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Biomechanical Texture Coding in 
Rat Whiskers
Maysam Oladazimi1,3, Wieland Brendel2 & Cornelius Schwarz   1,3

Classically, texture discrimination has been thought to be based on ‘global’ codes, i.e. frequency (signal 
analysis based on Fourier analysis) or intensity (signal analysis based on averaging), which both rely on 
integration of the vibrotactile signal across time and/or space. Recently, a novel ‘local’ coding scheme 
based on the waveform of frictional movements, discrete short lasting kinematic events (i.e. stick-slip 
movements called slips) has been formulated. We performed biomechanical measurements of relative 
movements of a rat vibrissa across sandpapers of different roughness. We find that the classic global 
codes convey some information about texture identity, but are consistently outperformed by the slip-
based local code. Moreover, the slip code also surpasses the global ones in coding for active scanning 
parameters. This is remarkable as it suggests that the slip code would explicitly allow the whisking rat to 
optimize perception by selecting goal-specific scanning strategies.

Sensory processing leads to a representation of a sensory object in terms of spatio-temporal brain activity. But 
how does sensory information reach the nervous system in the first place? The transfer function which projects an 
object’s relevant characteristics to activity of sensory receptors is specific for each sensory modality. It is depend-
ent on the physics (and/or chemistry) governing the conveyance of object properties to the neuronal receptor. 
For the fine epicritic tactile sense, the subject of the present work, these processes critically include the frictional 
system set up by the conjunction and relative movement of sensor and object. Frictional movement is sure to 
impose a complex transformation of sensory signals by biomechanically converting 3D texture surfaces into 
spatiotemporal vibrations of the integument – way before the first action potential in a neuron is generated1. In 
this report we focus on rats’ vibrissa, sensor hairs that the animals actively move across textures. We aim at char-
acterizing the transformation of texture identity into vibrissa vibration and compare possible encoding symbols 
used for this purpose.

Classically two coding symbols have been discussed for fine epicritic touch, ‘intensity’ and ‘frequency’2. These 
two candidate symbols have in common that they are the result of temporal (or spatial) integration of the vibro-
tactile signal within relatively extended ranges, and therefore have been subsumed under the heading ‘intensive’ 
or ‘global’ coding strategies1,3. Frequency is the outcome of Fourier analysis (e.g. best frequency) while inten-
sity is the outcome of signal averaging (e.g. mean speed). The observation that friction leads to quasi-stochastic 
short-lived events called stick-slip movements of whiskers (called ‘slips’ here) opened the possibility that slips act 
as a novel coding symbol4–6. Coding in slips differs distinctly from intensive coding strategies by its ‘local’ char-
acter in space-time. Thus, extensive integration in space-time is neither needed nor is it appropriate to read out 
texture information from slips1.

Originally, the idea of global coding has been developed without knowledge of slips. Theoretically, in the 
absence of frictional movements and slips, global coding could directly transform the texture’s 2D profile along 
the ‘path’ of the vibrissa, e.g. leading to a measurement akin to a contactless distance meter. In reality, however, 
the conical form7–9, and the pronounced elasticity of whiskers10,11, inevitably lead to frictional movement and slip 
generation and renders this simple view unsustainable. Therefore, given the presence of slips, the question arises 
whether a global code can be considered as optimal to read out texture information contained in slips, or in how 
far it is able to contribute texture information from other segments of the vibrotactile signal, like oscillations or 
creepy movements12–14.

A special feature of tactile perception is that it is based on ‘active scanning’, the emission of energy into the 
world aiming to perceive objects using the physical reflections of these deployments. This feat is shared e.g. with 
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echolocating bats/whales and weakly electric fish, but with no other mammalian sense. By actively whisking 
against objects, rats choose an active perceptual strategy by selecting several behavioral parameters, amongst 
them (1) distance of the rat’s head to the object (which determines axial and lateral forces acting on the vibrissa15), 
(2) velocity of whisking, and (3) the identity of the vibrissa(e) used to touch. These parameters of active scanning 
in turn will determine the frictional movements and thus the probability of occurrence (rate) and the waveform 
(kinematic parameters) of slips. Besides coding for texture properties, slips will, therefore, inevitably also encode 
the parameters of the perceptual strategy of the animal (Fig. 1). In this report we will therefore not only assess 
texture coding using the different hypothetical coding symbols but also determine in how far parameters of active 
touch modify this code. This knowledge will be decisive to gain insights on what an effective neuronal efference 
copy16 must look like, if it is to effectively separate textural information from the imprints of active scanning.

Results
The textures used in this study were sandpapers with descending grain size from p80, the roughest, via p240, 
p400, p600 to p1200, the smoothest (see methods for details). Sandpapers of this roughness have been used in 
various previous biomechanical and encoding studies4,17,18, and the range of the resulting vibrotactile signals is 
behaviorally relevant19,20. To quantify the 3D profile of the sandpapers, we measured their height profile using 
optical micro-profilometer (Fig. 2). From this profile we used the first and second spatial derivative to assess the 
slope and angularity profile. This was done ignoring the direction of slopes and angularity, i.e. yielding absolute 
units (percent for slope, and 1/μm for angularity; Fig. 3A–C). We found that larger grain size expectedly goes 
along with greater length of spatial correlation, a parameter estimated from the width at half height of the central 
peaks in spatial auto-correlograms (Fig. 3D). The spatial power spectra and their centroids, in contrast, did not 
show monotonic relationship with grain size (Fig. 3E).

