at the prediction of the height of FWCZ, scholars proposed many methods, including empirical for-
mula method, field measured method, theoretical calculation, numerical simulation and so on4–12. In the early 
1980s, Liu4 proposed an empirical formula by the regression analysis of the limited field measured data col-
lected from several large-scale coalmines in North China. But the formula only considers a few factors so that 
it is unable to precisely reflect the complicated development mechanism of the water-conducting fractures. For 
this problem, Hu5 summarized the nonlinear statistical relation between the FWCZ and multiple mining factors 
including mining height, hard-rock lithology ratio, working face length, mining depth and so on. Shi6 analyzed 
the movement characteristics of the overlying strata and the division theory of the “four zones” in overlying 
strata, then proposed theoretical formulas considering multiple mining factors. To ensure the mining safety of 
shallow coal seams under water-rich aquifers and determine the development of the fractured water-conducting 
zone, Liu7 built a numerical model to analyze the damage zone distribution in Flac3D model. Furthermore, the 
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mathematical theories were gradually adopted in this field. For instance, Yang8 used the analytic hierarchy process 
and the fuzzy cluster analysis method to predict the height of FWCZ. Generally, the theoretical calculation model 
and the numerical simulation have the problems of over idealization and the difficult selection of the mechanical 
parameters. Meanwhile, the methods were also combined to determine the height of FWCZ. Based on the tradi-
tional empirical formula, the crack-measure system and the borehole television detecting system, Gao9 developed 
the theoretical calculation, quantitative analysis and detection of the FWCZ of coal-roof strata. At present, the 
most effective method is the field measurement by using borehole video camera system, water injection system 
and other direct monitoring equipment. However, these systems require large quantities of engineering with 
enormous expenses.

In recent years, with the rapid development of artificial intelligence technologies, the application of machine 
learning algorithms (MLAs), such as decision tree (DT), support vector machine (SVM), artificial neural network 
(ANN) and so on, to predicting the height of FWCZ has gradually been a trend13–17. For example, Sun13 proposed 
a synthetic calculation system that coupled genetic algorithm (GA) and support vector regression (SVR). This 
system reflected the relationship between the height of FWCZ and the mining factors effectively. Wu14 presented a 
radial basis function neural networks (RBFNN) model to predict the height of FWCZ for fully mechanized long-
wall mining with sublevel caving. However, these MLAs also have certain limitations in practical applications. 
For instance, numerous data pre-treatment is required in the DT model, and it tends to fall into local optimum; as 
for the ANN model, it has the shortcomings of over learning, slow convergence speed and local minimum value2.

Considering all the aforementioned problems, this paper proposed a predicting model of the height of 
FWCZ based on random forest regression (RFR), which is a non-parametric regression approach introduced 
by Breiman18 in 2001. RFR is a nonlinear modeling tool, coupling the main advantages of two major learning 
techniques: bagging and random feature selection18. It is suitable for the problems with unclear priori knowl-
edge and incomplete data. Further, unlike simple DTs and neural networks (NNs), RFR runs efficiently on 
high-dimensional data sets. But if there are a lot of irrelevant variables, the DTs does not perform well. The 
objective of decision tree is to find the interaction between variables, and the weakness of the neural network is its 
inability to explain its reasoning process and reasoning basis18. Compared with the traditional intelligence algo-
rithms, such as ANN and SVM, RFR has high prediction accuracy and good tolerance to outliers and noises18,19. 
Because of its superior performance, RFR has been widely applied to various fields such as biology, medicine, 
economics, management, remote sensing and other fields in recent years19–25. RBFNN has strong nonlinear fit-
ting ability, it can map any complex nonlinear relation, and its learning rule is simple, which is easy to realize by 
computer. However, the theory and learning algorithm need to be further improved26–29. The group method of 
data handling (GMDH)-type neural network does not need the preset network structure, and the classification 
rules are expressed by some simple polynomials. However, the GMDH training algorithm can obtain good results 
only in the case that the noise and interference are distributed by Gaussian, otherwise, the training algorithm 
often overfits the network30,31. In the current study, RFR was used to predict the height of FWCZ. To verify the 
effectiveness of the generated RFR model, it was applied to Hongliu Coal Mine in Northwest China. Also, a SVM 
model was constructed for comparison. The results indicate that the RFR model has a better performance, and 
the prediction results are in good accordance with the field measured data observed using borehole video camera 
system (BVCS).

