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Wnt4 is significantly upregulated 
during the early phases of cisplatin-
induced acute kidney injury
Yi-Xin He, Tian-Tian Diao, Shu-Min Song, Cen-Cen Wang, Yu Wang, Chun-Lan Zhou,  
Yi-Bing Bai, Shan-Shen Yu, Xuan Mi, Xin-Yu Yang, Qiu-Ju Wei & Bing Li  

Wnt4 is a secreted growth factor associated with renal tubulogenesis. Our previous studies identified 
that renal and urinary Wnt4 are upregulated following ischemia-reperfusion injury in mice, but the 
roles of Wnt4 in other forms of acute kidney injury (AKI) remain unclear. Here, we investigated the 
changes in Wnt4 expression using a cisplatin-induced AKI model. We found that renal and urinary 
Wnt4 expression increased as early as 12 hours, peaked at day 4 following cisplatin-induced AKI and 
was closely correlated with histopathological alterations. By contrast, the serum creatinine level was 
significantly elevated until day 3, indicating that Wnt4 is more sensitive to early tubular injury than 
serum creatinine. In addition, renal Wnt4 was co-stained with aquaporin-1 and thiazide-sensitive NaCl 
cotransporter, suggesting that Wnt4 can detect both proximal and distal tubular injuries. These data 
were further confirmed in a clinical study. Increased urinary Wnt4 expression was detected earlier than 
serum creatinine and eGFR in patients with contrast-induced AKI after vascular intervention. This study 
is the first to demonstrate that increased expression of renal and urinary Wnt4 can be detected earlier 
than serum creatinine after drug-induced AKI. In particular, urinary Wnt4 can potentially serve as a 
noninvasive biomarker for monitoring patients with tubular injury.

Acute kidney injury (AKI) has become a worldwide health problem due to its high morbidity, mortality and cost. 
According to a recent epidemiological study, AKI occurs in approximately 13.3 million people per year and con-
tributes to approximately 1.7 million deaths because of delayed diagnosis and therapy1. In 2013, the International 
Society of Nephrology put forward the global AKI target of “0by25” to help improve the diagnosis and treatment 
of AKI globally2. A Chinese cross-sectional survey showed that AKI has a very high non-recognition rate (74.2%) 
and delayed AKI recognition is an independent risk factor for in-hospital mortality3. Currently, the diagnosis 
of AKI mainly depends on serum creatinine, which is an insensitive and nonspecific indicator of renal injury, 
because clear increases in this traditional AKI marker is only observed during the advanced stage of renal dam-
age4,5. Therefore, using serum creatinine may delay early diagnosis and effective AKI treatment, resulting in either 
renal replacement therapy or death. The identification of more reliable, earlier biomarkers of tubule injury is 
urgently needed to facilitate early intervention and decrease AKI mortality.

The Wnt proteins belong to a highly conserved family of secreted growth factors that contain approximately 
19 members in mammals6,7. The Wnt pathway is a complex cell-to-cell communication pathway involved in many 
embryonic and fetal developmental processes, including cell fate specification, differentiation, and phenotype 
regulation8,9. In our previous study, we found that the Wnt proteins are promptly and dramatically upregulated 
after ischemic kidney injury10. Among the Wnt family members, Wnt4 induces the mesenchymal-to-epithelial 
transition and is associated with tubulogenesis11,12. Mice lacking Wnt4 activity fail to form pretubular cell aggre-
gates and completely lack tubular development13. Many studies have demonstrated that kidney repair is rapidly 
activated after kidney injury10,14. Our previous data showed that damage and repair simultaneously exist in tubu-
lar injury after ischemia-reperfusion injury (IRI)15. In our very recent study, we found that the expression of renal 
Wnt4 and urinary Wnt4 increased as early as 3 hours and peaked 24 hours after ischemia/reperfusion injury, 
whereas the serum creatinine level began to increase at 6 hours15. These results suggest that Wnt4 might be a more 
sensitive biomarker than serum creatinine for the early detection of tubular injury. Nephrotoxic agents, including 
chemotherapy drugs, contrast agents, antibiotics, biological agents and other drugs, are among the most common 
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causes of AKI16,17. While the induction of Wnt4 in IRI models is well established, the response of Wnt4 to other 
forms of acute tubular injury has not been identified.

In this study, we investigated Wnt4 expression in a rat model of cisplatin-induced AKI and patients with 
contrast-induced AKI (CI-AKI) after vascular intervention. We demonstrated that the renal and urinary expres-
sion of Wnt4 markedly increased during the early stage of tubular injury. These results indicated that Wnt4 might 
be a more sensitive, noninvasive biomarker for detecting drug nephrotoxicity than serum creatinine. We suggest 
that Wnt4 may serve as a new biomarker for monitoring early tubular injury and repair processes.