We used 6 whiskers, harvested from one and the same animal, to sweep them across the textures using con-
stant distance (rotatory movement across the textures covering the inside of a cylindrical plane (Fig. 4A,B). The 
movement of the hair was videotaped at a frame rate of 4000 fps, and the movement of one point of the hair 
(distance to the follicle 10 mm) was recorded (Fig. 4C,D). In addition to the 6 whisker identities, we tested two 
further contextual variables: driving speed (600, 1200, 1800°/s), and distance (distance of pivot point to sandpa-
per H: 50% of whisker length; Q: 75% of whisker length; F: length of whisker minus 5 mm) (Fig. 4A,B). The used 
rotation speeds were selected to cover whisking velocities actually generated by rats21. We noted that retraction 
movements were often corrupted by turning the hair, i.e. complex rotatory movements at the extreme protracted 
position. This was not the case for protraction, where only small turning artifacts were observed. In this study we 
therefore focused our analysis on protraction movement after cutting out possible artifacts at the start of protrac-
tion (first 15 ms).

Confirming earlier work5,6, the movement was characterized by irregular, jerky movement events, best visible 
in the velocity and acceleration traces (Fig. 4D). The movements measured 1 mm from the pivot point did not 

Figure 1.  Active touch. The tactile system is an active scanning system. This class of perceptional systems is 
defined by deployment of energy to the world and sensing the reflections of the deployed energy as a basis 
for perception. In the case of the whisking rat, the deployed energy consists in kinetic energy, the driving 
speed with which the whisker is moved across the perceptional target. The sensed reflections of this energy 
are modulatory movements of the whisker, caused by frictional movement, added to the ego-motion. The 
modulatory movements are dependent on sensory variables, the texture property, as well as active scanning or 
contextual variables, amongst them whisker identity, speed, and distance. One instantiation of reflected energy 
are frictional stick-slip movements (‘slips’) which are encoded into action potentials in the neuronal system 
(‘spikes’). Whisker vibration and its neuronal representations are therefore the output of a biomechanical 
computation integrating sensory and contextual variables. This fact allows the brain firstly to read out sensory 
information, but secondly also allows for a specific adaptation of active scanning strategies to optimize the 
percept.
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Figure 2.  Measurement of sandpaper 3D profile. Sandpapers of different grain size (‘roughness’, cf. Methods 
section) were used in this study (p80, p240, p400, p600, p1200). Optical micro-profilometry was used to 
measure the 3D profile of the sandpapers. Profiles contained errors systematically located at the deepest point of 
the 3D profile (see the dips in negative height in the ‘raw’ measurement). These erroneous dips could be easily 
demarcated, removed and linearly interpolated. The resulting 3D surface after removal of these errors is shown 
in the center, and its effect on the variance of the height distribution is shown on the right.

Figure 3.  Sandpaper surfaces and characteristic parameter distributions. (A) Measurement of the 3D surface 
of all five sandpapers (color code is height) and the corresponding height distributions. (B) Same as in A but the 
first derivative ‘slope’ is shown. Note that direction of slope is ignored, therefore slope is given in absolute values. 
(C) Same as A and B, but angularity, the second derivative of height is shown. Again direction is ignored and 
angularity is given in absolute values. (D) From the grain sizes used to fabricate the sandpapers a monotonic 
correlation length of height was predicted. We confirmed this expectation by measuring the width at half peak 
of the central peak of the spatial autocorrelograms calculated from the 3D height profiles. (E) Spatial spectra 
of the sandpapers. Note that neither the curves nor the spectral centroid reflects the monotonic increment of 
sandpaper grain sizes.
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display absolute stick phases (i.e. zero velocity, Fig. 4D), which is expected given the high elasticity of the whisker 
(points on the shaft may move forward even in case of total arrest of the whisker tip). As the whisker tip was not 
accessible in our videographic data, we resorted to a pragmatic definition of stick-slip events (which we call slips 
here): We defined slip events as short events exceeding 2*SD of whisker acceleration as measured in air (a condi-
tion of no contact, and thus no slip) (Fig. 4D, acceleration trace). From the resulting slips we measured the peak 
slip velocity (sv) and acceleration (sa) and their rate (sr). Further, intensity (i) was calculated as mean speed and 
frequency (f) as the frequency carrying maximum spectral power.

The definition of these parameters was chosen such that they would represent either local or global aspects of 
whisker vibration in the time domain. The local nature of sa is given by the fact, that it can be instantly assessed 
from the vibration trace, without further integration or delay. Intensity, on the other hand, is global as it requires 
the integration (averaging) of the vibration trace within a large time interval. The definition of parameter f needs 
more clarification, as it has been used in different contexts using different strategies: We defined the term as the 
frequency that maximized the power spectrum (‘best frequency’). Defined as such, f is a truly global variable, as 
it must be extracted from an extended time interval. Our definition of frequency as ‘best frequency’ is motivated 
by earlier work17, and needs to be strictly separated from encoding strategies using richer signal aspects. For 
instance, the incorporating of more than one spectral element (like e.g. ref.22, a study which used the full power 
spectrum) into the encoding variable would surely reflect global as well as local signal aspects, see discussion).

