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Insights into myalgic 
encephalomyelitis/chronic fatigue 
syndrome phenotypes through 
comprehensive metabolomics
Dorottya Nagy-Szakal1, Dinesh K. Barupal2, Bohyun Lee1, Xiaoyu Che1, Brent L. Williams1, 
Ellie J. R. Kahn1, Joy E. Ukaigwe1, Lucinda Bateman3, Nancy G. Klimas4,5, 
Anthony L. Komaroff6, Susan Levine7, Jose G. Montoya8, Daniel L. Peterson9, Bruce Levin10, 
Mady Hornig  1, Oliver Fiehn  2 & W. Ian Lipkin1

The pathogenesis of ME/CFS, a disease characterized by fatigue, cognitive dysfunction, sleep 
disturbances, orthostatic intolerance, fever, irritable bowel syndrome (IBS), and lymphadenopathy, is 
poorly understood. We report biomarker discovery and topological analysis of plasma metabolomic, 
fecal bacterial metagenomic, and clinical data from 50 ME/CFS patients and 50 healthy controls. 
We confirm reports of altered plasma levels of choline, carnitine and complex lipid metabolites and 
demonstrate that patients with ME/CFS and IBS have increased plasma levels of ceramide. Integration 
of fecal metagenomic and plasma metabolomic data resulted in a stronger predictive model of ME/CFS 
(cross-validated AUC = 0.836) than either metagenomic (cross-validated AUC = 0.745) or metabolomic 
(cross-validated AUC = 0.820) analysis alone. Our findings may provide insights into the pathogenesis 
of ME/CFS and its subtypes and suggest pathways for the development of diagnostic and therapeutic 
strategies.

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disorder of more than six months duration 
comprising unexplained fatigue, post-exertional malaise, unrefreshing sleep and either cognitive dysfunction 
or orthostatic intolerance1. Between 800,000 and 2.5 million people in the United States alone are estimated to 
have ME/CFS1. There is no approved laboratory diagnostic test; hence, the diagnosis is based on history, physical 
examination and exclusion of other disorders1. Patients with ME/CFS frequently report a prodrome consistent 
with infection that includes a sore throat and cervical lymphadenopathy1. An estimated 35% to 90% of patients 
have irritable bowel syndrome (IBS)2–4, compared to 10–20% of the general population5,6.

Metabolomic studies of ME/CFS have revealed irregularities in energy, amino acid, nucleotide and nitrogen 
metabolism7, as well as inconsistent disturbances in neurotransmitter-related pathways and lipid metabolism. In a 
mass spectrometric study of 45 ME/CFS subjects and 39 healthy controls, Naviaux et al. reported abnormalities in 
levels of phospho- and sphingolipids, cholesterol, branched-chain amino acids, vitamins, proline/glutamate and 
mitochondrial metabolites8. In a study of 67 ME/CFS patients and 66 healthy controls, Yamano and colleagues 
assayed 144 metabolites and reported abnormalities in levels of metabolites related to glycolysis, the tricarbo-
xylic acid cycle and the urea cycle, but not in glutamine metabolism9. Fluge et al. reported evidence of pertur-
bations consistent with impaired pyruvate dehydrogenase function linked to TCA cycle-based impairments in 
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energy production10. Nuclear magnetic resonance (NMR) spectroscopy has also revealed metabolomic abnor-
malities consistent with altered gluconeogenesis, potential inhibition of glycolysis and impaired oxidative stress 
response11. Another NMR study found that, as compared with controls, glutamine and ornithine serum levels in 
ME/CFS were lower, and correlated with metabolites linked to the urea cycle12. A pilot study focused on plasma 
from women with ME/CFS revealed alterations in energy-related metabolic compounds and pathways13. We 
have reported fecal microbiome analyses and proposed a model wherein intestinal dysbiosis may contribute to 
bacterial metabolic disturbances that are distinct between ME/CFS subgroups defined by the presence or absence 
of IBS14.