Results
Kidney function and histological changes in a cisplatin-induced AKI model. In our pilot exper-
iments, we intraperitoneally injected rats with either 5 mg or 7.5 mg cisplatin/kg in 0.9% saline as previously 
described18. The serum creatinine level began to mildly increase at day 2 and peaked at days 4 or 5 in each dose 
group. The peak serum creatinine level in the 5 mg and 7.5 mg cisplatin/kg groups was up to 20- and 35-fold 
higher, respectively, than that at baseline (day 0) (Fig. 1a). However, mortality rates of 20% (5 mg/kg) and 50% 
(7.5 mg/kg) were observed during the first 6 days after the cisplatin administration (Fig. 1b), and severe tubular 
injury was observed in both cortex and medullary areas of the rat kidneys by periodic acid-Schiff staining (data 
not shown). To investigate earlier biomarkers of AKI, we decreased the dose of cisplatin to 3 mg/kg and success-
fully obtained an ideal model of drug-induced AKI with a suitable serum creatinine level and a zero-mortality 
rate. After the injection of 3 mg cisplatin/kg, the serum creatinine level in the rats significantly increased at day 
3 and peaked at day 4 (~9-fold higher than that at baseline, Fig. 1c); then, the creatinine level restored at day 6. 
However, the histological examination revealed pathological changes, including swelling and vacuolization of 
the tubular epithelial cells, as early as 12 hours after the drug administration. Upon further progression, the renal 
tubular epithelium showed tubular lysis, dilation, disruption, necrosis, cast formation and cell sloughing in the 
lumen (Fig. 1d). The kidney tubular injury was scored using a semiquantitative method (Fig. 1e). The tubular 
injury peaked at day 4, and obvious injury was still observed at day 14 after the injection of cisplatin. At day 14, 
the focal atrophic tubules remained, and tubules with regeneration were also observed. In contrast, the serum 
creatinine level was not markedly increased until day 3 and rapidly restored to the baseline at day 6 after the cis-
platin-induced AKI. The serum creatinine level could not precisely reflect the tubular injury. These data further 
demonstrate that serum creatinine has a low sensitivity in detecting kidney tubular injury. Therefore, identifying 
a sensitive biomarker for the detection of kidney tubular injury is highly desirable.

Renal Wnt4 expression is more sensitive than serum creatinine to cisplatin-induced AKI and 
is closely correlated with tubular injury and Kim-1 expression. Our previous studies demon-
strated that both the Wnt4 gene and protein are activated in the kidney after IRI and that the expression of renal 
Wnt4 increases much earlier than serum creatinine15,19. For detecting the role of Wnt4 in drug-induced tubular 
injury, we investigated the changes of renal Wnt4 expression in a cisplatin-induced AKI model. To confirm our 
hypothesis, we first performed immunohistochemical studies on kidney paraffin sections. As shown in Fig. 2a 
and Supplemental Fig. S1, no obvious Wnt4 expression was observed in the outer stripe of the outer medulla 
(OSOM) in the control group and healthy adult rats, but Wnt4 expression was significantly enhanced in the 
injured tubules as early as 12 hours after the cisplatin administration and reached a peak at day 4. Furthermore, 
Wnt4 expression remained significantly upregulated at day 14 compared with that in the control group. The same 
result is expressed graphically in Fig. 2b. In contrast, significantly increased levels of serum creatinine were not 
observed until day 3. Figure 2c shows the strong correlation between renal Wnt4 expression by immunostaining 
and kidney tubular injury. We further confirmed this finding by Western blot. As shown in Fig. 2d,e, obviously 
enhanced Wnt4 expression was observed by Western blot at 12 hours, and this expression was further increased 
at days 3 and 4 after the cisplatin injection. The Western blot results were consistent with the immunohistochem-
ical staining results and showed that Wnt4 expression was highly correlated with kidney tubular injury (Fig. 2f).

Kim-1, a well-known biomarker of early acute renal tubular injury, showed a trend similar to that of Wnt4 
in the cisplatin-induced AKI model. As shown in Supplemental Fig. S2a,b, kidney Kim-1 expression began to 
increase at 12 hours and peaked at day 4 after cisplatin administration. In addition, kidney Kim-1 expression was 
positively correlated with tubular injury and Wnt4 expression (Supplemental Fig. S2c,d). These data indicated 
that renal Wnt4 expression, like Kim-1, might be a more sensitive biomarker than serum creatinine in accurately 
reflecting the pathological changes that occur throughout the entire post-acute tubular injury process.

Urinary Wnt4 is detected during the early stage of cisplatin-induced AKI and is correlated with 
renal Wnt4 expression and tubular injury. Wnt4 is a secreted glycoprotein required for nephrogene-
sis20,21. In previous studies, we detected increased urinary Wnt4 expression in both IRI and salt-sensitive hyper-
tension (SSHT) models15,22, but the specific mechanism by which renal Wnt4 is secreted into the urine is still 
unknown. In the present study, using western blot and ELISA, we examined the changes in urinary Wnt4 expres-
sion in a cisplatin-induced AKI model. As shown in Fig. 3a, no obvious band was observed in the control group. 
However, a clear band appeared at 12 hours (much earlier than the serum creatinine level elevated), and the inten-
sity of the Wnt4 expression gradually increased until day 4. Then, urinary Wnt4 declined during the repair stage 
and was undetectable at day 14. The same result is expressed graphically in Fig. 3b. To quantify the level of urinary 
Wnt4, we performed an ELISA and normalized the values to urinary creatinine. Similar results were confirmed 
by ELISA (Fig. 3c). In addition, we evaluated urinary Kim-1 expression by ELISA. Like Wnt4, Kim-1 expression 
elevated at 12 hours and peaked at day 4 (Supplemental Fig. S2e). The excretion of urinary Wnt4 was closely asso-
ciated with kidney Wnt4 expression and urinary Kim-1 expression (Fig. 3d and Supplemental Fig. S2f). Both the 
urinary Wnt4 and Kim-1 levels were strongly associated with the severity of kidney tubular injury (Fig. 3e and 
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Supplemental Fig. S2g). Altogether, these results demonstrated that the changes in urinary Wnt4 were consistent 
with tubular damage and that Wnt4 has the potential to serve as a noninvasive biomarker for the early detection 
of cisplatin-induced AKI.