Material and Methods
Study area. The Hongliu Coal Mine is situated in the middle east of the Ningxia Hui Autonomous Region 
in Northwest China, approximately 80 km northwest of Yinchuan City (Fig. 1). The mine is distributed in the 
NW-SE direction, and it has an area of 79.55 km2 with a length of 15 km and a width of 5.5 km. The general ele-
vation is approximately 1400 m above sea level. Topographically, the mine is located in the west of Mu Us Desert, 

Figure 1. Location of the study area and geological structure map.
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and the landform in the study area is classified as hilly terrain. It has a semiarid-desert continental-monsoon 
climate with a mean annual precipitation of 216.3 mm.

Most areas of the mine are covered by aeolian sand of Quaternary, except that sporadic bedrocks are exposed 
in certain local regions in the southwest of the mine field. According to drilling data, the main strata include: 
Shangtian Formation of Upper Triassic, Yan’an Formation of Medium Jurassic, An’ding Formation of Upper 
Jurassic, Qingshuiying Formation of Paleogene (Oligocene) and Quaternary.

Hydrogeologically, aquifers in the mine area can be divided into five groups according to the type of aquifer 
media and void: Quaternary loose alluvial pore aquifer group; Cretaceous rock pore and fractured aquifer group; 
Yan’an formation (Jurassic System) rock pore and fractured aquifer group; Upper Triassic fractured aquifer group; 
Permian sandstone and Carboniferous thin limestone aquifer group.

Structurally, the overall structural complexity in this area is moderate. In general, the Hongliu Coal Mine takes 
on a linear structure in NW direction. The crisscrossed faults are widely distributed in the study area. According 
to statistics, 44 faults and five large-scale folds have been exposed by drilling in the study area.

The coal-measure strata in the mining area are in the Yan’an formation of medium Jurassic System. There are 
18 coal seams. The main stable and minable coal seams are No. 2 and No. 4 with the average thickness of 4.61 m 
and 2.97 m, respectively.

Division zones of the coal-roof strata after mining. After the mining of the coal seam, the coal-roof 
strata are destroyed in various degrees, and have an obvious zoning property. According to the damage degrees 
and the movement characteristics, the coal-roof strata are divided into three zones: caved zone, fractured zone 
and continuous bending zone4,17,32, as illustrated in Fig. 2. The fractured water-conducting zone studied in this 
paper consists of the caved zone and fractured zone.

Caved zone. Caved zone is at the bottom of the overlying strata. With the moving forward of the mining work-
ing face, the immediate roof strata bear imbalance stress. When the load applied on the strata exceeding their 
bearing capacity, fractures generate. Finally, the strata crush, and the rocks irregularly fall into the void zone until 
it is filled. Thus, if an aquitard is located within the caved zone, its impermeability will become invalid in different 
degrees. So the caved zone provides ideal passages of the water from above aquifers to the working face.

Fractured zone. Fractured zone is above the caved zone, and the strata in this zone still maintain a certain conti-
nuity compared with the caved zone. The vertical fractures, inclined fractures and horizontal abscission-layer are 
heavily developed and distributed in the rocks at the bottom of this zone. The damage extent gradually decreases 
from the bottom of the fracture zone to the upper part, leading to the decrease of the fractures upward to the 
integrity rocks. This zone makes it possible that the fractures connect the aquifers, causing water inrushes from 
coal-roof strata. This zone is the main part of the water-conducting zone.

Continuous bending zone. Continuous bending zone refers to the strata between the fractured zone and the 
ground surface. The strata in this zone present the basic properties of downward movement without fractures 
developed within the rocks, especially the soft rock and loose soil strata. The movement of the strata almost 
hardly affects the impermeability of the aquitards in this zone, and it plays a protective role of the aquitards. A few 
fissures may appear in certain tension positions, but in general the strata maintain continuous17.

Random forest regression (RFR). RFR, introduced by Breiman in 2001, is an ensemble learning algorithm 
of multiple regression trees. Compared with simple decision trees, RFR runs efficiently on high-dimensional data 
sets, and it is more accurate and robust to noise18,19. Besides, RFR has great advantages over traditional intelli-
gent algorithms18–24. On the one hand, it has a very fast learning process and can handle a large number of input 
variables while assessing the importance of variables. On the other hand, when building a forest, it can internally 
estimate the generalization error and estimating missing data can maintain high accuracy even if most of the data 
is lost.

