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Structure and energy based 
quantitative missense variant 
effect analysis provides insights 
into drug resistance mechanisms 
of anaplastic lymphoma kinase 
mutations
Jianzong Li  1, Yue Huang1,2, Miaomiao Wu1, Chuanfang Wu1, Xin Li3 & Jinku Bao1,3,4

Anaplastic lymphoma kinase (ALK) is considered as a validated molecular target in multiple 
malignancies, such as non-small cell lung cancer (NSCLC). However, the effectiveness of molecularly 
targeted therapies using ALK inhibitors is almost universally limited by drug resistance. Drug resistance 
to molecularly targeted therapies has now become a major obstacle to effective cancer treatment and 
personalized medicine. It is of particular importance to provide an improved understanding on the 
mechanisms of resistance of ALK inhibitors, thus rational new therapeutic strategies can be developed 
to combat resistance. We used state-of-the-art computational approaches to systematically explore 
the mutational effects of ALK mutations on drug resistance properties. We found the activation of 
ALK was increased by substitution with destabilizing mutations, creating the capacity to confer drug 
resistance to inhibitors. In addition, results implied that evolutionary constraints might affect the drug 
resistance properties. Moreover, an extensive profile of drugs against ALK mutations was constructed 
to give better understanding of the mechanism of drug resistance based on structural transitions and 
energetic variation. Our work hopes to provide an up-to-date mechanistic framework for understanding 
the mechanisms of drug resistance induced by ALK mutations, thus tailor treatment decisions after the 
emergence of resistance in ALK-dependent diseases.

Anaplastic lymphoma kinase (ALK), a member of the superfamily of insulin receptor protein-tyrosine kinases, 
was characterized by the identification of a 2;5 chromosomal translocations in anaplastic large-cell lymphoma 
(ALCL) cell line1. This chromosomal rearrangement generates nucleophosmin (NPM)-ALK fusion protein that 
has a constitutively activated ALK kinase domain2. In addition to NPM-ALK fusion protein, the echinoderm 
microtubule-associated protein-like 4 (EML4)–ALK fusion detected in NSCLC is the most widely identified3. It 
has been indicated that the ALK fusion proteins play an important role in driving tumorigenesis2,3. In contrast to 
fusion proteins, activation of the full-length ALK is normally regulated by extracellular ligand-binding domain. 
The full-length ALK consists of an extracellular ligand-binding domain (residues 19–1038), a transmembrane 
domain (residues1039–1059) and an intracellular tyrosine kinase domain (residues 1116–1392). Experimental 
genetic evidences indicate that mutated full-length ALK plays an important role in multiple carcinomas, such as 
neuroblastoma and thyroid cancer, but the mechanisms have not been illuminated very clearly4–7.
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ALK has been validated as a therapeutic molecular target for the treatment of ALK-rearranged cancer. 
Substantial efforts among academia and pharmaceutical industry have been made to develop effective ALK inhib-
itors. Nowadays, crizotinib, ceritinib and alectinib have been approved by the US Food and Drug Administration 
(US. FDA) for the treatment of patients with advanced “ALK-positive” NSCLC8–13. Considerable small-molecular 
inhibitors targeting ALK are currently in clinical trials, such as AP2611314 and lorlatinib (PF-06463922)15. 
However, the rapid emergence of inevitable drug resistance is occurring worldwide, endangering the efficacy 
of chemotherapy involving these drugs. Generally, different ALK inhibitors actually result in the emergence of 
resistance to ALK inhibitors that is characterized by different mechanisms. Crizotinib is the first-generation ALK 
inhibitor, resistance to this drug occurs in patients who initially benefited from target therapies. It is reported that 
about one third of resistance cases are related to the diverse mutations in EML4-ALK fusion protein16. Acquired 
secondary ALK resistance mutations to the crizotinib include I115ITins, L1152P/R, C1156Y/T, I1171T/N/S, 
F1174C/L/V, V1180L, L1196M, G1202R, S1206C/Y, E1210K, or G1269A/S17. Ceritinib and alectinib are the 
second-generation ALK inhibitors that are developed to overcome the resistance to the first generation ALK 
inhibitors, but resistant mutation to these drugs are also inevitably reported. Resistant mutations to ceritinib 
include I115ITins L1152P/R, C1156Y/T, I1171T/N/S, F1174C/L/V, and G1202R. Resistant mutations to alectinib 
include I1171T/N/S and G1202R. Among which L1196M gatekeeper mutation is the most common resistance 
mutation to crizotinib17–19. The hotspot mutations F1174 (mutated to L, S, I, C or V) in ALK kinase domain are 
identified in about 85% of the cases with ALK mutations. G1202R is located at the solvent front of the ALK kinase 
domain and exhibits broad-spectrum resistance to all ALK inhibitors. There may be some other potential resist-
ance harboring in primary ALK mutations. Although the functional research for these mutations are very limited, 
more and more experimental evidences show that they play an important role in tumorigenesis and may possess 
potential effects on ALK targeting therapy20–22.

Numerous studies have been performed to dissect the mechanisms of drug resistance to ALK inhibitors7,23–25. 
It has been widely acknowledged that the drug-resistant mutations cause drug resistance by re-inducing kinase 
activation and signaling despite the presence of the inhibitors. These mutations can hinder the inhibitor bind-
ing to ALK, alter the kinase’s conformation, and/or alter the ATP-binding affinity of the kinase7,23,25. It has been 
suggested that evolving paradigms exist in cancer drug resistance and contribute to the evolution process of 
tumor clones in response to the selection pressure by drug treatments26,27. Some interesting works have evalu-
ated the influence of subtle mutations on the shifts of the energetics and function of proteins as well as specific 
stability-function tradeoffs in the evolution processes of enzymes20. Comprehensive quantitative profiling of 
mutational effects on drug resistance is increasingly important in tailoring treatment decisions after the emer-
gence of resistance in ALK-depend diseases given the promise of novel molecular targeted therapies. Of par-
ticular interest is whether the mechanisms that mediate drug resistance in protein are caused by a few mutations 
occurring in distal regions. Here, we focus on exploring diverse mechanisms of drug resistance induced by sec-
ondary or primary mutations in ALK and hope to find some common shared features. In addition, a comprehen-
sive profile of drugs against ALK mutations has been constructed to analyze the energetic variation mediated by 
mutations, thus providing insights into the molecular basis of drug resistance from a structural perspective. We 
show how an integration of structural transition and energy variation moves us towards a better understanding 
of why biological molecules have the properties that they do, such as the emergence of acquired drug resistance.

