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Hyperspectral near infrared 
imaging quantifies the 
heterogeneity of carbon materials
Mikko Mäkelä   1,2 & Paul Geladi2

For many applications heterogeneity is a direct indicator of material quality. Reliable determination of 
chemical heterogeneity is however not a trivial task. Spectral imaging can be used for determining the 
spatial distribution of an analyte in a sample, thus transforming each pixel of an image into a sampling 
cell. With a large amount of image pixels, the results can be evaluated using large population statistics. 
This enables robust determination of heterogeneity in biological samples. We show that hyperspectral 
imaging in the near infrared (NIR) region can be used to reliably determine the heterogeneity of 
renewable carbon materials, which are promising replacements for current fossil alternatives in energy 
and environmental applications. This method allows quantifying the variation in renewable carbon and 
other biological materials that absorb in the NIR region. Reliable determination of heterogeneity is also 
a valuable tool for a wide range of other chemical imaging applications.

For many applications variation or heterogeneity is a direct indicator of material quality. Reliable estimation of 
chemical heterogeneity is however not a trivial task. The material needs to be correctly sampled to describe its 
true time or space dependent variation, which requires obtaining and analysing a sufficient number of samples 
while minimizing the uncertainty of the analytical procedure. Although an entire theory of representative sam-
pling has been developed for this purpose1,2, fast and reliable quantification of heterogeneity from individual 
samples or real-time monitoring of entire material streams remains challenging.

Spectral imaging can combine e.g. vibrational spectroscopy with the spatial attributes of an image. 
Mathematical operations can thus be performed in both the spectral and spatial domains, which enables relating 
chemical information of different analytes with individual image pixels. As an example, vibrational modes of 
different molecular bonds can be measured within an entire image area through absorbance in the near infrared 
(NIR) or infrared (IR) region. As opposed to fundamental vibrational modes detected with IR, NIR wavelengths 
provide information on the overtones and combination bands of hydrogen and other bonds. Molecular absorp-
tivity in the NIR region is thus orders of magnitude weaker than in the IR, which requires longer path lengths for 
obtaining undistorted spectra, but provides an advantage in sample preparation and in analysing larger heteroge-
neous samples3,4. Spectral interpretation in the NIR is however more complicated and is often performed through 
calibration based on a known reference method. The term hyperspectral imaging is generally used when spectral 
images are continuously recorded on tens or even several hundred different wavelengths5.

After a calibration model has been determined based on the known concentrations of calibration samples, the 
properties of individual image pixels can be predicted. In addition to the average concentration of an analyte in a 
sample, spectral imaging thus enables determining its spatial distribution6. Each pixel then becomes a sampling 
cell. With images that contain a large number of sample pixels, the results can be evaluated using large population 
statistics7. This enables developing a reliable variation metric for describing material heterogeneity.

Although spectral imaging has its roots in remote sensing3,6,8, it has been finding its way also to the chemical 
and materials science communities. As an example, in-line hyperspectral NIR imaging has recently been used for 
studying the spatial properties of adhesive layers in textile laminates9. NIR imaging below the diffraction limit has 
recently been reported for studying the behavior of DNA walkers10. NIR and Raman imaging have also been used 
for identification of counterfeit drugs11,12. Wilczyński et al.12 used the analysis of gray value intensities for quan-
titative evaluation of heterogeneity in counterfeit tablets. No calibration model was determined and differences 
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in heterogeneity were based on spatial and spectral information alone. Recently de Moura França et al.13 also 
illustrated the use of homogeneity curves for analyzing heterogeneity of binary images.

Here, we demonstrate for the first time the use of hyperspectral NIR imaging for quantifying the heterogeneity 
of renewable carbon materials after multivariate image regression. Biomass-derived carbon is a promising mate-
rial as it can be prepared from renewable feedstocks and used for replacing current fossil alternatives in a range 
of energy and environmental applications14. The chemical and physical properties of carbon materials can be 
fine-tuned for a specific application through the use of additives or subsequent activation steps15,16. Independent 
of the choice of method or final application, variation in the properties of the carbon material affect the quality of 
the final product. In the future, hyperspectral NIR imaging and heterogeneity estimates can be used for monitor-
ing the quality of renewable carbon and other biological materials that absorb in NIR region.