RFR is an ensemble of regression trees (RTs) to predict the value of a variable. It draws multiple samples based 
on the bootstrap resampling method from the original samples, and then constructs the decision trees model for 
the samples. Finally, the prediction output is obtained by calculating the average value of all prediction trees18. 

Figure 2. Division zones of the coal-roof strata after mining.
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Figure 3 shows the sketch map of the RFR structure, and the specific implementation procedures of the RFR 
algorithm are as follows:

(1) Draw k samples randomly from the original training set X (N samples) using bootstrap resampling 
method, and then k regression trees are constructed. In this process, the probability that each sample wouldn’t be 
drawn is p = (1−1/N)N. If N tends to infinity, p ≈ 0.37, as indicates that about 37% of the samples in the original 
training set X are not drawn, these data are called out-of-bag (OOB) data. These OOB data can be used to be test 
samples.

(2) For k bootstrap samples, k unpruned regression trees are created respectively. In the tree growing process, 
for each node, m attributes are randomly selected from the total M attributes as internal nodes (m < M). Then, 
according to the minimum Gini index principle, an optimal attribute is selected from m attributes as a split vari-
able to make the branches grow.

(3) The generated k regression trees constitute the final random forest regression model. The model estimation 
performance could be evaluated based on the indices: mean square error of OOB (MSEOOB) and coefficients of 
determination (RRF
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where n is the total number of the OOB samples; yi is the observed output value; ŷi is the predicted output 
obtained by the generated RFR regression model; y

2σ̂  is the predicted variance of the OOB output.

Variables importance measures. The RFR model provides two ways to calculate the importance degree 
of each variable index: mean decrease in Gini index and mean decrease in accuracy18–20.

The mean decrease in Gini index means the total impurity decrease of each variable at each tree node. The 
method evaluates the importance of the variables by calculating the Gini index based on the Equation (3), and 
then accumulates the total impurity decrease of all the trees.
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where pi is the probability of the samples belonging to the i-th leaf; N is the number of the leave; IGini is the Gini 
index.

The basic principle of the OOB error estimation method is: when the noise is added to a related feature which 
plays an important role in the accuracy, the prediction accuracy of the RFR will decrease significantly. The main 
procedures are as follows: firstly, for the generated RFR, the OOB error et of each decision tree is calculated 
according to the OOB data; secondly, the j-th eigenvalue Xj of the OOB data is changed randomly (namely the 
noise interference is added artificially); then, the OOB data with noise are used to test the performance of the RFR 
and a new OOB error et

j is obtained. Finally, the importance degree of the variable Xj can be calculated according 
to the Equation (4):
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where Xj is the j-th eigenvalue of the OOB data; et is the initial OOB error; et
j is the OOB error with noise; n is the 

number of the decision trees; I(Xj) is the importance of the variable Xj. The greater the OOB error caused by the 
change of the variable Xj, the more the decrease in accuracy, indicating the more important the variable is.

Construction of the main controlling factors system. The development of FWCZ of coal-roof strata 
is influenced by multiple factors. And it has a complex nonlinear relationship with the strata geological features, 

Figure 3. Sketch map of the RFR structure.
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rock mechanics and mining conditions17. Based on a large number of field observations for fully-mechanized 
mining and theoretical studies, five main controlling factors were selected, including mining depth, mining 
height, lithology type of the overlying strata, working-face length and coal-seam dip angle. A brief overview of 
the five factors is described as follows.

Mining depth. According to the theories of mining engineering geology and rock mechanics, the situ stress of 
the strata around the underground excavation space has a great impact on the destruction scope of the surround-
ing rock. Generally, the primary rock stress of the surrounding rock is proportional to the mining depth. With 
the increase of the mining depth of the coal seam, the in situ stresses and the displacement of the overlying rock 
gradually increase, which will lead to more fractures developed in the coal-roof strata.

Mining height. Mining height is the decisive factor of the fractured zone height. The greater the mining height, 
the larger the range of the coal-roof plastic zone. And a greater space available to the caving rock will form, result-
ing in a greater height of the fractured zone. In the traditional empirical formula prediction method, mining 
height is the only factor that controls the FWCZ height.