Here we report targeted and untargeted analyses of 562 molecules representing primary metabolites, biogenic 
amines, lipid complexes and oxylipins in plasma of ME/CFS patients and controls. We also describe linkage of 
the resulting metabolomic data to a fecal metagenomic dataset and clinical data. As in our previously reported 
metagenomic analyses, we found that metabolomic profiles differ not only between ME/CFS patients and controls 
but also between ME/CFS patients who do or do not have IBS.

Results
Study population characteristics. Subjects included 50 ME/CFS cases who met the criteria15,16 for ME/
CFS and 50 matched healthy controls recruited at four sites across the United States (New York, NY; Salt Lake 
City, UT; Incline Village, NV; and Miami, FL). Subject demographics are shown in Table 1. The same subjects 
were enrolled as in our previous study14. Cases included 41 female and 9 male ME/CFS patients (mean age 
51.1 years; standard error of the mean [SEM] 1.6). Controls included 41 female and 9 male subjects (mean age 
51.3 years; SEM 1.6). All case and control samples were collected between June 22, 2014 and October 27, 2014. 
Irritable bowel syndrome (IBS) was diagnosed in 24 of the 50 ME/CFS patients (48%). One of the 50 control 
subjects reported a diagnosis of IBS (2%).

Metabolomic dataset. Targeted and untargeted mass spectrometry platforms yielded data for 562 metab-
olites comprising 111 primary metabolites (PM), including those related to tryptophan metabolism, sugars, 
hydroxyl acids, ketone bodies and other energy-metabolism compounds; 103 biogenic amines (BA) including 
branched and unbranched acylcarnitines, trimethylamine N-oxidase (TMAO), choline and amino acids; 302 
complex lipids (CL) including mono- and diacylglycerides, fatty acids, ceramides, sphingomyelins and phospho-
lipids; and 46 bioactive oxylipins (OL), steroids and bile acids. Figure 1 shows the pipeline for metabolomic data 
processing and the statistical methods used.

ME/CFS is associated with an altered metabolomic profile. Exposome and vitamin metabolites 
(exogenous environmental compounds, Table S1) were excluded from our biomarker analysis because vitamin 
supplements, medications and diet may impact metabolite levels independent of disease status. We used the 
nonparametric Mann-Whitney U test (p < 0.05) and adjusted univariate logistic regression model (p < 0.05) 

Demographics ME/CFS (n = 50) Controls (n = 50)

Sex
Female 41 41

Male 9 9

Age

Mean (±SEM) 51.081 (±1.607) 51.320 (±1.620)

Median (range)
53.607 52.93

(20.493–66.500) (21.040–67.869)

Race

White 49 48

Asian 1 1

Other 0 1

Ethnicity
Not Hispanic or Latino 46 45

Hispanic or Latino 4 5

Site of Collection

New York, NY 14 14

Salt Lake City, UT 14 15

Sierra, NV 12 12

Miami, FL 10 9

Season of Collection
Summer 27 26

Fall 23 24

IBS Co-morbidity
with IBS 24 1

without IBS 26 49

BMI
High BMI (>25 kg/m2) 28 22

Normal BMI (<25 kg/m2) 22 28

Duration of ME/CFS
Long duration (>3 years) 46 N/A

Short duration (<3 years) 4 N/A

Table 1. Characteristics of the study cohort. ME/CFS: myalgic encephalomyelitis/chronic fatigue syndrome, 
IBS: irritable bowel syndrome, BMI: body mass index, SEM: standard error of the mean, N/A: not applicable.
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to select plasma metabolites potentially altered in ME/CFS amongst the remaining 514 metabolites. The logis-
tic regression model was adjusted for frequency matching variables, body mass index (BMI) and IBS. From 
this subset of metabolites, we selected the top 10 potential ME/CFS biomarkers by random forests method17. 
5-methoxytryptamine (5-MT) was excluded from random forests analysis as it is confounded by the use of anti-
depressants in 50% of cases (Table S2). Potential biomarkers were used to test for accuracy of ME/CFS prediction 
in a multivariate logistic regression model.