Methods
Carbon materials.  Carbon materials were hydrothermally prepared from chemical sludge produced at a 
wastewater treatment plant of a pulp and paper mill. An experimental design was used to systematically produce 
carbon materials with different properties. In the design carbonization temperature (180–260 °C) and the mois-
ture content of sludge (10.2–4.4 kg H2O kg−1 db) were varied on three different levels. A total of 11 experiments 
were performed including three repeated center-points (Table 1). The hydrothermal experiments were performed 
in a 280 mL autoclave (Büchi Limbo, Büchi AG) using 200 g of wet sludge. The reactor was purged with 2 MPa 
nitrogen and heated to treatment temperature under autogenous pressure followed by an isothermal holding 
time of 1 h. Once the reactor was cooled to room temperature, the non-condensable gases were discarded and the 
slurry was vacuum-filtered using a 25 µm pore size Whatman filter paper. The filtered carbon material was dried 
at 105 °C overnight. The ash and carbon contents of the dried samples were determined according to respective 
European standards SS-EN 14775 and SS-EN 15407. The final carbon content was given as a percentage of dry, 
ash-free (daf) char. After the analyses, the samples were sieved through a 250 µm sieve (Retsch GmbH), which 
provided a total of 33 samples in three different size fractions including the original unsieved material.

Spectral imaging.  Hyperspectral imaging was performed with a Specim (Specim, Spectral Imaging, Ltd.) 
camera equipped with an OLES30 lens provided by Specim. Three images were taken, one for each size fraction. 
Two rows of quartz halogen lamps generated polychromatic light and the reflected wavelengths were separated 
by a grating-prism monochromator followed by a HgCdTe detector array. The spectral range was limited to 950–
2550 nm with a spectral resolution of approximately 6 nm. The samples were placed in black spherical polypropyl-
ene screw caps with a diameter of 23 mm and a depth of 8 mm. The camera was operated in line-scanning mode 
where a line of 388 pixels was continuously recorded on 288 wavelengths. The samples moved under the camera 
on a moving belt generating an image. The number of lines and samples on the moving belt thus determined 
image size. The acquisition time was 10 ms per line, resulting in approximately 14 s per image. The field of view 
was set to 50 mm, which resulted in a pixel size of 0.13 × 0.13 mm. The absorbance in each pixel was calculated 
based on measured Spectralon white reference and dark current intensities.

Image and data analysis.  Backgrounds, sample holders and potential dead pixels were removed from the 
individual images using principal component analysis (PCA)17. The hyperspectral image of each unsieved sam-
ple was split into four individual 90 degree segments, which resulted in a total of 44 calibration samples on 276 
wavelengths. The respective median spectra were calculated and further split into 33 calibration and 11 validation 
objects. A calibration model was then determined based on partial least squares (PLS) regression18 on determined 
reference values. Spectral preprocessing was performed through the standard normal variate (SNV) transfor-
mation and mean centering to minimize the effects of light scattering. The reference carbon values were mean 
centered. The root mean squared errors of prediction (RMSEP) based on the validation set were calculated as:

Experiment
Carbonization 
temperature (°C)

Moisture content 
(kg H2O kg−1 db)

Dry solids 
(%)

1 180 10 8.9

2 260 10 8.9

3 180 4.4 19

4 260 4.4 19

5 180 7.3 12

6 260 7.3 12

7 220 10 8.9

8 220 4.4 19

9 220 7.3 12

10 220 7.3 12

11 220 7.3 12

Table 1.  The hydrothermal experiments. db = dry basis.
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Data analysis and plotting were performed with the Evince (Prediktera AB), Matlab (The Mathworks, Inc.) 
PLS Toolbox (Eigenvector Research, Inc.) and OriginPro (Originlab Corp.) software packages. Data availability; 
the datasets analysed during this study are available from the corresponding author on reasonable request.

Results and Discussion
Backgrounds and unnecessary pixels were removed from the images with the help of PCA. The first three princi-
pal components explained 96–97% of variation in the cleaned images. The first component described the mean 
spectra, while the second and third components included more detailed spectral features. Based on the score 
images, the first component described differences between the different samples as the second and third mainly 
included variation within the individual samples due to e.g. uneven illumination of the sample surfaces. PCA 
scores of the first and third component showed that the carbon samples contained four different groups, which 
were mainly separated by carbonization temperature, Fig. 1a. The samples carbonized at 260 °C were further 
separated into two groups. The effect of carbonization temperature was also clearly visible in the score images 
(Fig. 1b). This indicated that their chemical differences were visible in the NIR spectra. Once the images had 
been cleaned, the samples were split into four different parts and the respective median spectra were used for 
calibration against the reference carbon contents of the samples. The first wavelengths within 950–1000 nm were 
discarded as they mainly consisted of noise.