Figure 4.  Measurement of frictional movement. (A) Selection of whiskers (names and position on the snout) 
used for this study. The length and diameters were measured and are depicted as schematized cones on the 
left (for graphical purposes diameters and length use different scale units; intrinsic bending of the whiskers 
is ignored). (B) Frictional movement. The rod (top) was rotated by a stepper motor. The whisker (green) was 
clamped with the follicular end on the rotation axis to the rod and moved at different speeds and distances 
against the sandpaper carried by the semicircular shield. For the movement of each whisker three shields 
with diameters adapted to H (half length), Q (three quarter length) and F (total length minus 5 mm) were 
used (F was not used with whiskers C4 and C6; Q was not used with C6). (C) Example videographic trace of 
whisker movement. The orange lines depict whisker positions in each frame (4000/s). The blue line indicates 
the position on the shaft used to extract kinematic traces used in this study (cf. D). Green dots mark the sites 
at which the whisker acceleration exceeded 2*SD of acceleration measured with movement in air (slips). (D) 
Position, velocity and acceleration traces extracted from one movement cycle (one protraction). The green dots 
mark the sites in which the whisker exceeded 2*SD of the acceleration distribution observed with movement 
in air (using the same driving speed). These events were used to extract slip-related kinematic parameters. 
As in the majority of retraction movements rotational movements occurred, this study analyzed exclusively 
protraction movements (cutting out the first 15 ms after movement start).
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We report biomechanical discriminability of sandpapers based on the highest resolution afforded by our data 
(Figs 5 and 6). Later, we will consider the known perceptual thresholds of rats, and will ask how much of that 
biomechanical discriminability the animals might actually be able to access (Fig. 7). We start with asking how a 
local encoding variable, sa, is related to texture variables (height, slope, angularity), and whether there is a system-
atic dependence on the contextual parameters (driving speed, distance and whisker identity). Texture variables 
expectedly reflected sandpaper identity, however, there was no consistent relationship across the variables to grain 
size (Fig. 5A). Height was distributed more widely with larger grain size, while slope and angularity distributions 
showed quite the opposite - a monotonic decrement of range with larger grain size. Pairwise discriminability, 
therefore, differs with the three texture variables. Figure 5B plots the discriminability obtained with all pairs of 
sandpapers (starting with all combinations of P80, then P240 and so forth). While height well separates those 
pairs containing extreme grain sizes (P80 and P1200), it only provides poor discriminant power in the mid ranges 
of pairs. Slope and angularity show roughly the opposite. They were very good criteria to separate mid-range 
pairs but lacked discriminability with pairs in the extreme ranges of grain sizes (pairings of P80 and P1200). In 
summary, discrimination based on texture variables appears more complex than expected, but overall, appears to 
provide very good discriminability.

The next question then is whether the discriminability afforded by sandpaper surfaces is reflected by whisker 
vibrations. In the exemplary case of whisker β (shown in Fig. 5C), the distributions of sa obtained with H and 

Figure 5.  Discriminability of texture and vibrotactile variables. (A) Distributions of variables describing the 
3D surface of the sandpapers (height, slope, angularity, cf. Fig. 3). The abscissa holds height (range [−200, 200] 
μm), slope (range [−5, 5] %), and angularity (range [−1, 1]). The ordinate holds probability (p, range [0, 0.4]). 
(B) Discriminability of textures based on texture variables [expressed as area under the ROC curve (AUC)]. 
(C) Distributions of slip acceleration (sa) obtained with different distances (F,Q,H), and whisker velocities 
(600, 1200, 1800°/mm2). The abscissa holds sa (range [−5, 5] 1/mm2). The ordinate holds probability (p, range 
[0, 0.4]). Data from whisker β are shown. (D) Discriminability of textures based on sa for long whiskers. The 
asterisk marks the correspondence with the set of distributions marked the same in C. (E) Same as C but using 
whisker C4 (note that distance F was not studied with C4 due to its short length). (F) Same as D but plotting 
the shortest three whiskers. The double asterisk marks the correspondence with the set of distributions marked 
the same in E. The order of sandpapers as marked in A and C (left) is valid for all blocks of distributions shown 
in A, C and E. The abscissae in B, D and F hold all ten pairwise comparisons of sandpapers ([P80/P240], [P80/
P400], [P80/P600], [P80/P1200], [P240/P400], [P240/P600], [P240/P1200], [P400/P600], [P400/P1200], [P600/
P1200]). The striped background marks blocks of comparisons starting with p80, p240, p400, and p600.
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1800°/s and height were of similar shape, and negative height was related to high sa (compare the distributions 
marked with single asterisks). In pairwise texture comparisons of the three largest whiskers (β, C2, E2), we there-
fore found similarities in discriminability of height and sa (ignoring the sign change due to the mentioned inverse 
relations): Very good discriminability is provided in the comparisons including the extreme grain sizes, but a 
lesser one in the mid-range of comparisons (Fig. 5D). Interestingly, smaller whiskers (A2, C4, C6), while still 
holding considerable discriminant power, show qualitatively different behavior (Fig. 5E): Their distributions 
revealed some relation to slope and angularity distributions (cf. distributions marked with double asterisk), trans-
lating into discriminability curves across pairwise comparisons that largely mirrored the ones of slope and angu-
larity (Fig. 5F). A peculiar characteristic of the smallest whisker (C6) was that, while showing best mid-roughness 
discrimination like the other small ones, it did so using a sign change of discriminability (AUC > 0.5 instead of 
AUC < 0.5). In summary, we conclude from these results that slip accelerations contain substantial texture infor-
mation. We observed, however, a non-monotonic, highly complex arrangement of coding of texture variables 
across whiskers and sandpaper grain sizes. The largest whiskers may be able to pick up discriminant properties 
of height distributions, while smaller whiskers may focus more on those provided by the higher derivatives slope 
and angularity. Further, depending on whisker type and/or range of grain size, textural differences can be encoded 
by increased or decreased slip accelerations.