Among the top plasma biomarkers differentiating ME/CFS patients from controls were decreased levels of 
betaine, complex lipids (lysophosphatidylcholine [LPC], phosphatidylcholine [PC]) and sphingomyelin (SM), 
and increased levels of triglycerides (TG), α-N-phenylacetyl-glutamine, ε-caprolactam and urobilin (Table S2). 
Set enrichment analysis of the results of logistic regression models revealed that ME/CFS subjects had reduced 
levels of PCs and dysregulation of the choline-carnitine pathway (Table 2).

Results from logistic regression analysis were supported by a MetaMapp analysis of all metabolites includ-
ing vitamins and neurotransmitters. MetaMapp software maps metabolites by their biochemical and chemical 
relationships into a metabolic network graph18. The MetaMapp in Fig. 2 describes increased TGs and fatty acids 
and decreased carnitines, ceramides, SMs and phosphatidylcholines in ME/CFS cases compared to controls. 
The MetaMapp also demonstrated decreased indole moiety-containing metabolites such as 5-MT, tyrosine and 
indole-3-lactate and increased vitamin B5 (pantothenic acid) in ME/CFS subjects.

IBS co-morbidity is associated with altered metabolic profiles in ME/CFS patients. In previ-
ous work with these same subjects, IBS co-morbidity was the strongest factor driving separation in topological 
networks based on fecal metagenomic data (bacterial relative abundance and predicted bacterial metabolic path-
ways)14. Chemical enrichment analysis of plasma metabolites revealed that metabolomic profiles of ME/CFS 
patients with IBS were distinguished from controls by levels of TG, ceramides, phosphatidylethanolmines (PE) 
and metabolites in the carnitine-choline pathway (Table 2, Fig. S1A).

ME/CFS patients without IBS co-morbidity showed disturbances in PCs and carnitine-choline pathways, sim-
ilar to the disturbances found in the overall ME/CFS cohort (Table 2, Fig. S1B). Analysis of plasma metabolites 

Figure 1. Schematic figure describing the metabolomic and metagenomic analysis pipeline. Metabolomic 
data was pre-processed and compared between ME/CFS patients vs. controls, ME/CFS with IBS (ME/
CFS + IBS) vs. controls and ME/CFS without IBS vs. controls, and female group only. Targeted and untargeted 
mass spectrometry platforms yielded data for 111 primary metabolites (PM), 103 biogenic amines (BA), 302 
complex lipids (CL) and 46 bioactive oxylipins (OL). Statistical analyses were performed with Mann-Whitney 
U test and adjusted univariate logistic regression modeling on all metabolites except for exposomes/vitamins. 
After removal of 5-methoxytryptamine, metabolites with a p-value below 0.05 in both U test and univariate 
logistic regression were ranked with random forests. The top 10 random forests-ranked metabolites were used 
as predictors in the predictive multivariate logistic regression models. The goodness-of-fit and predictive 
performance for the predictive models were measured with ROC curves. Biochemical set enrichment and 
topological analyses were performed with MetaMapp and TDA software, respectively. Metagenomic data were 
incorporated to better understand the correlation between metabolites and bacterial abundance profiles.
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by Mann-Whitney U test, logistic regression and random forests identified increased levels of ceramides, TGs, 
PE, 5-methylthioadenosine, mannitol and betaine as well as decreased levels of LPCs and γ-butyrobetaine in ME/
CFS patients with IBS versus controls (Table S3A). In ME/CFS patients without IBS, we found decreased levels 
of tyrosine and PCs and increased levels of TGs and Tyr-Met-Lys compared with controls (Table S3B). Relative 
to controls, all ME/CFS groups (all ME/CFS cases, ME/CFS with IBS and ME/CFS without IBS) had decreased 
levels of carnitine-choline metabolites (Table 2). ME/CFS patients with IBS have a distinct metabolomic profile 
(Fig. S2A, Table S4A).