The calibration spectra before preprocessing showed increased loss of spectral features with increasing car-
bonization temperature, Fig. 2a. Especially the peaks at approximately 1410, 1740, 1930 and 2510 nm that corre-
spond with the stretching of O-H, S-H, C-O and C-H from C-H and CH2 groups19,20 completely disappeared from 
the samples produced at higher temperatures. A calibration model was however successfully determined based 
on preprocessed spectra (Fig. 2b). The final PLS model was composed of 4 latent variables and explained 98% of 
variation in the calibration and validation data (Fig. 2c). The determined RMSEP were 0.50% carbon (daf) com-
bined with low prediction bias (−0.13). The model RER and ratio RPD parameters related the prediction errors 
to the original distribution of reference values and were 19 and 6.6, respectively. This indicated that the model 
performed well and was suitable for quality control applications3.

Figure 1.  (a) Principal components scores of the cleaned sample image and (b) a score image of four samples 
based on the first principal component which explained 88% of data variation. Samples labels in (b) show 
carbonization conditions given in Table 1.
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PLS VIP scores based on the model suggested that wavelengths below 1240, within 1830–1870 and 2010–
2090, and above 2500 nm were especially important for the predictive ability of the model (Fig. 2d). Wavelengths 
below 1240 nm generally contain the second overtones of C-H strains of CH and CH2 groups and the CH3 groups 
of aromatic moieties19. The preprocessed calibration spectra showed significant variation between the different 
sample groups in this range (Fig. 2b), which was also indicated by the loading vector of the first latent variable 
explaining 94% of the variation in the reference values. Shorter NIR wavelengths are also more strongly affected 
by light scattering and sample color. The effects of scattering are however complicated due to the presence of 
absorbing constituents and variation in physical properties such as particle size and shape, surface properties and 
sample packing21,22. Increasing carbonization temperature generally leads to a higher carbon content and a darker 
sample color, which can manifest as increased absorbance on shorter wavelengths23. The O-H and C-O strains 
and the second overtone of C-O strain can normally be detected at 1830 nm20. The second overtone of the C=O 
strain and the O-H deformation and strain generally absorb within 2030–2080 nm19. Absorbance of C-O strains 
and C-H strains from C-H and CH2 groups have been reported at 2506–2519 nm19. Based on additional chemical 
analyses, the O/C ratio of the feed material decreased from 0.61 (daf) to 0.29–0.46 (daf) during the experiments, 
which explains changes in the absorbance of C-O and C=O bonds. The respective H/C ratio decreased slightly 
from 1.7 (daf) to 1.4–1.6 (daf) suggesting changes in C-H and possibly O-H bonds likely through the decom-
position of carbohydrates. It should be noted that the spectral resolution of hyperspectral cameras is generally 
not as high as those of spectrometers, which can generate a level of uncertainty to the interpretation of spectral 
assignments. The PLS model however enabled reliable calibration as indicated by the determined performance 
parameters.

Once the suitable calibration model was obtained, the carbon contents of individual image pixels were pre-
dicted. Two more images were obtained after sieving the original samples through a 250 μm sieve. The sieving 
enabled testing the hypothesis that variation in the different size fractions could be determined based on the pre-
dicted pixel data. The pixel populations of individual samples were further processed to remove potential outliers. 
Observations that situated >|3| standard deviations from the population mean based on a normal distribution 
were excluded. This still enabled using 99.7% of the original pixel data.

In general, heterogeneity can be used for describing the chemical or physical properties of a material. 
Chemical heterogeneity generally relates to composition, while physical heterogeneity is often related to particle 
size or shape distribution. For many materials heterogeneity is a mixture of the two. We described heterogeneity 
of the samples through the concept of constitutional heterogeneity (hi), originally developed within the theory of 

Figure 2.  (a) Original and (b) preprocessed calibration spectra. Preprocessing was based on SNV transformation 
and mean centering. (c) Predicted vs. observed carbon contents based on the final PLS model, where the 45° line 
illustrates a perfect fit. (d) VIP scores of the PLS model.



www.nature.com/scientificreports/

5Scientific RePorts |  (2018) 8:10442  | DOI:10.1038/s41598-018-28889-7

sampling to account for weight differences of different sub-samples24. However, we assumed constant mass and 
penetration depth across all pixels and expressed hi as:
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where ci denoted the carbon concentration in a single pixel (%, daf), c  the average concentration of all pixels in a 
sample, i.e., predicted sample concentration (%, daf) and N the number of pixels within a sample. This definition 
provided a dimensionless heterogeneity metric corrected for the number of pixels between different samples that 
can be used for comparing different sample properties. In addition, the metric took into account increases in 
spatial detail as heterogeneity generally increases with an increasing number of image pixels.