Results and Discussions
Stability landscape of all possible mutations in ALK kinase domain. In order to estimate the sta-
bility effect of all possible mutations of each residue of the ALK kinase domain, the stability changes (ΔΔGfold) 
were computed using FoldX. As shown in Fig. 1, most of the mutations (2730 of 4940 = 55.26%) have moder-
ate thermodynamic stability effects, the values of ΔΔGfold of these mutations range from −1.84 kcal·mol−1 to 
1.84 kcal·mol−1. 2170 mutations (43.93%) showed highly destabilizing (ΔΔGfold > 1.84 kcal·mol−1). A handful of 
mutations are found to have strongly stabilizing effect on the structure of ALK kinase domain, only 40 mutations 
(0.81%) show that the values of ΔΔGfold are less than −1.84 kcal·mol−1, most of these mutations are located in 
or close to the kinase activation segment of ALK, the detailed data was provided in Supplementary Table S1. 

Figure 1. Effect of mutations on ALK kinase domain stability. All 19 possible mutations along with the synonymous 
mutations that the residue mutates to itself at each position in ALK kinase domain are colored on a vertical bar 
in terms of their stability relative to wide-type ALK. The values of ΔΔGfold are binned into seven categories: 
highly stabilizing (ΔΔGfold < −1.84 kcal·mol−1) and highly destabilizing (ΔΔGfold > 1.84 kcal·mol−1); stabilizing 
(−1.84 kcal·mol−1 < ΔΔGfold < −0.92 kcal·mol−1) and destabilizing (0.92 kcal·mol−1 < ΔΔGfold < 1.84 kcal·mol−1); 
slightly stabilizing (−0.92 kcal·mol−1 < ΔΔGfoldd < −0.46 kcal·mol−1) and slightly destabilizing (0.92 kcal·mol−1 <  
ΔΔGfold < 1.84 kcal·mol−1); and neutral (−0.46 kcal kcal·mol−1 < ΔΔGfold < 0.46 kcal·mol−1).
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Experimental evidences have demonstrated that residues in the active sites of the enzyme are characterized by 
intrinsic destabilizing due to the high energy state, and the replacement of these residues can actually increase the 
stability of the enzyme28–30.

Interest in quantitative analysis of the correlation between the degree of surface exposure and stability effect 
of residues led us to further investigate the relevance of the stability effect of mutation and the solution accessible 
surface area (SASA) of each residue. Buried residues are not accessible to the solvent inside a cell, therefore their 
SASA usually equal zero or closes to zero. Here, SASA of each residue was calculated to estimate the surface 
exposure level using FreeSASA31. Then we simply used Spearman’s rank correlation coefficient (Spearman’s rho) 
to investigate how well the relationship between ΔΔGfold and SASA could be described using a monotonic func-
tion. As shown in Fig. 2, the Spearman’s rho equaled −0.57, indicating that moderate negative correlation existed 
between ΔΔGfold and SASA. Highly destabilizing mutations (ΔΔGfold > 1.8 kcal·mol−1) were more likely to occur 
in residues that possessed smaller SASA. If mutations occur in buried residues, their ΔΔGfold can be very high. 
Mutations with larger SASA show smaller volatility of stability effects, and these mutations are usually neutral or 
slightly destabilizing.

It has been well known that surface residues are not important for protein stability since their interactions with 
the solvent should be similar in the unfolded and native states32. Here, results showed that the changes in stability 
mediated by the mutation were related to the solvent-accessible area of residues. For example, surface residue 
Met1290 possessed highest SASA (208.26 nm), and mutations occurring in this position had moderate effects on 
protein stability, most of their ΔΔGfoldwere lower than 0.92 kcal·mol−1, only M1290V was highly destabilizing 
(3.79 kcal·mol−1). The SASA of surface residue Lys1114 was 172.55 nm, the changes in stability mediated by the 
mutation in this position were also insignificant, the average of ΔΔGfold value in this position was 0.17 kcal·mol−1, 
no mutation occurring in the site was stabilizing or destabilizing. Once residues possess SASA over 70 nm, highly 
destabilizing or stabilizing mutations are unlikely to occur in these sites (Supplementary Table S2). Results reveal 
that mutations occur in exterior regions have moderate effects on protein stability, while mutations that occurr in 
interior regions with low-level surface exposure are more likely to be destabilizing.

Effects of observed ALK mutations on protein evolution and drug resistance. Theoretically, 
there may be incalculable possible mutational forms in processes of evolution, but ALK has to satisfy diverse 
constraints, including reasonable folding, thermodynamic stability and solubility, to maintain its specific func-
tion29,33,34. Only few ALK mutations are compatible with the constraints. Here, 145 observed mutations occur-
ring in ALK kinase domain were collected from Uniprot35, COSMIC36 and ClinVar37 database to investigate 
the stability-function tradeoffs followed by these mutations and their evolutionary features underlying drug 
treatment condition. Most of observed mutations are associated with diseases and play an important role in the 
pathogenesis of neuroblastoma, anaplastic thyroidcarcinoma and NSCLC20–22,38,39, 131 mutations are the origi-
nal primary mutation in neuroblastoma and lung adenocarcinoma cell lines, and 14 mutations are acquired as 
secondary mutations occurring independently or dependently in individual NSCLC cell line (Supplementary 
Table S3).