ME/CFS is associated with an altered metabolomic profile in women. The metabolic profiles in 
women with ME/CFS were similar to those seen in all ME/CFS cases (Fig. S2B, Table S4). The levels of complex 
lipids (LPC and PC) were decreased and the levels of TGs were increased in ME/CFS vs. controls (Table S3C). 
Among the top 10 plasma biomarkers differentiating the female ME/CFS patient group from the female control 
group were decreased levels of indole-3-lactate and γ-butyrobetaine. Indole-3-lactate and γ-butyrobetaine were 
also reduced in the all ME/CFS group but were not amongst the top 10 plasma biomarkers.

Selected metabolites as a potential diagnostic tool in ME/CFS. ME/CFS cases vs. controls. We 
used binary logistic regression to test the sensitivity and specificity of the top 10 ME/CFS biomarkers that were 
identified through random forests analyses (Table S2). These metabolites distinguished ME/CFS subjects from 
controls with a high degree of accuracy (receiver operating characteristic (ROC) and area under the curve 
(AUC) = 0.960, cross-validated AUC = 0.820) (MET, Fig. S3A). Eight bacterial species were found to predict 
ME/CFS in random forests analyses in our previous study14 (Coprococcus (C.) catus, Pseudoflavonifractor (P.) 
capillosus, Dorea (D.) formicigenerans, Faecalibacterium (F.) prausnitzii, Clostridium (C.) asparigiforme, Sutterella 
(S.) wadsworthensis, Alistipes (A.) putredinis and Anaerotruncus (A.) colihominis), with a cross-validated AUC 
value of 0.745. A model that integrates metagenomic and metabolomic data provided better predictive perfor-
mance (MET + BACT: ROC AUC = 1.000, cross-validated AUC = 0.836; Fig. S3A) than either metagenomic or 
metabolomic data alone. We tested for selection bias using Lasso (least absolute shrinkage and selection operator) 
with cross-validation on all metabolites and achieved a similar AUC (MET cross-validated AUC = 0.820 vs. MET 
Lasso AUC = 0.822).

IBS subgroups vs. controls. Using metabolites selected by the random forests method, a binary multivariate 
logistic regression method was used to predict ME/CFS subgroups from controls based on IBS co-morbidity. 
In ME/CFS and IBS (Table S3A, Fig. S3B), the top 10 metabolites distinguished ME/CFS with IBS from control 