As illustrated in Fig. 3, the carbon contents and respective heterogeneity increased gradually with increasing 
carbonization temperature. Higher temperatures hence generated more variation in the carbon content of the 
samples. The distributions also seemed to be affected by the different size fractions. It is currently well known 
that temperature governs hydrothermal reactions and higher temperatures lead to increased decomposition of 
the lignocellulosic components normally present in biomass25,26. The raw calibration spectra indicated the loss 
of O-H, C-O and C-H bonds suggesting the decomposition of carbohydrates. The histograms in Fig. 3 give an 
indication of the progress of hydrothermal reactions. Higher temperatures suggested increased reaction rates 
especially for smaller particles. We have previously shown that the variation in pixel predictions decreased with 
the severity of carbonization after the char samples from different waste feeds were milled to obtain undistorted 
spectra27. However, a robust heterogeneity metric should be able to determine changes in heterogeneity without 
specific sample pretreatment.

As the original samples were prepared based on an experimental design, the determined heterogeneities could 
also be described based on a regression model. This allows evaluating the effects of carbonization conditions on 
the heterogeneity metric and to illustrate changes through response surfaces. An interaction model based on 
log10 transformed response values explained 90% of data variation with no significant lack of fit. Different sample 
size fractions were described by two dummy variables. The model showed that both temperature and sample size 
fraction had a statistically significant effect (p < 0.001) on heterogeneity and also showed a significant interaction 
(p < 0.001). Moisture content was the least significant variable (p = 0.10) but showed a significant interaction 
with temperature (p = 0.01). The standard error of the model was 0.10 within a range of 1.16 log10 transformed 

Figure 3.  Examples of the predicted carbon contents (%, daf) of different samples. The histograms illustrate 
pixel count for different carbon contents. Sample labels show carbonization conditions given in Table 1. 
Determined heterogeneities, hi·104: (a) 3.8, (b) 5.8, (c) 13, (d) 3.4, (e) 2.9, (f) 4.2, (g) 1.2, (h) 5.3 and (i) 14.

Source
Sum of 
squares

Degrees of 
freedom Mean square F-ratio p-value

Total corrected 2.2 32

Model 1.97 7 0.28 31 <0.01

Residual 0.23 25 9.1 10−3

Lack of fit 0.16 19 8.6 10−3 0.79 0.68

Pure error 0.07 6 0.01

Table 2.  Analysis of variance for the regression model on the effects of carbonization conditions on determined 
heterogeneities. The heterogeneity values were log10 transformed.
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heterogeneities (Table 2). As illustrated in Fig. 4, the model predictions confirmed that heterogeneity increased 
with carbonization temperature. The sieving procedure also significantly decreased heterogeneity in the larger 
particle size fraction. Particles smaller than 250 μm included a wider range of carbon contents that were nearly 
comparable to the original unsieved samples. As sample heterogeneity can be determined and modelled, it can 
also be controlled. This opens up doors for enhancing the quality of renewable carbon materials.

To the better of our knowledge, this is the first time that hyperspectral NIR imaging has been used to quantify 
the constitutional heterogeneity of a predicted analyte distribution. The concept of heterogeneity based on the 
theory of sampling has previously been discussed by Piqueras et al.28 in an imaging context. The authors used the 
standard deviations of predicted constituent distributions determined through multivariate curve resolution as 
constitutional heterogeneity estimates. In our work, their method did not provide robust heterogeneity estimates 
as the metric is highly sensitive to outlier removal. However, the authors made important observations on the dif-
ferences between constitutional and distributional heterogeneity when applied to images. As constitutional heter-
ogeneity describes the variation of independent pixel values around the mean, the spatial structure of the image is 
lost28. Thus heterogeneity is best interpreted by also considering the predicted concentration image (Fig. 3), which 
together provide information on both the constitutional and distributional heterogeneities. For renewable carbon 
materials, determination of heterogeneity enables developing methods to minimize variation and increase the 
quality of the carbon material for subsequent applications. This will help to develop renewable carbon materials 
for replacing respective fossil alternatives in a wide range of energy and environmental applications. This method 
can also be used for characterizing other materials that absorb in the NIR region.

Conclusions
Heterogeneity affects material quality. Reliable quantification of heterogeneity has traditionally been a challeng-
ing task, as it requires rigorous sampling and analysis procedures. Spectral imaging can determine the spatial 
distribution of an analyte in sample, thus transforming each pixel into a sampling cell. With a large number of 
image pixels, the results can be evaluated using population statistics, which allows determining a robust heteroge-
neity metric for biological materials. Here we have shown that hyperspectral NIR imaging can be used for reliable 
determination of heterogeneity of biomass-derived carbon after multivariate image regression. Heterogeneity 
can also be modelled and controlled based on carbonization conditions. In the future, the variation and quality of 
carbon materials can potentially be monitored online within production systems. The concept of heterogeneity 
should however be extended beyond the imaged surface a material. Future work should also determine the effect 
of pixel size on reliable heterogeneity estimates and separate physical and chemical heterogeneities.
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