Figure 1. Kidney function and histological changes in the cisplatin-induced AKI model. (a) Serum creatinine 
level in different cisplatin dose groups in the pilot experiment. (b) Mortality in different cisplatin dose groups 
in the pilot experiment. (c) Serum creatinine level at different time points in the control and cisplatin-induced 
AKI rats (3 mg/kg). (d) Kidney histology as shown by periodic acid–Schiff staining (magnification, 200×). 
Bar = 100 μm. (e) Injury scores of kidney damage. Data are expressed as the mean ± SD. *p < 0.05, **p < 0.01 
versus the control group (n = 6 per group). sCr, serum creatinine; C, control.
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Figure 2. Kidney Wnt4 expression is significantly upregulated during the early stage of cisplatin-induced 
AKI and is correlated with tubular injury. (a) Representative immunohistochemical images showing kidney 
Wnt4 expression (brown) in the control and cisplatin-induced AKI rats at different time points (magnification, 
200×). Bar = 100 μm. (b) Quantification of kidney Wnt4 expression in each group. Data are presented as the 
IOD/Wnt4-positive areas, as analyzed using Image-Pro Plus software. (c) Correlation between tubular injury 
and kidney Wnt4 expression by immunohistochemical staining (r2 = 0.795, p < 0.01). (d) Western blot assay of 
kidney Wnt4 expression in different groups. (e) Semiquantitative analysis showing the expression of Wnt4 in the 
kidney lysates after cisplatin injection. (f) Correlation between tubular injury and kidney Wnt4 expression by 
Western Blot (r2 = 0.72, p < 0.01). *p < 0.05, **p < 0.01 versus the control group (n = 6).



www.nature.com/scientificreports/

5Scientific RepoRts |  (2018) 8:10555  | DOI:10.1038/s41598-018-28595-4

Wnt4 is expressed in all segments of cisplatin-injured tubules and can colocalize with mac-
rophage markers. To detect the expression pattern of Wnt4 in the cisplatin-induced AKI model, we 
co-stained Wnt4 with aquaporin-1 (AQP-1, a proximal tubular marker) and thiazide-sensitive NaCl cotrans-
porter (NCCT, a distal tubular marker) and compared the localization with Kim-1. As shown in Fig. 4, Wnt4 
co-localized with both AQP-1 (Fig. 4a) and NCCT (Fig. 4b), whereas Kim-1 only co-localized with injured prox-
imal tubules as reported by previous study23 (Supplemental Fig. S3a,b). These results indicated that Wnt4 was 
activated in all injured tubules after the cisplatin injection. This behavior was in contrast to that of Kim-1, which 
was simply secreted by injured proximal tubules.

Macrophages are well known to play crucial roles in experimental and human renal disease, and these cells 
are implicated in the induction of injury, renal repair and fibrosis24. Our previous studies demonstrated that 
macrophages promote kidney repair via the Wnt signaling pathway and the upregulation of an autophagy protein 
that enhances the removal of necrotic debris10,25. Therefore, we investigated whether macrophages were involved 
in the secretion of Wnt4 by immunostaining. As shown in Fig. 4c, serial paraffin sections of the rat kidney after 

Figure 3. Urinary Wnt4 is detected during the early stage of cisplatin-induced AKI and is correlated with 
renal Wnt4 expression and tubular injury. (a) Western blot assay of urinary Wnt4 excretion in the control and 
cisplatin-induced AKI rats at different time points. (b) Data are presented as the intensity of urinary Wnt4 
band analyzed using ImageJ software. (c) ELISA analysis of urinary Wnt4 normalized to uCr in each group. (d) 
Correlation between urinary Wnt4 and kidney Wnt4 expression (r2 = 0.699, p < 0.01). (e) Correlation between 
urinary Wnt4 and tubular injury (r2 = 0.615, p < 0.01). *p < 0.05, **p < 0.01 versus the control group (n = 6). 
uCr, urinary creatinine.
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cisplatin treatment showed that certain cell debris in the dilated lumen expressed both Wnt4 and CD68. This 
colocalization indicated that certain macrophages may also secrete Wnt4 to participate in the repair after acute 
tubular injury. These data further confirmed our previous results in which macrophages promoted kidney repair 
via the Wnt signaling pathway.