Next, we aimed to more systematically portray the roles of the contextual variables ‘whisker identity’, ‘driv-
ing speed’ and ‘distance’ for each of the coding symbols (f, i, sa, and slip velocity [sv]). To this end we present 
discriminability (AUC) separated for these seven variables (Fig. 6), averaged across comparisons of sandpapers 
with neighboring grain sizes ([P80, P240], [P240, P400], [P240, P600], [P400, P600], and [P600, P1200]). First 
of all, discriminability was highest in the slip-based encoding variables with slip acceleration providing superior 
discriminability (rank order sa, sv, i, and f). Further, discriminability was also dependent on all three contextual 

Figure 6.  Effect of contextual variables on discriminability. (A) Discriminability and speed. The AUC for all 
neighboring comparisons ([P80, P240], [P240, P400], [P400, P600], [P600, P1200]) for each whisker (color) 
and averaged across whiskers (black) is shown based on the encoding variables frequency (f   ), intensity (i), slip 
velocity (sv), and acceleration (sa). (B) same as A but for contextual variable distance (F: whisker length minus 
5 mm; Q: three quarter whisker length; H: half whisker length). (C) Slip rate observed with the same speeds as 
in A. The legend is valid for all panels. Note that all encoding variables in this figure were used at high resolution 
(thus reflecting the biomechanical facts at the maximal resolution provided by our measurements). Please refer 
to our considerations that texture information may be carried in a range of signal resolution that cannot be used 
by rats in Fig. 7.
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variables (combined with all encoding variables) to varying degrees: Discriminability tended to be higher with 
longer whiskers, but rank orders did not exactly match those of length. Similarly, AUC tended to order monoton-
ically with increasing speed and decreasing distance. Overall, with slip acceleration these relationships were more 
consistent and monotonic than with any other variable. In summary, besides providing highest discriminability, 
slip acceleration also provides superior consistency when contextual variables like driving speed and distance 
are varied. Interestingly, while discriminability based on slip acceleration rose with speed, slip rate consistently 
decreased on average by 2,65/s (Fig. 6C). This reveals that the better discriminability provided by individual wave-
form is countered by less waveforms available per protraction sweep.

Finally we strived to quantify the relative information that global and local variables carry about texture iden-
tity using more complex and non-linear classification schemes. To this end we employed two support vector 
machine algorithms with linear and radial basis functions as well as logistic regression (Fig. 7), to separate the 
textures based on the observed biomechanical whisker parameters. We trained the classifiers to the three single 
candidate variables frequency, intensity, and slip acceleration, and performed a 10-fold stratified cross-validation 