The distribution of the ΔΔGfold values of all possible mutations of ALK kinase domain and observed muta-
tions occurring during the evolution, or rather, tumorigenesis was computed. As can be seen in Fig. 3, the distri-
bution of stability effects of all these possible mutations is unimodal and has its largest peak close to a ΔΔGfold 
of zero, suggesting that the simulated mutations appear to be neutral or have moderate effects on the protein 
thermodynamic stability. In contrast to all possible mutations, the distribution of the ΔΔGfold values of observed 
mutations follows a multimodal distribution and has an excess of slight destabilizing than possible mutations. 
As can be seen, it has two slight distinct peaks including a peak of high destabilizing whose values centered at 
3.12 kcal·mol−1 and a smaller peak close to zero.

Figure 2. Scatter plot of the correlation between solvent accessible surface area (SASA) and difference in 
stability (ΔΔGfold) of ALK mutations.
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Although highly destabilizing mutations are unlikely to occur in nature conditions, mutations that observed 
in clinic appear to be highly destabilizing. The stability-function tradeoffs hypothesis suggests that substitution of 
key residues in enzymes decreases the stability, resulting in the increasing activity of enzyme40. Studies of enzyme 
steady-state kinetic parameters of ALK showed that F1174L mutant attained 86% of the activity of the phospho-
rylated ALK, and R1275Q mutant attained 28% of the activity of the phosphorylated ALK41. The ΔΔGfold values 
of F1174L mutant was 1.40 kcal·mol−1 and the ΔΔGfold values of R1275Q mutant was 1.90 kcal·mol−1. In addition, 
mutations occurring in Fhe1174 loci (mutated to Ile, Leu, Ser or Val) also attained higher ΔΔGfold values, they 
were able to relax the steric clash with F1245 occurring in the catalytic loop and thus facilitated activation22,23. 
These mutations have been described in several diseases as mentioned above, as well as drug resistance in NSCLC. 
Our results are consistent with the “stability-function” hypothesis42. Mutations occurring within or near key reg-
ulatory regions can dramatically increase the activity of the enzyme owing to the intervention of destabilizing 
mutations.

Furthermore, the ΔΔGfold values of total 21 reported drug resistance mutations were investigated here. In par-
ticular, we found that ALK drug resistance mutations presented significantly more destabilizing, most of which 
attained higher ΔΔGfold values than 1.84 kcal·mol−1. They were the main forces to form the peak of high destabiliz-
ing whose values centered at 3.12 kcal·mol−1 in the distribution of stability effects. Their ΔΔGfold values ranged from 
−1.02 kcal·mol−1 (E1210K/S1206C) to 11.06 kcal·mol−1 (L1152P). Mean of the ΔΔGfold values was 3.03 kcal·mol−1 
and the median was 3.07 kcal·mol−1, see Table 1. Rare drug resistance mutations are stabilizing, only four muta-
tions can slightly stabilize the structure, including the gatekeeper L1196M mutation (−0.16 kcal·mol−1), L1198F 
mutation (−1.19 kcal·mol−1) and two double mutations E1210K/S1206C and L1198F/C1156Y (−0.26 kcal·mol−1). 
The gatekeeper mutation L1196M is the most common crizotinib-resistance mutant identified in NSCLC. The 
replacement of leucine by methionine, which has comparable stabilizing effects on the ALK structure as well as 
identical electronic properties and steric demands. Our previous study showed that the loss of a non-polar binding 
energy interaction between the leucine side chain and the methyl substituent of crizotinib might account for the 
resistance against crizitinib when leucine was mutated to a methionine43. The mechanisms of which other drug 
resistance mutations facilitate activation of ALK in the context of drug treatment conditions are currently unclear. 
ALK inhibitors approved by the US. FDA are all type I1/2 inhibitors that bind to an inactive protein kinases with 
the DFG-in conformation44,45, including cizotinib, ceritinib and alectinib. It has been demonstrated that mutations 
could facilitate the transition between inactive and active conformations and increased the stability of the active 
conformation. Here, our analysis suggests that the activation of ALK is increased by the substitution with destabi-
lizing mutations, creating the capacity to confer drug resistance inhibitors.

Interestingly, S1206C mutant has been reported as crizotinib-resistant mutation, but the double ALK mutant 
(S1206C/E1210K) does not show resistance to crizotinib anymore. The resistance to ALK inhibitors shifts from 
crizotinib to brigatinib, a new ALK inhibitor that is currently under clinical testing. C1156Y mutant has been 
reported as crizotinib-resistant mutation and ceritinib-resistant mutation, but the double mutant (L1198F/
C1156Y) confers resistance to lorlatinib and causes sensitization to crizotinib19. C1156Y, D1203N and S1206C 
are highly destabilizing mutations underlying our results, L1198F and E1210K are stabilizing mutations that can 
increase the thermodynamic stability of ALK, their ΔΔGfold values are −1.19 kcal·mol−1 and −0.46 kcal·mol−1, 
respectively. It has been demonstrated that the maintenance of the protein’s stability is a strong constraint to evo-
lution46, drug resistance mutations are actually subject to the constraints47. In the scenario of double mutations 
S1206C/E1210K, C1156Y/L1198F and D1203N/E1210K, the stability effects of high destabilizing mutations on 
ALK structure are constantly pruned by the stabilizing mutations.