Both apoptosis and regeneration exist in injured tubular cells after cisplatin treatment, and 
both TUNEL-positive and Ki67-positive cells mainly co-stain with Wnt4. Wnt4 is strongly asso-
ciated with the mesenchymal-to-epithelial transition and tubulogenesis during the embryonic period. To detect 
the relationship between Wnt4 re-expression and epithelial cell apoptosis and the relationship between Wnt4 
re-expression and tubule regeneration in the cisplatin-induced AKI model, we carried out the following immu-
nofluorescence studies. First, we performed TUNEL and Ki67 (a cell proliferation marker) staining to investigate 
injury and regeneration in the tubular epithelium after cisplatin administration. As shown in Fig. 5a–d, there 
were few TUNEL-positive or Ki67-positive cells in the rat kidneys of the control group. In contrast, in the cis-
platin group, the number of TUNEL-positive cells increased and peaked at day 4. In addition, the number of 
Ki67-positive cells in the OSOM region gradually increased and peaked 5 days after the cisplatin injection. A 
correlation analysis showed that both the TUNEL-positive and Ki67-positive cells were directly associated with 
tubular injury (Fig. 5e,f). These data suggested that damage and repair simultaneously exist in tubular epithelial 
cells after cisplatin exposure. Furthermore, as shown in Fig. 5g,h, the TUNEL-positive cells and Ki67-positive 
cells were mainly present in the tubular epithelium along with the upregulated expression of Wnt4. A correla-
tion analysis indicated that both the TUNEL-positive and Ki67-positive tubular epithelial cells were associated 
with Wnt4 expression during the cisplatin-induced tubular damage period and the following recovery period 
(Fig. 5i,j). These results suggested that Wnt4 may undergo rapid activation after kidney injury and then involved 
in repair and regeneration.

Increased urinary Wnt4 expression was detected earlier than alterations in serum markers 
in patients with CI-AKI. Contrast agents have the potential to cause short-term or even permanent renal 
injury, which is termed contrast-induced acute kidney injury (CI-AKI). To evaluate the clinical utility of urinary 
Wnt4 for detecting early AKI, we investigated urine samples of patients undergoing interventional treatments. 

Figure 4. Wnt4 is expressed in both injured proximal and distal tubules after cisplatin treatment and colocalizes 
with CD68. (a) Co-staining of Wnt4 and the proximal tubular marker AQP-1. (b) Co-staining of Wnt4 and the 
distal tubular marker NCCT. (c) Wnt4 and CD68 staining in serial paraffin sections. Arrows showing cell debris 
expressing both Wnt4 and CD68. All magnification, 200×. All scale bars 100 μm.
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Figure 5. Both apoptosis and regeneration exist in injured tubular cells after cisplatin treatment, and both 
TUNEL-positive and Ki67-positive cells mainly co-stain with Wnt4. (a) Representative macrographs of TUNEL 
staining among the different groups (magnification, 200×). (b) Representative macrographs of Ki67 staining 
among the different groups (magnification, 200×). (c) Quantitative determination of TUNEL-positive cells in 
the OSOM region among the different groups. Data are presented as the number of TUNEL-positive cells per 
field (200×). (d) Quantitative determination of Ki67-positive cells in the OSOM region among the different 
groups. Data are presented as the number of Ki67-positive cells per field (200×). (e) Correlation between 
TUNEL-positive cells and tubular injury (r2 = 0.853, p < 0.01). (f) Correlation between Ki67-positive cells and 
tubular injury (r2 = 0.602, p < 0.01). (g) Co-staining of Wnt4 and TUNEL at day 4 after cisplatin administration 
(magnification, 200×). (h) Co-staining of Wnt4 and Ki67 at day 4 after cisplatin administration (magnification, 
200×). (i) Correlation between kidney Wnt4 expression and TUNEL-positive cells after cisplatin administration 
(r2 = 0.777, p < 0.01). (j) Correlation between kidney Wnt4 expression and Ki67-positive cells after cisplatin 
administration (r2 = 0.397, p < 0.05). All scale bars 100 μm. **p < 0.01 versus the control group (n = 6).



www.nature.com/scientificreports/

8Scientific RepoRts |  (2018) 8:10555  | DOI:10.1038/s41598-018-28595-4

Eighty-six patients with normal renal function and urinalysis results were enrolled in the study. Low-osmolar 
contrast agents were used in all patients. CI-AKI is usually defined as an increased serum creatinine level of 
at least 25% above baseline after the contrast administration17. According to the diagnostic criteria, 8 out of 
86 suffered from CI-AKI (approximately 10%). The clinical characteristics of these patients are summarized in 
Table 1. The levels of serum creatinine and urea and eGFR in patients without CI-AKI were not obviously differ-
ent before and after contrast agent administration. Significant alterations in serum creatinine, urea and eGFR in 
patients with CI-AKI were observed until day 3 after contrast agent administration and then decreased at day 5 
(Fig. 6a–c). We performed western blot and ELISA to analyze patients’ urine samples obtained one day before and 
1, 3 and 5 days after contrast agent administration. Both assays demonstrated that increased urinary Wnt4 expres-
sion was occurred as early as day 1 after contrast-induced AKI, and its level peaked at day 3 and then decreased 
but remained detectable at day 5 (Fig. 6d,e). However, we did not detect Wnt4 expression in the urine of healthy 
individuals or patients without CI-AKI (Fig. 6d,e). These results were consistent with the findings observed in 
our animal experiments and further confirmed that urinary Wnt4 has the potential to serve as a noninvasive 
biomarker for the early detection of drug-induced AKI.