Figure 7.  Maximum classification scores obtained from three classifier algorithms using encoding parameters 
f (frequency), i (intensity), sa (slip acceleration), and f/i/sa (all three). (A) Performance of identifying a texture 
(out of 5; random performance is p(correct) = 0.2). (B) Average performance discriminating pairs of textures 
with neighboring grain size ([P80, P240], [P240, P400], [P400, P600], [P600, P1200]; random performance is 
p(correct) = 0.5). In both panels the left column holds data from whisker A2: red colors depict the performance 
for different distances averaged across speeds; green colors depict the performance using different whisker 
speeds averaged across distances. The right column plots averages across all contexts (for whisker A2 and 
the total sample of whiskers). The rows depict scores obtained with blurring the input data with respect to 
perceptual thresholds (100%: setting the known change perception threshold as the standard deviation of the 
Gaussian used to blur the data; 50%, 30%: setting the standard deviation to 0.5 times the threshold or 0.3 times 
the threshold; see methods for details). Note that in the top and center rows only the parameters f and i received 
reduction of blurring. In these rows, f and i are thus favored over parameter sa, which was always blurred at 
100%. All plots contain the entry f/i/sa indicating the combined usage of all three parameters as input to the 
classifiers.
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on the training-set to tune the hyper-parameters for each classifier and selected the classifier with the best 
cross-validation score. The final score was found by determining the median top accuracy of the best classifier 
on the validation set, i.e. the average probability by which the classifier correctly (i) identifies either the texture 
identity (amongst the 5 possible sandpapers)(Fig. 7A), or (ii) the correct texture when presented pairwise with 
neighboring grain sizes ([P80, P240], [P240, P400], [P240, P600], [P400, P600], and [P600, P1200]; Fig. 7B). To 
allow a first access to potential effects of the animals perceptual limits we repeated this analysis with step-wise 
reduction of the resolution of input variables. We deem this important, as e.g. the resolution of best frequency 
used so far was 1 Hz, a frequency difference that, for all we know at present, is far from being perceptible by rats. 
It follows that discriminability carried by frequency differences near the resolution of the data is likely going to 
be irrelevant for perceptual purposes. Psychometric data on whisker-based perception specific for our discrimi-
nant variables is still scant. We orient ourselves on measured change thresholds of frequency, intensity and slip 
acceleration (see details in methods) using pulsatile stimuli with starting values well within the parametric range 
measured here23–25. These change thresholds have been measured only from one starting point, and are likely to 
vary across the behaviorally relevant parametric range. Nevertheless, we hold that they - at the very least - should 
provide a good starting point to qualify biomechanical discriminability with behavioral constraints. In face of 
this uncertainty we followed a strategy of graded decrement of resolution. We started to blur the input data with 
a Gaussian with an SD equal to the known change threshold (and call this 100%). Obviously, this filter should 
largely eliminate texture information contained in the subthreshold ranges of the rats suggested by the cited stud-
ies. We then repeat the analysis with 50% and 30% filters (SD of Gaussian 0.3 or 0.5 times the respective psycho-
metric threshold) to provide an intuition about the effect of information if thresholds were lower than reported 
so far. Further, as we aim here to demonstrate the suitability of slip acceleration for tactile discrimination, we 
decided to give this parameter the most unfavorable conditions (i.e. always reducing resolution with the 100% 
filter width). If, under these conditions, we find that slip acceleration provides superior discriminability we will 
have made the best possible case in favor of it. Using this strategy we are able to demonstrate the following facts 
(Fig. 7): Firstly, sa filtered at 100% outperforms f and i based discriminability averaged across the six whiskers. 
This is true with all blurring schemes including giving f and i a three-fold better chance (i.e. reducing the filter to 
30%). Secondly, discriminability provided by f and i, if present (top row of plots in Fig. 7), is non-redundant to 
information contained in sa: If the classifier is fed with all three variables it performs better than with any of those 
alone. Thirdly, the discriminability conveyed by f and i variables decreases consistently and is close to random 
performance when data resolution is decreased to match the perceptual change threshold (top to bottom row of 
plots in Fig. 7; note random performance is 0.2 for the identity task and 0.5 for pairwise discrimination). Fourthly, 
this assessment largely holds with a single as well as combining all whiskers. Finally, confirming the previous 
analyses, contextual variables (velocity and distance) thoroughly modify discriminability. As seen in the previous 
section, high whisker velocity, by and large, is better than low whisker velocity. An interesting difference, however, 
is notable with whisker distance: with the AUC classifier, H was observed the best discriminant variable, while 
the more versatile classifiers used here were found to better extract information contained in slips with longer 
whisker distances (Q, F).

Discussion
We compared biomechanical variables of vibrissa movement, while in dynamic contact with textures, with respect 
to their ability to provide the basis for texture discrimination. Particularly we pit local, (near-) instantaneous 
kinematic variables extracted from short slip events against the classical global, intensive parameters frequency 
and intensity. We found that all parameters contain substantial texture information useful for discrimination. 
However, local slip variables, in particular slip acceleration, turned out to be superior for texture discrimination, 
both in terms of the strength of discriminability they supported and their consistent behavior in face of varying 
contextual variables like driving speed and distance of the follicular site of the whisker to the texture. We further 
find that the suitability of the classic variables frequency and intensity for texture discrimination is seriously ham-
pered when considering known perceptual limits of rats, while the presently known rats’ perceptual ability seems 
to be more in tune with texture information conveyed by slip accelerations.

We used sandpapers to test these properties, as has been done by many previous studies4–6,17,26. This makes 
our result comparable to that literature, but at the same time restricts the observations to a limited set of real tex-
tures. Whether and how vibrations measured on sandpaper generalize to a wider array of surfaces must be tested 
in future studies. Sandpapers are usually sorted according to roughness, a technical category of abrasiveness. 
Roughness is also one of the most robust perceptual dimensions used by humans to describe tactile experiences. 
Psychophysical work has often emphasized that the most important feature giving rise to human roughness per-
ception is thought to be the size of elemental features (wavelength) constituting a tactile texture27–30. This has 
also been borne out from experiments evaluating human similarity judgements across vast arrays of varying 
textures. Roughness was consistently found to be amongst 2 or 3 independent tactile dimensions30–32. Expectedly 
our detailed measurements of the sandpaper surfaces confirmed that increasing grain size (i.e. roughness) is 
accompanied by larger wavelength, as estimated by correlation length (Fig. 3C). However, height distributions of 
sandpapers and their derivatives (slope and angularity) did not reflect this monotonic relationship in a consistent 
and simple way (Fig. 5B). One possible reason for this discrepancy is that the sandpapers used here are surfaces 
tightly packed with grains, such that height profiles are not exclusively determined by grain size alone (Fig. 3A). 
Moreover, single grains, as they appear in profilometry images, are corrugated and vary in form and size. These 
properties likely compart particular richness to the surface’s frequency spectrum - particularly at higher frequen-
cies. We therefore do not expect that local features (single grain size and surface) overly determine global features 
(as would be expected e.g. from identical spherical grains sprinkled sparsely on a flat surface).