Figure 3. Distribution of stability effects of all possible simulated mutations and those observed in clinic. The 
distribution of stability changes arising from mutations observed in tumor cell (dashed line) stands in contrast 
to that of all possible simulated mutations (solid line). The probability distributions shown here are obtained by 
kernel smoothing of the original data
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Accounting for the evolutionary forces that may cause drug resistance can be important for providing rea-
sonable treatment strategies, we employed computational tools to estimate whether resistance mutations in the 
kinase domain were likely to be benign or damaging using comparative evolutionary considerations. The esti-
mations of the mutation effects (ΔE) of ALK mutations were presented in Fig. 4, the detailed data were provided 
in Supplementary Table S4. The distributions of mutation effect scores of all possible and observed mutations 
showed similar variation tendency, the largest peak of ΔE values of the observed mutations were slightly lower 
than that of all possible mutations. Most observed mutations are identified as pathogenic or likely pathogenic 
mutations. Only 5 are mutations are not specified, their effects on phenotypes are unclear. The median value 
of the pathogenic mutations’ effect scores is −4.86 taking into account of epistasis, indicating that most of the 
observed mutations in ALK kinase domain are possibly damaging. The ΔE values of drug resistance mutations 
ranged from −7.26 (F1174S) to −1.41 (G1269A), the median value was −4.84 and the mean value of the ΔE was 
−4.64, see Table 1. Results reveals that disease-associated drug resistance mutations are not likely to be tolerated 

Mutation
ΔΔGfold 
kcal·mol−1 ±SD ΔE

ALK inhibitorsa

Crizotinib Ceritinib Alectinib Brigatinib Lorlatinib

Primary mutation

L1152P 11.06 0.024 −5.84 + +

I1171T 3.07 0.026 −2.72 + +

I1171N 3.18 0.030 −4.94 + +

I1171S 2.83 0.009 −4.54 + +

F1174C 4.22 0.027 −6.24 + +

F1174S 5.14 0.069 −7.26 + +

V1180L 0.96 0.027 −3.98 + +

L1198F −1.19 0.024 −4.14 +

S1206C 3.23 0.350 −5.28 +

Secondary mutation

L1152R 3.17 0.409 −4.86 + +

C1156Y 4.47 0.634 −4.41 +

F1174L 1.36 0.185 −2.54 + +

L1196M −0.16 0.039 −4.82 +

L1198P 1.46 0.058 −7.18 +

G1202R 2.88 0.140 −5.76 + + + +

D1203N 3.85 0.149 −4.46 +

S1206Y 2.72 0.236 −5.64 +

G1269A 0.52 0.376 −1.41 +

G1269S 2.92 0.556 −1.72 +

E1210K/S1206C −1.02 0.273 −8.25 +

E1210K/D1203N 0.90 0.215 −7.78 +

L1198F/C1156Y −0.26 0.449 −9.17 +

Table 1. Effects of reported resistance mutations to the ALK inhibitors approved by the US. FDA or in clinical 
testing. aPlus sign indicates that the mutation is reported resistance mutation to corresponding ALK inhibitor.

Figure 4. The distribution of mutational effects (ΔE) of ALK mutations. (a) The distribution of mutation 
effect scores of all possible mutations and observed mutation calculated by Evmutation software. (c) Scatter 
plot of mutation effects of pathogenic mutations. The dash line indicates the median value of these scores 
(ΔE = −4.86). The mutation effects shown here are obtained by bubble and color mapped of the original data.
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in the kinase domain of ALK. However, current paradigm of drug resistance mutations indicates that mutations 
occur prior to treatment are likely to be benign or natural, thus they can escape from the fixing of evolutionary 
constraints48. We further examined whether secondary drug resistance mutations were more likely to be dam-
aging than primary mutations in the ALK kinase domain. We found their ΔE values were very comparable, 
no remarkable distinction was observed. In the scenario of double mutations, their ΔE values were all higher 
than that of the constituent single mutations, see Table 1. Although double mutations attain moderate effects on 
the thermodynamic stability of ALK kinase domain, their effects on the protein fitness are likely to be possibly 
damaging. Taken together, our results imply that the evolution constraint limits the adaptation of ALK to drug 
treatment contexts through additional amino acid changes that can shift the drug resistance properties without 
dramatic effects on the overall thermodynamic stability, resulting in more deleterious effects and eventually fail-
ure of novel drug treatments.

Comprehensive profiles for ALK inhibitors against drug resistance mutations. To characterize the 
effect of drug resistance mutations on ALK inhibitor binding, we built a systematic extensive energy profile of drugs 
against ALK drug resistance mutations by means of MM/QM-GBSA calculation. In order to test the reliability of 
different schemes in calculating inhibitor binding affinity change of ALK mutations, 15 pairs of the experimental 
mutation energies (ΔΔG experimentalFR ) and predicted mutation energies (ΔΔG predictedFR ) were utilized. 
ΔΔG experimentalFR  can be estimated by the formula: ΔΔG experimentalFR  = RT·ln·(K mutant K wildtype/ ),i i
where R = 1.9872 × 10−3 kcal·K−1·mol−1, and T = 300 K49,50. The experimental data of K mutanti  and K wildtypei  
were collected from studies contributed by Alice T. Shaw and co-workers19. Five different schemes were used to 
calculate the values of ΔΔG predictedFR  (Supplementary Table S5). ΔΔG predictedFR  can be derived utilizing the 
binding free energy of the inhibitor against the ALK mutations (ΔGmt) minus that of wild type (ΔGwt). The correla-
tion between ΔΔG experimentalFR  and ΔΔG PredictedFR  can be reflected by coefficient of determination (R2). The 
closer R2 approaches 1, the better positive correlation that the two variables possess, thus indicating the better results 
that the calculating scheme has. As shown in Fig. 5a, the green points were the results calculated by the MM-GBSA 
method, while the red points stood for the results calculated by MM-PBSA, which both used the molecular mechan-
ics (MM) theory. The R2 of MM-GBSA was 0.601, while that of MM-PBSA was 0.635, indicating that the latter 
scheme had the better prediction for the values of ΔΔG predictedFR  as they were more matched with 
ΔΔG experimentalFR . The semi-experiential Hamiltonian methods based on QM/MM-GBSA theory were used 
here, including AM1, RM1 and PM651–53. As shown in Fig. 5, the R2 of these schemes were 0.874 (AM1), 0.842 
(RM1) and 0.588 (PM6), respectively, indicating that the AM1 scheme possessed the best performance to predict the 
inhibitor binding affinity change among the five schemes. Thus, by utilizing the AM1 method for calculation, con-
siderable reliability was assured for the further analysis.