Discussion
AKI is a disease that evolves from early injury to severe damage, leading to kidney failure and the need for renal 
replacement therapy. The window for early, targeted interventions in AKI is narrow. Insufficient and delayed 
recognition of AKI is considerably related to a rise in morbidity and mortality3. Serum creatinine, the current 
primary diagnostic method for AKI, is insensitive and can be influenced by various extrarenal factors, such as 
muscle mass, age, gender, and drug-induced interference26,27. Therefore, the prompt and effective management 
of AKI depends on more sensitive and specific biomarkers. The renal tubular epithelia undergo various forms 
of cell death after acute hypoxia or toxic injury28–30. This is followed by rapid, robust repair processes, which are 
characterized by the pronounced proliferation of tubular epithelial cells and the expression of growth factors31. 

Parameters All Patients with CI-AKI
Patients without 
CI-AKI P value

Subjects 86 8 78

Age (years) 67.5 (59–78) 70.5 (67.25–72.5) 67 (58.25–78) 0.721

Male 55 (64%) 6 (75%) 49 (63%) 0.767

Weight (kg) 65 (58–70.75) 64.5 (59–71) 65 (58–70.75) 0.988

SBP (mmHg) 126 (110.75–140) 134.5 (129.25–143.5) 122 (110–140) 0.127

DBP (mmHg) 78 (70–83) 75 (70–79.25) 78 (70–85.25) 0.677

Hemoglobin (g/L) 130 (116–147) 126.5 (105.5–135.75) 130 (119.25–147.75) 0.368

ALT (U/L) 26 (17–39.75) 19 (12.75–29.33) 26 (17.25–40) 0.11

AST (U/L) 31.5 (21–45.75) 29.5 (18.75–37) 32 (21.25–47.25) 0.618

Serum albumin (g/L) 40.05 (36–46.23) 34.3 (32.43–40.44) 40.95 (36.05–47.7) 0.015*

Urea (mmol/L) 5.38 (4.5–6.23) 5.66 (4.80–7.22) 5.38 (4.47–6.47) 0.645

Serum creatinine (μmol/L) 66 (54–78.75) 77.5 (70.75–84) 64.5 (51.25–78) 0.052

eGFR (mL/min/1.73 m2) 90.29 (75.81–100.47) 81.64 (75.14–91.75) 90.5 (77.94–102.9) 0.206

Clinical diagnosis

Liver cancer 30 (34.9%) 2 (25%) 28 (35.9%) 0.821

Hepatic hemangioma 18 (20.9%) 2 (25%) 16 (20.5%) 0.766

Bronchiectasia 11 (12.8%) 2 (25%) 9 (11.5%) 0.716

Lung cancer 6 (7%) 1 (12.5%) 5 (6.4%) 0.52

Esophageal cancer 8 (9.3%) 1 (12.5%) 7 (9%) 0.744

Others 13 (15.1%) 0 13 (16.7%) 0.389

Comorbidities

Diabetes mellitus 10 (11.6%) 0 10 (12.8%) 0.618

Hypertension 25 (29.1%) 2 (25%) 23 (29.5%) 0.79

Coronary heart disease 31 (36%) 3 (37.5%) 28 (35.9%) 0.928

Viral hepatitis B 24 (27.9%) 1 (12.5%) 23 (29.5%) 0.544

Chronic medications

NSAIDs 6 (7%) 0 6 (7%) 0.932

ACEI/ARB 16 (18.6%) 4 (50%) 12 (15.4%) 0.055

Contrast agents

Iohexol (35–122.5 g) 34 (39.5%) 4 (50%) 30 (38.5%) 0.798

Iopromide (100 mL) 52 (60.5%) 4 (50%) 48 (61.5%) 0.798

Table 1. Basal clinical characteristics of patients undergoing interventional treatments. Data are given as the 
median and interquartile ranges. The dose of iohexol is different for treating different diseases. *P < 0.05 versus 
the group of patients without CI-AKI.
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Many renal injury models have identified the key genes and signaling pathways of kidney development that are 
re-expressed during regeneration, suggesting that there are similarities between development and repair32–34. 
Hence, the acute response to postnatal renal injury may represent a recapitulation of normal kidney development. 
Wnt signaling plays a key role in kidney morphogenesis, and previous studies have suggested that the expression 
of Wnt signaling is increased in renal epithelium in response to AKI35. During development, Wnt4 is required 
for completing the mesenchymal-to-epithelial transition. Therefore, it is conceivable that Wnt4 may re-express 
following a postnatal tubular injury. In the present study, we found that the expression of renal and urinary 
Wnt4 was considerably increased at 12 hours and markedly increased at day 4 after cisplatin-induced AKI; then, 
this expression was maintained until day 14 and was closely correlated with the histopathological alterations. In 
contrast, a significantly elevated serum creatinine level was not observed until day 3 after cisplatin-induced AKI. 
These data were further confirmed in a clinical study. An increased urinary Wnt4 expression was detected earlier 
than serum creatinine and eGFR in patients with CI-AKI after vascular intervention. This study is the first to 
demonstrate that increased kidney and urinary Wnt4 expression can be detected earlier than serum creatinine 
after drug-induced AKI. In particular, urinary Wnt4 could be a potential noninvasive biomarker for monitoring 
patients with tubular injury.