Lithology type. When the overlying rock is disturbed by the mining activities, the brittle rock with higher hard-
ness (such as limestone and sandstone) is apt to crack and produce fractures. While, for the soft rock (such as 
mudstone and shale), the plastic deformation mainly occurs, and fractures rarely appear. After the extraction of 
the coal seams, the compressive strength of the overlying rock directly affects the rock failure degree. The rock 
with a greater compressive strength will be not prone to be destroyed. Generally, according to the uniaxial com-
pressive strength of the rock, the lithology of the overlying strata is classified into four types13–15: hard, medium 
hard, medium soft and soft, with the quantitative values of 4, 3, 2 and 1, respectively.

Working-face length. Working-face length, like the mining height, is an index that reflects the influence of the 
mining space size on the fractured water-conducting zone. According to the material mechanics theory, the cur-
vature of a rock beam with two ends fixed is proportional to the span. The greater the length of the working face, 
the greater the downward curvature of the coal-roof strata. Thus, the break probability of the rock beam increases, 
resulting in a higher height of the fractured zone.

Coal-seam dip angle. The influence that the coal-seam dip angle on the overlying strata is mainly embodied in 
the different failure forms of the strata. When the coal seam is horizontal, the form of the fractured zone is nearly 
symmetrical, showing a saddle shape. With the increase of the dip angle, the failure form of overlying rock grad-
ually develops into parabola and arch shapes.

Results and Discussion
Datasets used. The collection of the datasets is the most important part for any machine learning algorithm. 
In this study, 85 field measured datasets for fully-mechanized mining were collected from several large-scale 
coalmines in North China, referring to the previous research documents13–17. Each case contains the field meas-
ured data of the aforementioned five main-controlling factors and the height of FWCZ. Of the 85 datasets, 60 
(70%) were randomly selected for training (Table 1), while the remaining 25 (30%) for model testing. Figure 4 
shows the detailed flowchart of the methodology used in this study.

Establishment of the RFR model. In the RFR, two parameters are required to define: the number of trees 
in the forest (ntree), and the number of the random variables of the split nodes (mtry). To maximize the model 
accuracy, it is necessary to optimize the combination of the parameters mtry and ntree18. When ntree is defined 
with a small value, the RFR prediction error is uncontrollable and the model performance cannot achieve the 
optimal identification. Conversely, if the parameter ntree is too large, the computation time and required memory 
will increase accordingly. By repeated operation, it is found that when ntree = 200, the MSEOOB tends to be stable 
and the model does not tend to over fitting. According to Breiman18, mtry &lt; M. In this case study, there are 
five variables, namely M = 5. To assess the optimal value of mtry, three RFR models were created for mtry = 1, 
mtry = 2 and mtry = 3 (Fig. 5). Figure 5 shows the change of the error depending on the number of the trees ntree. 
The results show that when ntree = 200, the error of the model is stable, and when mtry = 1, the MSEOOB is lowest 
at about 6.9 m2. Therefore, considering both the accuracy and computation cost, the two optimized parameters of 
the RFR are as follows: mtry = 1 and ntree = 200.

The contribution of each factor to the generated RFR model is shown in Fig. 6. As shown, the importance 
degree of each factor is measured based on two ways: mean decrease in Gini index and OOB mean decrease in 
accuracy. According to the Gini index, mining height and mining depth have the highest importance, followed 
by coal-seam dip angle and working-face length, while lithology type has the lowest importance. Regarding the 
OOB mean decrease in accuracy, the order of the importance degree is consistent with the result obtained by Gini 
index method. Based on both of the features of importance, mining height and mining depth are the two most 
important factors out of the five factors, as suggests that they contribute overwhelmingly to the development of 
the FWCZ height.

SVM model for comparison. For comparison, support vector machine (SVM) regression model was 
also used for the prediction of the height of fractured water-conducting zone. SVM has superior prediction 
performance in various fields for data modeling and function optimization because of its ability to repre-
sent non-linearities23. The radial basis function (RBF) was adopted as the kernel function, and the two main 
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No. Sample source
Mining 
depth (m)

Mining 
height (m)

Lithology 
type

Working-face 
length (m)

Coal-seam 
dip angle (°)

Height of fractured water-
conducting zone (m)