Range of binding free energies (ΔGmt) of the 10 ALK inhibitors along with ATP against 21 reported drug 
resistance mutations were shown in the box-plot (Fig. 6). Obviously, the averages and medians of the ΔGmt values 
of the 10 inhibitors were way lower than those of ATP (average as −18.07 kcal·mol−1, median as 15.92 kcal·mol−1). 
Among the inhibitors, the first-generation ALK inhibitor crizotinib had the overall minimal binding affinity (with 
the average ΔGmt as −35.74 kcal·mol−1 and the median ΔGmt as −35.05 kcal·mol−1) against ALK as it was the 
first small molecule inhibitor approved by US. FDA for the treatment of ALK positive NSCLC and considerable 
acquired resistances acted upon it. The second-generation inhibitors include alectinib and ceritinib, which both 
manifested better binding affinity than crizotinib. Lorlatinib, AP26113, ASP3026, belizatinib, CEP-37440, ensar-
tinib and entrectinib all belong to the third-generation inhibitors, of which entrectinib had the overall maximal 
binding affinity (with the average ΔGmt as −49.07 kcal·mol−1 and the median ΔGmt as −49.58 kcal·mol−1) among 
all 10 inhibitors, suggesting it may be a promising inhibitor against the drug resistance mutations of ALK kinase 
domain. Generally, the second-generation and the third-generation inhibitors had exhibited better binding affin-
ity than the first-generation inhibitor.

The ΔΔG predictedFR  of the 10 inhibitors as well as ATP against 21 drug resistance mutations in ALK kinase 
domain were calculated by the QM/MM-GBSA AM1 scheme (Supplementary Table S6). The results were shown 
as the heat map in Fig. 7. As can be seen in Fig. 7, the majority of the ΔΔG predictedFR  values stayed within the 
range from −6 kcal·mol−1 to 6 kcal·mol−1 while a few ΔΔG predictedFR  had considerably great absolute values, 
indicating the violent affinity changes of these mutations compared with the wild type. The minimum of 
ΔΔG predictedFR  occurred at the mutation energy of the inhibitor belizatinib against the double-point mutation 
L1198F and C1156Y, suggesting that the mutation gained much better affinity towards the inhibitor compared to 
the wild type. The maximum of ΔΔG predictedFR  occurred at the mutation energy of the inhibitor ceritinib 
against the single-point mutation L1152P, indicating that ceritinib bound to the mutation much less closely than 
to the wild-type ALK and strong drug resistance may occur.

As for the first-generation inhibitor crizotinib, the first drug resistance reported was the L1196M gatekeeper 
mutation54. It alters the residue at the bottom of the ATP-binding pocket and impairs inhibitor binding25. ΔΔGFR 
predicted of crizotinib against L1196M was 8.59 kcal·mol−1, suggesting that crizotinib had lost considerable 
affinity towards the ALK kinase domain after ALK mutated. The loss of a non-polar binding energy interaction 
(ΔGsurf) might account for the resistance against crizitinib when leucine was mutated to a methionine43. Here, 
binding free energy of crizotinib against L1196M calculated by QM/MM-GBSA demonstrated that electrostatic 
interaction (ΔEele was more reduced than ΔGsurf (Supplementary Table S7). G1202R is highly resistant to first- 
and second-generation inhibitors25 and it also occurs in the ATP-binding pocket, see Fig. 8. In the mutation, 
glycine was replaced with arginine, causing the cleft becoming narrower and hindering the binding of crizotinib 
with increased steric clash. The ΔΔGFR predicted values of crizotinib against G1202R was 10.08 kcal·mol−1, sug-
gesting that considerable binding affinity was lost. The loss of van der Waals interaction energy (ΔEvdw), about 
8.78 kcal·mol−1, was the dominant factor in causing such variation.
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Figure 5. Inhibition constants of ALK Inhibitors with Wild-type and mutant ALK kinase. Predicted FR 
energies (ΔΔGFR predicted) vs experimental FR energies (ΔΔGFR experimental) for inhibitors with ALK and 
mutations. (a) MM-GBSA (0.601); (b) MM-PBSA (0.635); (c) AM1 (0.874); (d) RM1 (0.842); (d) PM6 (0.588).

Figure 6. Range of binding free energies of 10 ALK inhibitors and a substrate ATP against 21 reported drug 
resistance mutations occurring in ALK kinase domain.
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Other reported single-point drug resistance mutations against crizotinib include L1152P/R, C1156Y, I1171T/
N/S, F1174C/L/V, V1180L, S1206C/Y and G1269A/S25, where V1180L and G1269S located in the ATP-binding 
pocket. L1152P, L1152R and C1156Y affect residues adjacent to the N-terminus while F1174C/L/V affect residues 
adjacent to the C-terminus of the αC helix16,18,54,55. The ΔΔGFR predicted values of 13 mutations were positive, 
indicating worse affinity after mutations. While only that of S1206Y was negative, which was −2.97 kcal·mol−1. 
S1206Y belongs to the solvent-front mutations which impair drug binding likely through steric hindrance16,17. 
The ΔEele, ΔEvdw, ΔGsurf and quantum mechanics energy (ΔGqm) provided favorable contribution to the inhibitor 
bindings. The unfavorable polar solvation energy (ΔGgb) partially impaired these favorable factors. Especially, 
we found these drug mutations also attained weaker ΔEele than that of wild type, except S1206C, G1269S and 
C1156Y/L1198F. The ΔEele is significant in ligand-receptor binding and plays an key role in the stability of bio-
molecules. The destabilizing mutations can obviously reduce electrostatic interactions which turn in changing the 
ligand binding affinity. It should be noticed that the double-point mutation L1198F and C1156Y had a negative 
ΔΔGFR predicted value (−3.51 kcal·mol−1) while the ΔΔGFR predicted values of single-point mutation C1156Y 
was 2.36 kcal·mol−1. Previous study suggest that L1198F enhanced binding to crizotinib, negating the effect of 
C1156Y and re-sensitizing resistant mutations to crizotinib19. The ΔEele of C1156Y/L1198F (−146.84 kcal·mol−1) 
was slightly lower than that of wild type (−144.18 kcal·mol−1), its ΔEvdw (−46.57 kcal·mol−1) was also slightly 
lower than wild type (−45.45 kcal·mol−1). Their ΔGqmwere very comparable. The ΔEqm of wild type was 
−21.21 kcal·mol−1 and C1156Y/L1198F was −21.68 kcal·mol−1.