The cisplatin-induced AKI rat model is a common animal model for researching acute tubular injury. Both 
necrosis and apoptosis are observed after exposing the tubular cells to cisplatin36,37. In the kidney, increased Wnt4 
expression is associated with tubulointerstitial fibrosis38. However, in our cisplatin-induced AKI rat model, after 

Figure 6. Urinary Wnt4 is elevated in patients with CI-AKI, earlier than alterations in serum creatinine, urea 
and eGFR. (a) Serum creatinine levels of patients with or without CI-AKI at different time points. (b) Urea 
levels of patients with or without CI-AKI at different time points. (c) eGFR of patients with or without CI-AKI 
at different time points. (d) ELISA analysis of urinary Wnt4 normalized to uCr in patients with or without CI-
AKI at different time points. (e) Western blot assay of urinary Wnt4 excretion in patients with CI-AKI, patients 
without CI-AKI and healthy individuals. −1d, 1d, 3d and 5d refer to the time points of blood or urine sample 
collection of one day before and 1, 3 and 5 days after contrast agent administration. sCr, serum creatinine; uCr, 
urinary creatinine. **p < 0.01: patients with CI-AKI versus patients without CI-AKI at the same time point. 
#p < 0.05, ##p < 0.01 versus the −1d group.
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the Masson staining, we did not observe apparent fibrotic areas (data not shown). In this study, we used immu-
nohistochemistry and immunoblotting to analyze the Wnt4 expression in tubular epithelial cells. At 12 hours 
after cisplatin administration, Wnt4 was detectable but not prominent in the tubular epithelium; no measurable 
increase was observed in the serum creatinine level at this time point. Diffuse Wnt4 expression occurred at day 
4 and coincided with the peak pathological damage score and serum creatinine level. Simultaneously, a similar 
trend in kidney Kim-1 expression was observed in the cisplatin-induced AKI model. Expectedly, these data indi-
cated that the upregulation of Wnt4 expression in the injured tubular cells appeared much earlier than the occur-
rence of significant functional injury in the renal parenchyma. Therefore, Wnt4 may serve as a novel biomarker 
for monitoring early cisplatin-induced AKI in patients.

At 12 hours after cisplatin administration, although no increase was observed in the serum creatinine level, 
urinary Wnt4 was detected, and its expression mirrored the changes in renal Wnt4 expression, suggesting that 
urinary Wnt4 may be secreted from renal tubular epithelial cells. To further investigate the source of Wnt4 in 
urine, we analyzed the serum by Western blot and found no obvious upregulation of the Wnt4 level in blood (data 
not shown). However, the molecular mechanisms of Wnt4 secretion into urine remain unknown. Our previous 
study showed that urinary Wnt4 expression gradually decreased after the injury peak and could still be detected 
at the repair stage of the IRI model (168 hours after reperfusion). Urinary Wnt4 expression was always parallel to 
renal Wnt4 expression. However, in our cisplatin-induced AKI model, we found that urinary Wnt4 expression 
declined faster than tissue Wnt4 expression after the cisplatin-induced injury peak and was absent on day 14 even 
though a small amount of Wnt4 expression was still detectable in the tubular epithelial cells. Therefore, further 
studies are necessary to explain the reasons and explore the differences in the patterns of Wnt4 expression among 
various AKI models. However, the presence of urinary Wnt4 in response to early tubular injury may provide a 
noninvasive biomarker for AKI patients who are not suitable for renal biopsy.

To verify whether the re-expression of Wnt4 was related to tubular repair and regeneration, we detected Wnt4 
co-localization with Ki67, a nuclear antigen that is present during all phases of the cell cycle except G039,40. We 
found that most Wnt4-positive cells colocalized with Ki67 after cisplatin administration, consistent with previous 
studies indicating that Wnt4 co-localizes with PCNA, and promoted the cell cycle after ischemia/reperfusion 
injury19. Thus, we speculate that Wnt4 might play a crucial role in tubular repair and regeneration. In addition, 
some Wnt4-positive cells without Ki67 expression were observed. The underlying mechanisms need to be inves-
tigated in a future study. Both proximal and distal tubules undergo cell death during cisplatin nephrotoxicity41. In 
this study, we demonstrated that the Wnt4 expression was enhanced in both injured proximal and distal tubules. 
Identical results were detected in our previous study using an IRI mouse model15. However, Kim-1 is simply 
expressed in S3 cells of the proximal tubule, whereas NGAL, another precise biomarker of early acute tubu-
lar injury, appeared specifically in the distal tubular segments of injured nephrons42,43. Therefore, a set of AKI 
biomarkers (including Wnt4, Kim-1, NGAL et al.) could be more helpful for detecting earlier AKI induced by 
various causes.

Multiple studies have confirmed the renal effects of iodinated intravenous contrast agents. CI-AKI is defined 
as an acute decrease in renal function after the administration of vascular contrast agents in the absence of other 
causes44. Most CI-AKI patients show a nonoliguric, asymptomatic and transient decrease in renal function that 
is not easily detected. However, severe renal impairment may lead to oliguria, requiring dialysis and resulting 
in high mortality45. In our clinical study, we found that urinary Wnt4 in CI-AKI patients was detected as early 
as day 1 after the contrast agent administration, but there was no measurable increase in serum creatinine level 
at that time point. The finding that urinary Wnt4 appeared earlier than the elevation in serum creatinine level 
after CI-AKI further validated the clinical utility of urinary Wnt4 as an attractive novel biomarker for the early 
detection of drug-induced AKI. However, long-term studies are needed to assess the value of urinary Wnt4 in 
predicting the progression and outcomes of CI-AKI.