1 No. 3241 working face in Qidong Coal Mine 550 2.4 4 180 15 55.32

2 No. 8 coal seam in Yangzhuang Coal Mine 320 1.7 4 65 6 27.5

3 No. 2 coal seam in Tiebei Coal Mine 125 3 1 150 5 22

4 No. 4320 working face in Xinglongzhuang Coal Mine 450 8 4 170 8 86.8

5 No. 4308 working face in Dongtan Coal Mine 43 3 4 30 60 35

6 No. 16 coal seam in Zhaopo Coal Mine 120 1.2 2 75 8 31

7 No. 3 coal seam in Wulanmulun Coal Mine 101.1 2.2 3 158 1 63

8 No. 13013 coal seam in Baodian Coal Mine 417 2.9 4 80 4 68

9 No. 2 coal seam in Guantai Coal Mine 300 4 2 75 2 120

10 No. 8 coal seam in Luling Coal Mine 276 4.5 1 350 7 17.2

11 No. 7 coal seam in Fangezhuang Coal Mine 84 4 2 108 3 30

12 No. 1203 working face in Daliuta Coal Mine 49 4 1 135 5 45

13 No. C13-1 working face in Panxie Coal Mine 117 3.4 2 205 2 72

14 No. 1 coal seam in Xinji Coal Mine 290 6 1 645 8 85.6

15 No. 4 coal seam in Liuhualing Coal Mine 89 2.03 4 69 7 45.86

16 No. 16 coal seam in Laoshidan Coal Mine 200 1.5 1 45 0 4.5

17 No. 2 coal seam in Kongji Coal Mine 200 8 4 89 76 48

18 No. 11 coal seam in Tongting Coal Mine 230 2 1 85 37 52.5

19 No. 1 coal seam in Qilianta Coal Mine 56 4.3 4 55 0 42.5

20 No. 31107 working face in Luxi Coal Mine 350 2.5 2 135 5 20

21 No. 9 coal seam in Luling Coal Mine 284 7 2 130 3.5 26

22 No. 7141 working face in Qidong Coal Mine 520 2.3 3 174 12 50.675

23 No. 3241 working face in Qidong Coal Mine 509 2.25 3 180 12.5 34.925

24 No. 7130 working face in Qidong Coal Mine 402.5 3 3 170 12 19.6

25 No. 1013 working face in Wugou Coal Mine 386.5 3.1 3 150 10 40.79

26 No. 1017 working face in Wugou Coal Mine 380 3.5 3 180 6 45.84

27 No. 345 working face in Qinan Coal Mine 395.5 3.45 3 160 14 26.7

28 No. 1031 working face in Taoyuan Coal Mine 384.2 2.65 3 190.5 21 33

29 No. 1062 working face in Taoyuan Coal Mine 306 3 3 150 28 33.615

30 No. 745 working face in Haizi Coal Mine 404.5 2.3 3 95 18 19.5

31 No. 1031 working face in Haizi Coal Mine 313.5 2.4 3 65 6 21.9

32 No. 841 working face in Zhuxianzhuang Coal Mine 342.5 3.8 3 114 13 28.455

33 No. 821 working face in Zhuxianzhuang Coal Mine 338.5 1.9 3 115.5 20 20.995

34 No. 822 working face in Zhuxianzhuang Coal Mine 316 1.9 3 165 12 26.085

35 No. 721 working face in Zhuxianzhuang Coal Mine 296 1.9 4 95.5 15 17.84

36 No. II 865 working face in Zhuxianzhuang Coal Mine 493.75 13.43 3 130 15 93.175

37 No. 8212 working face in Xutong Coal Mine 395 2.5 3 178 9 26.33

38 No. 7126 working face in Xutong Coal Mine 478.5 2.5 3 180 8 33.755

39 No. 16028 working face in Paner Coal Mine 340 1.8 2 178 3 19.69

40 No. 1207 working face in Paner Coal Mine 319 2 2 148 5 17.155

41 No. 1201(3) working face in Paner Coal Mine 311 2 2 85 3 19.11

42 No. 1201(1) working face in Paner Coal Mine 327.5 2 2 78 7 22.995

43 No. 12128 working face in Paner Coal Mine 355.5 2 2 125 3 23.865

44 No. 12118 working face in Paner Coal Mine 349 2 3 130 5.5 22.31