The mutation L1196M is the most common mutation that confers crizotinib resistance16, which promoted the 
development of the second-generation inhibitors (such as alectinib and ceritinib)56. The mutation energies of 
alectinib and ceritinib against L1196M were −0.04 kcal·mol−1 and −6.54 kcal·mol−1 respectively while that of 
crizotinib was 9.3 kcal·mol−1, suggesting the better affinity of alectinib and ceritinib. Besides L1196M, ceritinib 
was also reported to overcome inhibitor-bearing ALK mutations (such as I1171T and S1206Y), while some muta-
tions were reported resistant to ceritinib (such as F1174C and G1202R)57–59. The mutation energies of ceritinib 
against these mutations were 5.07 kcal·mol−1 (I1171T), 3.77 kcal·mol−1(S1206Y), 10.65 kcal·mol−1 (F1174C) and 
6.51 kcal·mol−1 (G1202R) respectively. It is not hard to explain why ceritinib is resistant to F1174C, as the 
ΔΔG predictedFR  value was rather high, suggesting that considerable affinity had been lost. However, the 
ΔΔG predictedFR  values of I1171T and S1206Y were all positive while they were sensitive to ceritinib. It seemed 
strange on the first sight, but if the mutation energies of ceritinib’s competitor (which was ATP) were considered 
at the same time, then it may not be as paradoxical as it seemed to be. The ΔΔG predictedFR  of ATP against 
I1171T and S1206Y were 7.31 and 6.88 kcal·mol−1 respectively, which were all higher than those of ceritinib 
(which were 5.07 and 3.77 kcal·mol−1 respectively). The affinity changes of ceritinib were not very significant, and 
that of ATP was more violent. As result, although ceritinib lost some of its affinity towards the mutations, it still 
showed more affinity than its competitor ATP, thus performing its function as an effective inhibitor towards the 
mutations. The third-generation inhibitor lorlatinib was developed as a more potent ALK antagonist, which was 

Figure 7. Heat map of the mutation energy profile of 10 ALK inhibitors as well as a substrate ATP against 21 
reported drug resistance mutations occurring in ALK kinase domain.
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reported sensitive to L1196M, L1152R, C1156Y, F1174L and S1206Y60. Their ΔΔG predictedFR  values were not 
very high and all of them were lower than that of ATP, suggesting its effectiveness as an inhibitor. It should be 
noticed that although C1156Y is sensitive to lorlatinib, adding L1198F disrupts the binding of drug and leads to 
resistance25. The ΔΔG predictedFR  value of lorlatinib against the double mutation L1198F/C1156Y was 
8.64 kcal·mol−1, suggesting that considerable binding affinity was lost and strong drug resistance towards lorlati-
nib was gained.

From the discussion above, an assumption could be concluded: if the ΔΔG predictedFR  value of the inhibitor 
against the mutation is significantly high (suggesting that considerable affinity was lost), chances are that the 
mutation may be strongly resistant to the inhibitor. If the ΔΔG predictedFR  value is not very high, then it should 
be compared with that of ATP to determine which (the inhibitor or ATP) has the better affinity towards the muta-
tion. If the inhibitor gains better affinity (has higher ΔΔG predictedFR  value) than ATP after mutation, then 
chances are that the mutation could be sensitive to the inhibitor. Therefore, bold speculations could be made that 
belizatinib, CEP-37440 and ensartinib could be highly promising inhibitors as they gained overall better affinity 
towards many drug-resistant mutations compared to ATP. Besides, the mutations D1203N and G1202R could be 
quite intractable antagonists as many inhibitors fail to gain better affinity than ATP towards them.

Figure 8. Structural Basis for drug resistance to crizotinib. (a) The location of ALK drug resistance mutations. 
AS refers to activation segment. The co-crystal structures of crizotinib bound to the wild type (panel b) and 
Arg1202 mutant (panel c).
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Structure basis for drug resistance mediated by ALK mutations. Our previous analysis demon-
strated that mutations at the active site could inference the steric hindrance and change ligand binding affinity, thus 
resulting in the emergence of resistance to ALK inhibitors. In addition, increased ATP binding affinity has been 
discussed for several ALK mutants. However, the structural mechanism by which non-active site mutations confers 
resistance against ALK inhibitors still remains unknown. Several studies have been conducted to explore the struc-
tural mechanism of drug resistance mediated by the mutations occurring in non-active site. They found that these 
mutations could regulate the dislocation of ALK inhibitors and the indirect conformational changes in the binding 
cavity61,62. To provide a structural framework for understanding drug resistance mutations, 50-ns MD simulations 
were performed for wild type and mutant systems. The inherent flexibility profile of a protein is a key factor for its 
full functional activity and ligand binding. The root-mean-square deviation (RMSD) trace was used here to evalu-
ate the dynamics of mutation structure during inhibitor binding, see Fig. 9. It can be seen that the RMSD showed 
obvious differences between the various simulations. Wild type ALK attained an average of RMSD at 0.197 nm 
(1.97 Å). The initial 10 ns were excluded as burn-in when average RMSD were calculated. The single mutations 
showed larger RMSD than wild type system. These were the L1152R, C1156Y, F1174L, S1206Y and E1210K. Their 
average RMSD values were 2.38 Å, 2.32 Å, 2.86 Å, 3.27 Å and 3.12 Å, respectively. While double mutations C1156Y/
L1198F and E1210K/SC1206C attained similar RMSD with wild type. Their average RMSD values were 2.01 Å and 
1.98 Å, respectively. The RMSD traces of the double mutations were similar with wild type ALK, indicating that 
these mutations possessed identical flexibility with wild-type ALK. In previous analysis, we raised that the changed 
of protein thermostability induced by high destabilizing mutations were fixed by additional stabilizing mutations. 
Here, results suggested that the flexibility of protein was also constrained by co-evolution of residues.