Confirming this expectation, we found that different surface variables show different and highly complex 
relationships to texture identity (Fig. 5A,B). This fact questions the existence of a simple relationship of roughness 
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with spatial surface variables on one hand and biomechanical variables of whisker movement on the other. In 
line with these doubts, our data show a highly complex reflection of surface properties by variables describ-
ing whisker movement, which seems to be affected by the texture but also by contextual variables velocity, dis-
tance and whisker identity (Figs 5C–F, 6 and 7). These considerations open two important questions that future 
research needs to address: 1) Is roughness a valid dimension of rats’ whisker based tactile perception? 2) Would, 
as the dominance of roughness as a perceptual parameter in humans suggests, papillary ridges of the fingertip 
show frictional movement parameters that are better aligned with roughness?

We wish to stress that from the discriminant analysis performed here we do not claim to have identified meas-
ures of optimal discriminability. Rather, we aimed at finding arguments for the relative importance of information 
carried by global vs. local variables. It is noteworthy that our definition of ‘localizedness’ is in the time domain, 
as in principle information can be contained in variables defined in time or frequency domains. As we use the 
terms here ‘frequency’ is global in time but local in frequency, ‘intensity’ is an average across time or frequency, 
and therefore is global in both, and slip acceleration is local in time and global in frequency. We note that our 
definition of the ‘frequency’ variable distinctly differs from that used in previous work22,33, in which ‘frequency’ 
was determined by a broad array of spectral elements, and thus, likely incorporated also local features in time. 
We demonstrate that classifiers fed by a combination of intensity, frequency and slip acceleration cues improve 
upon the performance shown with each feature alone. This finding corroborates earlier work that reported partly 
non-redundant information about texture identity in global varibales17, and may provide a biomechanical basis 
for the fact that global variables can support a certain degree of psychometric performance in case local cues are 
absent24,25. However, the observation that most relevant texture information in frequency and intensity variables 
seems to be conveyed in a parametric range that, at least at the present state of knowledge, may well be impercep-
tible by rats23–25 (Fig. 7), is a reminder that more detailed mapping of the perceptual range is needed before the 
exact mix of encoding variables used by rats can be determined.

Our quantifications confirm previous suggestions that kinematic profiles of stick-slip events carry texture 
information5,6. Moreover, our findings provide a biomechanical counterpart for prevalent physiological and 
behavioral findings: Firstly, it is a well corroborated fact, that short kinematic events are readily encoded by 
neurons on the ascending tactile pathway4,23,26,34–41. Secondly, waveforms of short events have been found to be 
perceptually and behaviorally relevant23,38,41,42. We extend the previous insight by showing that local cues provide 
dominant information about texture identity – surpassing the one provided by global variables. This rank order 
fits behavioral results obtained from a direct comparison of local vs global variables. Discrimination performance 
of passive whisker deflections based on local cues by far beats the one reached with pure global cues23,41.

In our measurements slip acceleration provided the superior basis for texture identification. This is contrasted 
somewhat by the tendency of encoding studies to emphasize velocity coding35,37,42. However, these reports some-
times specifically included contributions from other kinematic variables, and others have found that acceleration 
is dominantly encoded43. Moreover, cortical spike responses to slips have been shown to be of low probability, 
but clearly related to slip acceleration26. A systems identification study using a broad band stimulus found that 
several kinematic aspects are linked to different degrees and with different temporal relationships to the encoding 
spike in primary afferents40. In this view, the whole waveform stretching across about 10 ms and several kinematic 
aspects from position to acceleration (and possibly higher derivatives) may be encoded, such that combination 
of different aspects and temporal relationships leads to higher information content in the neuronal code. We 
therefore hypothesize that it is unlikely that rats base their perception on coding of a single variable. The superior 
information rate of a combination of kinematic variables found in the neuronal code suggests that rats have opti-
mized information extraction by encoding a combination of several kinematic variables.