45 No. 12117 working face in Paner Coal Mine 363 2 3 180 8 16.845

46 No. 1701(3) working face in Pansan Coal Mine 447 2 3 107 4 30.965

47 No. 1711(3) working face in Pansan Coal Mine 420.5 2.8 3 135 3 41.13

48 No. 1211(3) working face in Pansan Coal Mine 509.5 3 2 140 10 26.01

49 No. 14032(3) working face in Panyi Coal Mine 383 2.2 2 125 5 13.035

50 No. 14021(3) working face in Panyi Coal Mine 376.5 2 2 124 5 12.675

51 No. 1401(3) working face in Panyi Coal Mine 391 1.8 2 125 5 14.29

52 No. 1402(3) working face in Panyi Coal Mine 404 2.2 2 150 6 21.195

53 No. 1412(3) working face in Panyi Coal Mine 415 3.4 3 120 8 30.085

54 No. 1121(1) working face in Panyi Coal Mine 418 1.8 3 120 6 24.69

55 No. 2622(3) working face in Panyi Coal Mine 552.5 5.8 3 182 8 44.36

56 No. 1121(3) working face in Panyi Coal Mine 490.5 6 3 182 7 44.19

Continued
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parameters RBF kernel coefficient γ and penalty coefficient C were determined as 0.1 and 0.5. And then the SVM 
regression model was constructed using the same training data aforementioned.

Model evaluation. The model evaluation is an important procedure before the model application. The root 
mean square error (RMSE) and the coefficient of determination R2 were utilized to evaluate the performance of 
the two generated regression models. RMSE is generally used for measuring the residual errors, and it reflects the 

No. Sample source
Mining 
depth (m)

Mining 
height (m)

Lithology 
type

Working-face 
length (m)

Coal-seam 
dip angle (°)

Height of fractured water-
conducting zone (m)

57 No. 1211(3) working face in Xieqiao Coal Mine 445 4 3 198 8 29.265

58 No. 1221(3) working face in Xieqiao Coal Mine 490.5 5 3 172 8 52.76

59 No. 1221(3) working face in Zhangji Coal Mine 605.5 3 3 136 2 38.185

60 No. 1212(3) working face in Zhangji Coal Mine 516 3.9 3 205 2 31.765

Table 1. Field measured sample datasets for model training.

Figure 4. Detailed flowchart of the proposed methodology.

Figure 5. The OOB error of the RFR model.
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difference between original and modeled values. The lower the RMSE, the better the model performs. R2 provides 
a measure of how well the predicted output of the regression model fits the observed data. The value of R2 varies 
between 0 and 1. A higher R2 indicates that the regression model fits the data better. The two indices are defined 
as follows:

∑= −
=

ˆ
n

y yRMSE 1
( )

(5)i

n

i i
1

2

Figure 6. Importance degree of the main controlling factors determined by two ways: (a) Mean decrease in 
Gini index; (b) Mean decrease in accuracy. (MH: mining height; MD: mining depth; CSDA: coal-seam dip 
angle; WFL: working-face length; LT: lithology type).

No. Sample source
Mining 
depth (m)

Mining 
height (m)

Lithology 
type

Working-face 
length (m)

Coal-seam 
dip angle (°)

Height of fractured water-
conducting zone (m)