It has been well established that the conformational motions activated the dynamical transition of conforma-
tional sub-states, resulting in protein relaxation and movements of the ligand within the protein63,64. We deter-
mined whether the transition could be responsible for the resistance against ALK inhibitors when mutations occur 
in non-active sites, such as L1152R, C1156Y, F1174L, S1206Y and E1210K. Principal component analysis (PCA) 
was performed to represent the motion of the native and mutant forms in phase space during crizotinib binding. We 
extracted eigenvector indexes from the covariance matrix and estimated the correlations between protein motion 
and eigenvector indexes. The top two dominant principal components PC1 and PC2 accounted for a significant 
amount of the overall motion, and they can explain more than 85% of the variance together in each case (Fig. 10). 
The overall motions represented by PC1 and PC2 for wild type and mutant systems were presented in Fig. 11. As 
shown here, the overall motions between wild-type and most of drug-resistant mutations were extremely diverse. 
C1156Y showed slightly similar motion with F1174L and S1206C showed slightly similar motion with E1210K. 
C1156Y/L1198F showed comparable overall motions compared with wild-type as well as E1210K/S1206C, indicat-
ing double mutations possessed identical flexibility and similar conformation transition compared with wild-type 
ALK. This may be one of the reason why double mutations confer sensitization to crizotinib19.

In addition, we compared the average structure of wild-type and mutations during the last 10 ns of the simula-
tion. Figure 12a showed that crizotinib attained an RMSD value of 1.38 Å when the structure of C1156Y mutation 
aligned to wild-type, confirming that the C1156Y mutation caused conformational changes and ligand motion. 
Activation segment of ALK is a key regulation component in determining the more active less active kinase 
state65,66. We compared the average structures of activation segment of different mutations with wild-type extracted 
from the last 10-ns trajectory, see Fig. 12b. The structures of activation segments of the mutations were obviously 
heterogeneous compared with wild-type. Their activation segment showed more open and incompact conforma-
tions than that of wild-type, such as L1152R, C1156Y and F1174L, which were considered as the features of more 
active state form that allow protein/peptide binding. These mutations are too far to directly block inhibitor bind-
ing, their ΔΔGfold values were all higher than −1.84 kcal·mol−1, see Table 1. It is interesting to note that an energy 
dissipation-cum-signaling mechanism by which distal residues were thermodynamically coupled to activate sites 
had been established67–70. The extent of conformational changes induced by these mutations can be up to over 20 
Å69, thus resulting in identifiable functional consequences for ligand binding and/or activity of kinase. The prop-
agation of distal mutational perturbation may play a vital role in drug resistance induced by these mutations. Our 
previous analysis found that highly destabilizing mutations increase kinase activity. Taken together, we suggest that 
highly destabilizing mutations alter the kinase’s conformation via propagative effect, possibly re-inducing kinase 
activity despite the presence of inhibitor, in turn causing drug resistance to ALK inhibitors.

Figure 9. RMSD with respect to the initial structure as a function of time for the various simulations over 50 ns.
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Conclusion
Our primary goal was to quantitatively analyze mutational effects of the ALK drug resistance mutations and 
provide an up-to-date mechanistic framework for understanding the mechanisms of resistance mediated by 
these mutations. Firstly, the stability changes (ΔΔGfold) were computed to estimate the mutational effects of the 
ligand-free structure of the ALK mutations. The protein fitness of the drug resistance mutations was investi-
gated using comparative evolutionary considerations. We found that drug resistance mutations were significantly 
more destabilizing, creating the capacity to confer drug resistance to ALK inhibitors. The stability effects of high 
destabilizing mutations on ALK structure were constantly pruned by the stabilizing mutations. We suggest that 
co-evolution may limit the ALK’s fitness to drug treatment conditions through additional amino acid changes that 
can shift the drug resistance properties without dramatic effects on the overall thermodynamic stability, causing 
failure of drug treatments. Secondly, QM/MM-GBSA calculation was performed to investigate the mutational 
effects of the drug resistance mutations upon ligand binding, we showed evidence that mutations at the active site 
inferenced the steric hindrance and changed ligand binding affinity, resulting in the emergence of resistance to 
the ALK inhibitors. In addition, increased ATP binding affinity had been discussed for several drug-resistant ALK 
mutations. Thirdly, we explored the conformation transition mediated by drug-resistant mutations. We found 
that highly destabilizing mutations did alter the kinase’s conformation via propagative effect despite the presence 
of ALK inhibitors, resulting in the dislocation of the inhibitors and possibly re-inducing kinase activity. Taken 
together, our work provides comprehensively quantitative analysis for unraveling drug resistance mechanisms of 
ALK mutations from multiple perspectives.

Methods
Structure Preparation. All solved ALK mutation structures were obtained from PDB database. The non-
solved in silico mutant structures of ALK were generated from a minimized structure of ALK kinase domain 
(PDB code: 2XP2) using the PyMOL mutagenesis tool. To refine the solved models and the in silico mutant, we 
performed energy minimizations with the GROMACS package using the GROMOS96 force field71.

Figure 10. The histogram indicates the variance proportion of each principal component from PC1 to PC5.