We varied three contextual parameters that, during the process of tactile perception, are under the control of 
the animal: whisker identity, driving speed, and distance to texture. Of these variables, whisker identity, surpris-
ingly, was the one mapped in most complex ways on the encoding variables. Notably this was true considering 
global and local encoding variables (Fig. 6). Interestingly, the longer whiskers may be tuned to different surface 
parameters as compared to smaller ones (note that all whiskers tested here were obtained from the same animal). 
This rather complex relationship in the end may introduce only little disadvantage, as active vibrissal scanning 
will often bring a whole bundle of whiskers or even all of them44 in contact with the probed texture. Nevertheless, 
it will be of importance for further studies to focus on possible behavioral biases to use different whiskers when 
faced with different tasks45. Distance, the second contextual variable, also held considerable inconsistencies in 
encoding. The type of classifier used (AUC vs. more complex machine learning algorithms) determined whether 
relevant texture information could be extracted from kinematic traces measured at different distances. Assuming 
that the rat perceptual mechanisms likely provide complex decoding capabilities, we expect that information 
encoded with varied whisker distances will be accessible by those animals. Finally, driving speed was the most 
consistent influencer of discriminability (with global and local encoding variables). Slip acceleration, besides 
being the variable conferring highest discriminability, was also the most consistent in providing texture dis-
criminability when subjected to varying speed (and distance) contexts. It is worth to note, that if the global 
variables were a perfect reflection of the 3D geometry of the texture surface, the discriminability conferred by 
them should be independent from driving velocity. The fact that this is not the case, suggests that global variables 
do not exclusively measure 3D geometry. Rather, we deem it highly likely that frictional movement (certainly 
slips, but possibly also other subthreshold whisker vibrations) are contained in the global variables and deter-
mine their dependence on context. This is supported by the general match of context influence to that seen with 
slip-kinematics.

The usage of sandpaper surfaces provided rich and natural-like discriminanda, which clearly demonstrate that 
contextual influence can affect global as well as local encoding variables and that a dominant contribution may be 
conveyed by contextually specific frictional movements. It is not clear whether the existence of context specificity 
of encoding may be boon or bane for texture perception. In any case, contextual specificity provides a purpose for 
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flexibility in movement strategies when solving a task involving active tactile perception46,47. The possibility that 
frictional processes may determine palpation strategies has rarely been studied and must be subject of focused 
research in the future.

Methods
Measurement.  Textures consisted in sandpapers of 6 different grit sizes: P80, P240, P400, P600, P1200 (part 
of the standard series issued by the Federation of European Producers of Abrasives with mean grain diameters of 
[201, 58.5, 35.0, 25.8, 15.3] μm, respectively). The 3D profiles of these sandpapers were mapped using an optical 
micro profilometer (MicroProf, FRT, Germany). The resulting profiles (order as above) had a size of 200 × 200 
pixels and spanned an area of [40002, 17002, 10002, 7002, 5002] μm2. In the valleys of the 3D profile, the measure-
ment sometimes failed and generated strictly localized errors encompassing a few pixels. As the measuring device 
set the erroneous measurements to extreme values they could be securely detected and separated from instances 
where the surface approached extreme height by an additional slope criterion [slope in neighboring pixels above 
95% percentile]. The artefactual bins as well as the bins neighboring a detected error bin were removed. The num-
ber of pixels thus removed for each height profile (order as above) was [756, 1158, 829, 844, 2048] out of 40000. 
The removed values were linearly interpolated (Fig. 2).

The height profiles of the sandpapers were differentiated twice to obtain measures of ‘slope’ (1st derivative), and 
‘angularity’ (2nd derivative) (Fig. 3A–C, top). For sampling the distributions in panel 5A, the interpolated values 
(see last paragraph) were omitted. The differentiation was obtained by moving a 2 × 2 bins window across the 
height profile. Within each window the difference in the two cardinal directions (rows and columns of the pro-
file) were assessed by averaging the two differences in each of the directions. The length of the vector sum of the 
cardinal difference vectors (along row/column) yielded the slope (and angle) within the 2 × 2 window. Angularity 
profiles were calculated the same way from slope profiles. The height profiles were used to calculate the spatial 
power spectrum and the autocorrelograms (Fig. 3D).

A set of rat whiskers A2, C2, E2, C4, C6, and β was plugged from a dead animal (in fact all whiskers studied 
here stemmed from the same animal). Care was taken that the follicle was included in the plugged whiskers and 
the hair shaft was devoid of kinks. Length and diameter at the follicle was measured using microscopic pictures. 
As reported before7,8, the whisker were approximately of conical shape. The most salient divergence from the cone 
shape was that the last few hundreds of microns toward the tip of the whisker, the taper was irregular, and the tip 
was cut at a width of about 5–10 μm. The [widths at base (μm), width at tip (μm), length(mm)] were: A2: [162.79, 
3.07, 41.05], C2 [184.29, 7.42, 49.45], E2: [178.15, 3.59, 41.71], C4 [124.36, 4.61, 26.48], C6 [81.93, 2.05, 17.96] β 
[190.43, 8.72, 55.90]