1 No. 1215(3) working face in Zhangji Coal Mine 520.5 3 3 202 2 33.365

2 No. 1242(1) working face in Gubei Coal Mine 620 3.1 4 240 3.5 20.215

3 No. 7192 working face in Kongzhuang Coal Mine 220 5.3 3 120 25 46.5

4 No. S4101 working face in Pingshuo Coal Mine 360 7.69 3 220 3 45.125

5 No. ZF2801 working face in Xiagou Coal Mine 347 9.9 3 100 2 79.255

6 No. 5306 working face in Xinglongzhuang Coal Mine 412 6.9 3 160 4 38.8

7 No. 6206 working face in Wangzhuang Coal Mine 316 5.9 3 248 4.5 60.81

8 No. I03(2) working face in Laogongyingzi Coal Mine 240 3.5 1 195 7 21.675

9 No. I03(4) working face in Laogongyingzi Coal Mine 240 3.5 1 195 7 17.445

10 No. 3202 working face in Wangpo Coal Mine 474.16 5.8 3 230 4 65.395

11 No. 93101 working face in Nantun Coal Mine 541.5 5.28 3 175 6.5 49.25

12 No. 1301 working face in Jisan Coal Mine 480 6.3 3 170 4 46.13

13 No. 1305 working face in Dongtan Coal Mine 600 8.78 3 223.35 6 54.08

14 No. 2308 working face in Xinglongzhuang Coal Mine 332.85 7.15 3 160 5 16.115

15 No. 2306 working face in Xinglongzhuang Coal Mine 319.2 8.2 3 160 7.5 27.84

16 No. 2302 working face in Xinglongzhuang Coal Mine 278.15 8.7 3 170 8 28.56

17 No. 2300 working face in Xinglongzhuang Coal Mine 282 8.55 3 140 5 25.255

18 No. 23S2 working face in Xinglongzhuang Coal Mine 258.55 8.45 3 175 3 20.85

19 No. 2303 working face in Xinglongzhuang Coal Mine 286.45 7.8 3 150 8 35.9

20 No. 1314 working face in Baodian Coal Mine 350 8.5 3 169 6.5 55.255

21 No. 2605 working face in Yangcun Coal Mine 187.5 1.2 3 300 10 10.41

22 No. 63110 working face in Nantun Coal Mine 368.05 5.77 3 125 6 48.35

23 No. 2186 working face in Donghuantuo Coal Mine 420 3.4 3 70 23 56.8

24 Fangezhuang Coal Mine 173 1.9 4 70 20 25.3

25 No. 1672 working face in Qianjiaying Coal Mine 446 3.8 4 143 17 40

Table 2. Field measured sample datasets for model testing.
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where n is the total number of the test samples; yi is the observed output value of the test samples; yi is the pre-
dicted value by the generated models; ŷi is the average output value of the test samples.

Table 2 lists 25 sample datasets for model testing to evaluate the performance of the models. Using the two 
regression models generated above, the heights of FWCZ of the 25 cases were predicted. Figure 7 shows the 
predicted value against the observed data with the test data using SVM and RFR, respectively. Based on the 
Equations (5) and (6), the RMSE and R2 of the two models were calculated as Table 3. As it shown, the RFR model 
has the lower RMSE and higher R2 with the value of 2.363 and 0.968, respectively (compared to 4.396 and 0.902 
for SVM model). Therefore, it is concluded that both models are reasonable, and RFR has a better performance 
compared with the SVM.

Model application. Engineering background and predicted results. The No. 1121 working face of the No. 
2 coal seam, located in the center of Hongliu Coal Mine, is the initial mining face of the mine. The length of the 
working face is 1379 m, and the average mining depth is 265 m. The fully-mechanized longwall mining method 
is adopted in the mining process. The No. 2 coal seam belongs to the Yan’an Formation of the Jurassic System, 
with an average thickness of 5.28 m. The dip angle of the No. 2 coal seam varies from 5° to 15°, with the average 
value of 10°.

Figure 8 displays the typical geological column of the No. 1121 working face overlying strata. As it shown, 
the strata directly overlying the coal mainly consist of the silt and fine sandstones in the lower Zhiluo formation, 
which are considered as aquitards. The average total thickness of these strata is 52.2 m. According to the rock 
division rule aforementioned, the sandstone is considered to be hard rock, so the lithology type of the strata is 
quantified as 4. The first aquifer overlying the No. 2 coal seam is about 51.28 m distance from the coal. It consists 
of grit sandstones with great thickness, and it has a rich water-abundance property. Thus, in order to evaluate the 
risk of water inrushes from overlying the coal seam and take corresponding measures, it is necessary to precisely 
predict the height of the FWCZ. By applying the above generated SVM and RFR models to the No. 1121 working 
face of the No. 2 coal seam, the height of FWCZ is predicted as 64.17 m and 62.96 m, respectively.

Figure 7. Comparison of the observed and predicted height with the test data by using: (a) SVM; (b) RFR.

Model
Prediction 
results (m)

Field measured 
data by BVCS (m)

Absolute 
error (m)

Relative 
error (%)

SVM 64.17
61.53

2.64 4.29

RFR 62.96 1.43 2.32

Table 4. Comparison between the field measured data and the prediction results obtained by the SVM and 
RFR.

Prediction model RMSE (m) R2

SVM 4.396 0.902

RFR 2.636 0.968

Table 3. RMSE and R2 of the RFR and SVM models.
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Practical situation of the No. 1121 working face. When the No. 1121 working face moved forward about 56 m, a 
large amount of water from the overlying aquifer leaked into the working face. The maximum water inflow was 
up to 1817 m3/h, so the mining operation had to be terminated. For drawing up the water-inrush prevention 
measures scientifically, the borehole video camera system (BVCS) was used to observe the height of the fractured 
water-conducting zone. BVCS is an exploration technology which can directly observe the inner conditions of the 
boreholes based on the optics theory. The system can be used to observe the strata lithology, geological structures 
properties, fracture-zone development conditions, groundwater levels change and so on10.