Clinical investigations with large sample sizes will be required to fully assess the clinical utility of Wnt4. To 
explore the utility of Wnt4 in diagnosing acute tubular injury and predicting outcomes, various types of AKI 
patients should be selected, particularly critically ill patients, whose incidence of AKI varies from 30–70%46. In 
conclusion, our studies demonstrate that Wnt4 is dramatically upregulated after acute, drug-induced tubular 
injury. During the early phase of AKI, changes in both renal and urinary Wnt4 are detectable before a significant 
increase in serum creatinine is observed. Moreover, urinary Wnt4 may have a potential to serve as a noninvasive 
biomarker for identifying early AKI.

Materials and Methods
Animals. Male Sprague-Dawley rats (270–300 g) were purchased from the 2nd Affiliated Hospital Laboratories 
of Harbin Medical University. Rats were housed in an air-conditioned room (22 ± 2 °C; 40–70% relative humid-
ity; 12:12 hour light dark cycle), fed commercial rodent chow, given water ad libitum, and acclimated for 1 week 
before use. All experimental procedures and animal care protocols were approved by the animal committee of 
Harbin Medical University. Animal experiments were performed in accordance with the Health Guidelines of the 
National Institutes for the Care and Use of Laboratory Animals.

Clinical patients and parameter measurements. All patients recruited for this study were admitted 
to the Radiology Intervention Department at the 2nd Affiliated Hospital of Harbin Medical University from 
November 2017 to January 2018. Only patients with normal renal function and urinalysis results were candidates 
for enrollment in this study. CI-AKI was diagnosed as an increased serum creatinine level of at least 25% above 
the baseline after the contrast administration and without any other renal injury causes. Basal clinical character-
istics, such as demographic data, contrast agent information and some biochemical parameters, were recorded. 
One day prior to and 1, 3 and 5 days after the contrast administration, blood and first morning urine samples 
were obtained and centrifuged, and the supernatant was stored at −80 °C until further analysis. The Internal 
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Review Board of Harbin Medical Hospital approved the study protocol, and all patients provided informed con-
sent according to the latest version of the Helsinki Declaration on human research ethics. All methods were 
performed according to the approved guidelines.

Cisplatin-induced AKI model. To generate the cisplatin-induced AKI model, cisplatin (Qilu-pharma, 
Jinan, China) was freshly prepared in 0.9% saline at a concentration of 1 mg/ml, and rats received a single intra-
peritoneal (i.p.) injection (3 mg/kg) of the solution. The rats in the control group were given an equal volume of 
normal saline instead of the cisplatin. Rats (n = 6 in each group) were sacrificed under chloral hydrate anesthesia 
at 12 hours and 1, 2, 3, 4, 5, 6, 14 days after the cisplatin injection. Blood, urine and kidney samples were harvested 
for further analysis. Urine was collected before euthanasia from each rat, which was housed in a metabolic cage 
with free access to water but without food. Blood was taken from the abdominal aorta. Urine and blood samples 
were centrifuged at 3,800 rpm for 15 min, and the supernatant and serum were stored at −80 °C until further 
analysis. Serum creatinine was measured using an enzymatic method by standard laboratory techniques with 
an automatic biochemistry analyzer (Cobasc311, Roche, Germany). Renal tissues were prepared for histological 
study, immunohistochemical examination and molecular biology experiments.

Tissue collection and preparation. Kidneys from control and treated rats were perfused with ice-cold 
0.9% saline at different time points. Then, the right kidney was removed and cut into two halves. One half was 
fixed in paraformaldehyde/lysine/periodate (PLP) solution for 2 hours, followed by incubation in 18% sucrose 
overnight42. The tissues were then embedded in Tissue-Tek O.C.T. compound and stored at −80 °C. The other 
half of the right kidney was stored in 10% neutral-buffered formalin for 24 hours, dehydrated in graded ethanol 
and then embedded in paraffin. The left contralateral kidney, which was used for biochemical analyses, was hem-
isected and snap-frozen in liquid nitrogen; tissues were stored at −80 °C.