Figure 11. PCA scatter plot along first two principal components, eigenvector 1 (PC1) and eigenvector 2 (PC2) 
showing difference between the wild type and mutant systems.
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Stability effect calculation. To compute the free-energy change of the mutations of ALK, FoldX472 was 
used as a practical tool. Calculations are based on a minimized structure of ALK kinase domain (PDB code: 2XP2). 
By applying FoldX’s BuildModel function, 19 possible point mutations can be introduced to each residue one at a 
time and 3 independent runs can be carried out calculating respective value of ΔΔG (ΔΔG = ΔGmut − ΔGwt), 
which were then averaged getting the final value ΔΔGfold. The reported accuracy of FoldX is 0.46 kcal·mol−1, and 
ΔΔGfold values were then binned into seven categories accordingly, see Fig. 1.

Mutation effect score calculation. The pairwise model of sequences was computed from a fam-
ily sequence alignment of ALK using plmc. The alignment was in aligned A2M format. The strength of 
l2-regularization λj on the couplings based on the length of the model was set to 52.2. Other parameters were set 
as default. Then mutation effect scores (ΔE) were predicted by Evmutation73 using epistatic model.

Molecular Dynamics simulation. In order to investigate the stability of the ALK-ligand complexes, MD 
simulations were carried out by GROMACS 5.171. By using the pdb2gmx module, the structure files were con-
verted into the topology file with AMBERff99SB74 force field and TIP3P water model75 applied. As for the ligands’ 
topology files, they were generated by the antechamber module in AmberTools76 with general amber force field77 
applied. Then, the dodecahedron periodic box was created with the minimal distance between the molecules 
and the box set to 1.0 nm. The pre-equilibrium steps include system energy minimization, location-constrained 
pre-simulation, NVT (constant number of particles, volume, and temperature) pre-equilibrium and NPT 
(constant number of particles, pressure, and temperature) pre-equilibrium, whose purpose is to let the system 
approach equilibrium as near as possible for the better MD simulations. To be more specific, in the energy mini-
mization period, water molecules along with 0.15 M Na+ and Cl− were added into the already energy-minimized 
system in vacuo to get the new energy-minimized state in solution. In the location-constrained period, the 
position of the atoms of the receptor-ligand complex remained unchanged while solvent molecules and icons 
move randomly for further reaching equilibrium. The NVT period lasts for 1000 ps with the system temper-
ature set constantly to 300 K and the sampling time step set to 2 fs. In this period, cutoff method was used to 
calculate short-range electrostatic interactions and Particle Mesh Ewald method (PME)78 was used to calculate 
long-range electrostatic interactions (rlist = 1 nm, VdW distance = 0.9 nm, cutoff distance = 0.9 nm, and PME 
order = 4)79. Linear Constraint algorithm80 was adopted to fix the length of all bonds in the system. In the NPT 
pre-equilibrium, some parameters (duration, system temperature and time step) stayed the same as those in NVT 
period, while the system pressure maintains constantly to 1 atm in NPT. Finally, the MD simulation continued 
for 50 ns to analyze the bonding affinity of the complex system while trajectory information was collected every 
10 fs for further analysis.

Binding affinity calculation. The QM/MM-GBSA approach in Amber was utilized to calculate the binding 
free energies between the receptors (wild type or mutant) and the inhibitor. Relevant formulas are as follows:

Figure 12. Alignment of structures of wild-type ALK and the non-active sites mutations. (a) Comparison 
of structures of wild-type ALK and C1156Y mutation. C1156Y results in marked conformational changes in 
activation segment (AS), αC helix and loop 1122–1130. (b) Comparison of activation segment structures of 
wild-type ALK (white) and different mutations (light magenta).
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ΔGmt is the interaction free energy of the mutant-inhibitor system, where Gmt
complex, Gmt

receptor , Ginhibitor  are the 
free energies of the mutant-inhibitor complex, mutant ALK and the inhibitor. Similarly, ΔGwt is the interaction 
free energy of the wildtype ALK-inhibitor system. G stands for the Gibbs free energy, and H, T, S stand for 
enthalpy (SI unit: joule), temperature (SI unit: kelvin), entropy (SI unit: joule per kelvin) respectively. The terms 
Evdw, Eele, Eint, Ggb, Gsurf stand for van der Waals interaction, electrostatic interaction, internal energy, polar and 
non-polar solvation free energy respectively. Ggb is calculated by the modified GB model developed by Onufriev 
et al.81. Gsurf is estimated by the empirical formula Gsurf = γ × SASA + β where γ and β were set to 
0.0072 kcal·mol−1·

−Å 2
 and 0.0 kcal·mol−1, respectively82. From ΔGmt and ΔGwt, inhibitor affinity change of the 

ALK (ΔΔG) can be derived as ΔΔG = ΔGmt − ΔGwt. It is reported that QM/MM-GBSA approach often overes-
timated the interaction free energies83. However, since the change of the interaction free energies (ΔΔG)is what 
we care and the deviation in ΔΔG is already considerably eliminated by ΔGmt minus ΔGwt, Thus, the system 
variation in QM/MM-GBSA approach would not bring about serious impacts to our results. In the QM/MM 
method, the system was divided into two layers: the inner layer and the outer layer. The inner layer contains the 
residues involving the hydrogen binding interactions and the residues under mutations, which was treated with 
the quantum mechanics (QM) theory by applying the semi-experiential Hamiltonian methods. The outer layer 
consists of the rest of the system, which was treated with the molecular mechanics (MM) theory. As for the 
entropy, it was calculated by applying a normal-mode analysis at the MM level84.

Principal component analysis. PCA is a useful tool to determine the correlated motions of the residues to a 
set of linearly uncorrelated variables called principal components. This method is based on the construction of the 
covariance matrix of the coordinate fluctuations of the simulated proteins. The eigenvectors and eigenvalues are 
obtained by diagonalizing the covariance matrix, which provides information about correlated motions throughout 
the protein. gmx-covar from GROMACS was used to perform PCA on 50-ns MD trajectories. Overall rotational and 
translational motions were removed by fitting the protein structure of each time frame to the initial frame.
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