In this study, the BVCS was used to observe the change of the fractures development degree with the increase 
of the borehole depth and determine the top boundaries of the fractured zone and the caved zone. Figure 9 shows 
the video camera images of the borehole HL-1. According to the images, the rocks above 279.07 m are sandstone 
and mudstone interbed, and they are relatively integrated except that a few small cracks in the horizontal direc-
tion appear in certain local positions (Fig. 9a).

Figure 8. Typical geological column of the No. 1121 working face overlying strata.

Figure 9. Video camera images of the borehole HL-1: (a) Integrate rock without fracture; (b) Fractured zone 
with various forms of fractures; (c) Caved zone.
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Figure 9b shows the fractured zone images with various forms of fractures: a nearly vertical fracture with 
a small width appears at the borehole depth of 279.07–279.27 m; there are many abscission-layer phenom-
ena between 286.3 m and 294.68 m; the crisscrossed fractures with large displacements are distributed in the 
rocks below 294 m. Therefore, according to the fractures development conditions described above, the depth of 
279.07 m is considered as the top boundary of the fractured zone.

As Fig. 9c shown, the rocks below the depth of 298.9 m were damaged seriously, and there is a vast void area 
with obvious mining collapse characteristics. So the depth of 298.9 m is determined as the top boundary of the 
caved zone.

Based on the formula proposed by China Coal Industry Bureau20, the height of FWCZ of coal-roof strata can 
be calculated as follows:

H H h M= ′ − −

where H is the maximum height of FWCZ (m); H′ is the depth of the coal-seam floor (m); h is the depth of the 
fractured zone’s top boundary (m); M is the thickness of the mining coal seam (m).

According to the drilling data and the video camera images of borehole HL-1, the depth of the No. 2 coal-floor 
is 345.88 m, and the thickness of the coal seam is 5.28 m. Therefore, combined with the Equation (7), the height of 
FWCZ is calculated to be H = (345.88–279.07–5.28) = 61.53 m. Table 4 shows the comparison between the field 
measured data and the prediction results obtained by the proposed methods.

The results show that compared with the field measured data, the SVM and RFR methods have the relative 
error of 4.29% and 2.32%, respectively. It indicates that both of the prediction results are generally in good agree-
ment with the field-observed result, and the RFR model has a better performance in the application of the study 
area, which is in accordance with the above conclusion.

Summary and Conclusions
To ensure the safe production of coal mines, this study proposed a prediction model of the height of FWCZ based 
on RFR. RFR is a robust machine learning method that can be used to evaluate the variable importance and 
predict the height of FWCZ. Compared with the traditional MLAs, RFR has numerous advantages, especially, its 
high prediction accuracy and it is well suitable for the problems with unclear priori knowledge and incomplete 
data. For the objective problems faced in this study, for instance, the lack of data samples, the RFR model can still 
maintain a high degree of accuracy. Then, the RFR model was applied to Hongliu Coal Mine in Northwest China. 
And the main conclusions are reached as follows.

 (1) Five variables were selected to construct the main controlling factors system. And according to the im-
portance degree measurement by the mean decrease in Gini index and OOB mean decrease in accuracy, 
mining height and mining depth are the top two most important factors out of the five variables.

 (2) For comparison with the generated RFR model, a SVM model was also constructed using the same train-
ing datasets. By the validation of the two models, the RFR model has the lower RMSE and higher R2 with 
the value of 2.363 and 0.968, respectively (compared to 4.396 and 0.902 for SVM model).

 (3) The two generated models were applied to the No. 1121 working face in Hongliu coal mine to verify the 
effectiveness of the models. The prediction heights of the FWCZ by using RFR and SVM are 62.96 m and 
64.17 m, respectively. Field measured data by borehole video camera system is 61.53 m, and the RFR and 
SVM have the relatively error of 2.32% and 4.29%, respectively. It is concluded that RFR has a better per-
formance in the application of the study area compared with the SVM.

 (4) This study shows the potential to provide a novel approach to predict the height of FWCZ. The results 
provide a reference for water-inrush risk management, prevention and reduction in the study area.
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