Histology and immunohistochemistry. Histology and immunohistochemistry were carried out on 
2-μm-thick wax sections. Sections on glass slides were first dewaxed and hydrated and then stained with periodic 
acid-Schiff (PAS) for morphological study. The tubular damage first appeared in the OSOM region but gradually 
appeared in the cortex; thus, we chose to include only the OSOM region in the statistical analysis. At least ten 
randomly chosen fields (OSOM region) were evaluated under the microscope (200×, Nikon DS Ri1) for each 
rat, and an average score was calculated. Tubular injury was defined by epithelial degeneration, brush border 
loss, cast formation, tubular dilatation and necrosis. Abnormalities were scored by a semiquantitative method: a 
score of 0 represents an injury area of less than 10% of the field, whereas a score of 1, 2, 3, or 4 represents injury 
involving 10–25%, 25–50%, 50–75% or >75% of the field, respectively47. For Wnt4, Kim-1 and CD68 immuno-
histochemical staining in tissues, paraffin-embedded kidney sections were deparaffinized, hydrated, and sub-
jected to heat-mediated antigen retrieval, and the endogenous peroxidase activity was ablated by 3% H2O2. Then, 
the sections were blocked with 2% BSA in PBS at room temperature for 30 min, followed by incubation with a 
mouse monoclonal Wnt4 antibody (1:400, Santa Cruz Biotech, Delaware Avenue, CA, USA), a goat polyclonal 
Kim-1 antibody (1:400, R&D Systems, Minneapolis, MN, USA) or a mouse monoclonal CD68 antibody (1:200, 
Bio-Rad, Kidlington, UK) overnight at 4 °C. After incubation with horseradish peroxidase-conjugated anti-mouse 
or anti-goat IgG (ZSGB-BIO, Beijing, China) for 20 min, the sections were developed with a DAB kit (ZSGB-BIO, 
Beijing, China). The expression levels of kidney Wnt4 and Kim-1 were analyzed using Image-Pro Plus software.

TUNEL staining. Apoptotic cells were detected by using a terminal deoxynucleotidyl transferase–mediated 
dUTP nick-end labeling staining kit (Roche, Indianapolis, IN, USA). Images were captured using a Nikon micro-
scope (Tokyo, Japan), processed and analyzed by Image-Pro Plus software.

Immunofluorescence staining. For immunofluorescence staining, the PLP-fixed and O.C.T.-embedded 
kidney tissues were sectioned by a cryostat (Thermo Scientific, Cheshire, UK) to 4 μm thick. Then, the cryosec-
tions were blocked with 2% BSA in PBS for 30 min and incubated with the following primary antibodies over-
night at 4 °C: mouse monoclonal Wnt4 (1:200, Santa Cruz Biotech, Delaware Avenue, CA, USA), goat polyclonal 
Kim-1 (1:400, R&D Systems, Minneapolis, MN, USA), rabbit monoclonal Ki67 (1:400, Cell Signaling Technology, 
Danvers, MA, USA, a marker for cell proliferation or regeneration), rabbit polyclonal AQP-1 (1:200, Proteintech, 
Rosemont, IL, USA, a marker of proximal tubules), goat polyclonal NCCT (1:100, Santa Cruz Biotech, Delaware 
Avenue, CA, USA, a marker of distal tubules) and rabbit polyclonal NCCT (1:200, Merck, Darmstadt, Germany). 
Double staining was performed on the same tissue section. On the following day, the sections were washed sev-
eral times and incubated at room temperature for 1 h with Alexa Fluor 594/488-conjugated secondary antibodies 
(Jackson ImmunoResearch Laboratories, West Grove, PA) at dilutions of 1:200. Nuclei were stained using 4, 
6-diamidino-2-phenylindole (DAPI). Images were captured using a Nikon DS Ri1 camera (Tokyo, Japan) and 
processed and analyzed by Image-Pro Plus software.

Western blot analysis. For immunoblotting Wnt4 protein expression in cisplatin-treated rat kidneys and 
urine samples, the hemisected frozen kidneys were homogenized in radioimmunoprecipitation assay (RIPA) 
buffer containing 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 1 mM PMSF and proteinase inhibitor 
cocktail (Roche, Indianapolis, IN, USA) on ice. The supernatants of the kidney lysates or thawed urine samples 
were collected after centrifugation at 13,500 rpm at 4 °C for 15 min. Protein concentration was determined by 
bicinchoninic acid protein assay. An equal amount of kidney total protein lysate (40 μg) or centrifuged urine 
(10 μl) was mixed with SDS-PAGE protein loading buffer, denatured at 80 °C for 10 min and then applied to 
12% SDS-polyacrylamide gels for electrophoresis. Separated proteins were transferred to PVDF membranes by 
standard techniques. The blots were blocked in 5% nonfat dry milk in TBST for 60 min and then incubated with 
primary antibodies against Wnt4 (1:400, Santa Cruz Biotech, Delaware Avenue, CA, USA) or β-actin (1:1000, 
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Santa Cruz Biotech, Delaware Avenue, CA, USA) overnight at 4 °C, followed by an incubation with secondary 
antibody goat anti-mouse IgG (1:8000, Jackson ImmunoResearch Laboratories, WestGrove, PA, USA) at room 
temperature for 60 min. Finally, the proteins were visualized using Super ECL Reagent (HaiGene, Harbin, China), 
examined using a luminescence image analyzer (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) and quanti-
fied by ImageJ software. Full-sized blots are shown in Fig. S4.

Enzyme-linked immunosorbent assay (ELISA). Urinary Wnt4 and Kim-1 from cisplatin-treated rats 
and CI-AKI patients was measured by ELISA using commercially available test kits (CUSABIO, Wuhan, China) 
according to the manufacturer’s protocol and was normalized to urinary creatinine (uCr).

Statistical analyses. All results are presented as the means ± SD or the medians (interquartile ranges). 
Statistical differences were analyzed using one-way analysis of variance (ANOVA), nonparametric tests, or the 
Chi-square test, and p values of <0.05 or 0.01 were considered significant. Pearson or Spearman correlation anal-
ysis was used for comparisons between two variables.

Data availability. The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.
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