The whiskers were clamped with the follicular site to the rotational axis of a rod sticking out perpendicular 
to it (Fig. 4B). By rotating the rod using a stepper motor (AR66ACD, Orientalmotor, Tokyo, Japan controlled by 
Built-In Controller Package and data setting software MEXE02 and interfaced via CC05IF-USB to the PC) the 
whisker was rotated around its base. A high speed camera (MotionBLITZ EoSens® Cube6, Unterschleissheim, 
Germany) was positioned 50 cm above the rotational plane of the whisker and filmed the movement of the 
whisker (Tokina 100 mm f/2.8, AT-X PRO – Macro, Kenko Tokina Co.,Ltd., Japan) 160 × 627 pixels, 16 × 16 μm2/
pixel, 4000 fps). The sandpapers were mounted on circular plastic shields mounted such that its center point 
coincided with the rotational axis of the whisker motion. Hence the distance of the follicle to texture was con-
stant for the entire rotational movement. The shields were printed using a 3D printer (Ultimaker3, Ultimaker, 
Netherlands) at diameters adjusted such that the distance of the follicular end to the texture was (F) the length of 
the whisker minus 5 mm, (Q) 3/4 of the whisker length and (H) 1/2 of the whisker length. We took care that the 
whiskers intrinsic bending lay in the plane of movement direction. One measurement cycle consisted in forward 
movement (60°; ‘protraction’) across the texture (Fig. 4). The hair was video-imaged for 100 cycles capturing the 
hair shaft exposed in free air, ignoring the tip region engaging with the texture.

Analysis.  Whisker trajectory was read out from the videos at a constant distance of 10 mm from the base. 
Figure 4C shows a series of whisker shapes obtained from a subset of frames obtained with the high speed cam-
era during one movement episode. From the total set of frames the whisker position trajectory was constructed 
and differentiated twice to obtain position, velocity, and acceleration traces (Fig. 4D). Slips were detected in 
acceleration traces by applying a criterion, which was determined as 2*SD observed in control measurements 
when whiskers moved in air (no texture) (broken line in Fig. 4D). For each detected slip event the time of occur-
rence, peak velocity, and peak acceleration was assessed. In addition, for each trace the power spectrum, and the 
mean speed was calculated to extract the intensive parameters frequency and intensity. Before calculating the 
power spectrum using fast fourier transform, the signal was band-pass filtered (cut off frequencies [30, 250] Hz; 
Chebyshev type II filter of 5th order) and a Hanning window (raised cosine window) was applied.

Discriminability was determined for a pair of textures, calculated as the area under the ROC curve (AUC). 
AUC is the probability of correct classification of a binary classifier (using varying thresholds to strip off the 
observer bias) confronted with a randomly picked whisker trajectory obtained with touch on one of the textures48. 
Therefore AUC = 0.5 signifies random performance while AUC values of 0 and 1 signify perfect discrimination.

We calculated three versions of slip-based discriminability using distributions of (i) peak velocity, (ii) peak 
acceleration, and (iii) slip rate. Frequency-based discriminability was based on distributions of best frequencies 
found by maximizing power spectra, and finally, intensity-based discriminability was calculated as mean speed 
(after subtraction of the rotational, ‘driving’ speed due to the motor).

Finally, we cross-checked the results of the AUC analysis using three different one-against-all classifiers and 
10-fold cross-validation: (1) Support Vector Machine (SVM) with linear and (2) Radial Basis Function (RBF) 
kernels49 and (3) Logistic Regression50. We used the standardized Scikit-learn implementations (version 0.18.151). 
For each dataset (referring to the data from one whisker at one distance and one speed) we estimated the optimal 
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hyper-parameters for each classifier in the following way: we first split the data in train and test set (in a stratified 
fashion), then we perform a grid-search over the hyper-parameters with a 10-fold stratified cross-validation. 
We select the classifier with the best mean cross-validation score. In Fig. 7 we report scores of the best classifier 
(according to the cross-validation score on the training set) on the hidden test set.

As texture information is contained in very small differences of frequency and intensity data (Fig. 7) that we 
deemed clearly below the perceptual threshold of the animals23–25, we repeated this analysis using blurred input 
data to the classifiers. We took estimates for perceptual thresholds of changes in f and i variables from refs22,23,40. 
These studies used pulsatile discriminanda that were generated from identical pulses (i.e. instantaneous cod-
ing was excluded to contribute to the performance). Despite differences in psychophysical design (and stimulus 
reward contingency), 4 rats (three from ref.23 and one from ref.24) showed threshold performance with intensity 
differences of ~450 deg/s and frequency differences of ~36 Hz (cf. experiment 1b and 2b in ref.23, see their Table 1 
and Figs 2 and 3). As has been reported later25, rats likely use intensity rather than frequency to generate their per-
cept. Despite this qualification we deem it appropriate to consider both estimates (for f and i) as a lower bound to 
rats’ perceptual threshold of change. Ref.23 in addition reports a threshold amplitude change of pulses of 1.14 deg 
(their experiment 1). This translates into an acceleration change threshold of 23600 deg/s2 (cf. Table 1 and Fig. 2 
in ref.23). To demonstrate the effect of excluding texture information below these perceptual limits we blurred the 
input data to the classifiers by substituting each data point by a random pick form a Gaussian (with a mean set to 
the value of the point and standard deviation equaling the respective perceptual threshold). In other runs of the 
classification procedure we used fractions of this range (50% and 30%, cf. Fig. 7).

Data availability statement.  The datasets generated during and/or analysed during the current study are 
available from the corresponding author on reasonable request.
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