Enrichment set name
Set 
size

Direction in 
ME/CFS

ME/CFS vs. controls ME/CFS + IBS vs. controls ME/CFS w/o IBS vs. controls

compound level p < 0.05 compound level p < 0.05 compound level p < 0.05

# 
compounds enriched p adjusted p

# 
compounds enriched p adjusted p

# 
compounds enriched p adjusted p

carnitine-choline 3 Decreased 3 0.002 0.017 3 0.001 0.013 3 0.001 0.016

PC 115 Decreased 24 0.001 0.017 9 0.914 1.000 25 <0.001 0.006

TG 60 Increased 11 0.084 0.580 16 <0.001 0.004 10 0.138 0.725

ceramide 25 Increased 3 0.591 1.000 8 0.003 0.021 3 0.569 1.000

PE 18 Increased 2 0.655 1.000 5 0.036 0.189 2 0.637 1.000

amino acid 61 4 0.952 1.000 1 0.999 1.000 3 0.983 1.000

oxylipin 47 2 0.984 1.000 0 1.000 1.000 1 0.998 1.000

exposome 45 1 0.997 1.000 3 0.890 1.000 1 0.997 1.000

fatty acid 31 2 0.905 1.000 0 1.000 1.000 1 0.980 1.000

SM 30 2 0.894 1.000 2 0.859 1.000 3 0.698 1.000

energy 27 2 0.856 1.000 1 0.958 1.000 2 0.843 1.000

LPC 25 3 0.591 1.000 4 0.283 0.742 3 0.569 1.000

carnitine 19 2 0.685 1.000 0 1.000 1.000 2 0.668 1.000

sugar 11 0 1.000 1.000 0 1.000 1.000 0 1.000 1.000

sugar alcohol 9 0 1.000 1.000 1 0.647 1.000 0 1.000 1.000

cholesterol 9 2 0.292 1.000 2 0.254 0.742 2 0.280 1.000

neutral lipid 8 1 0.640 1.000 1 0.604 1.000 1 0.628 1.000

one-carbon/nicotinate 6 0 1.000 1.000 2 0.131 0.457 0 1.000 1.000

neurotransmitter 5 2 0.110 0.580 2 0.093 0.393 2 0.105 0.725

nucleotide 4 0 1.000 1.000 0 1.000 1.000 0 1.000 1.000

vitamin 4 1 0.399 1.000 1 0.369 0.862 1 0.389 1.000

Table 2. Chemical enrichment analysis. Cells in bold represent significant chemical enrichment in ME/CFS vs. 
control, ME/CFS + IBS vs. control and ME/CFS without IBS vs. control20. ME/CFS: myalgic encephalomyelitis/
chronic fatigue syndrome, IBS: irritable bowel syndrome, LPC: lysophosphatidylcholine, TG: triglyceride, PC: 
phosphatidylcholine, SM: sphingomyelin, PE: phosphatidylethanolamin.
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subjects with a high degree of accuracy (ROC AUC = 0.877, cross-validated AUC = 0.754). Nine bacterial spe-
cies were selected to predict ME/CFS + IBS in random forests analyses in our previous study (F. cf., F. prausnit-
zii, Bacteroides (B.) vulgatus, A. putredinis, C. catus, Anaerostipes (A.) caccae, D. formicigenerans, A. colihominis 
and C. asparagiforme), with a cross-validated AUC value of 0.791. A model that integrates metagenomic and 
metabolomic data provided better predictive performance (MET + BACT: ROC AUC = 1.000, cross-validated 
AUC = 0.824; Fig. S3B) than either metagenomic or metabolomic data alone.

In ME/CFS without IBS (Table S3B, Fig. S3C), the top 10 metabolites also distinguished ME/CFS without IBS 
from control subjects with a high degree of accuracy (ROC AUC = 0.975, cross-validated AUC = 0.839). Seven 
bacterial species were selected to predict ME/CFS + IBS in random forests analyses in our previous study (B. 
caccae, P. capillosus, Parabacteroides (P.) distasonis, B. fragilis, Prevotella (P.) buccalis, B. xylanisolvens and D. for-
micigenerans) and they yielded a cross-validated AUC value of 0.754. A model that integrates metagenomic and 
metabolomic data provided better predictive performance (MET + BACT: ROC AUC = 1.000, cross-validated 
AUC = 0.880; Fig. S3C) than either metagenomic or metabolomic data alone.

Plasma metabolomic profiles, fecal bacterial abundance profiles, and symptom severity scores 
in ME/CFS. The relative abundance of bacterial species in subjects’ feces varied with their plasma metabo-
lomic profiles. Decreased betaine was associated with decreased A. colihominis. Decreased PC 30:0 correlated 
with decreased A. putredinis (Table S4), a bacterium known to produce sulfonolipids - unusual sphingolipids 
structurally related to ceramides19. Sphingolipids are known to maintain bacterial survival and promote stress 
resistance20.

Figure 2. Metabolites differentiate ME/CFS and controls. A MetaMapp network of all identified metabolites 
in the ME/CFS cohort was constructed by Tanimoto chemical similarity and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) reaction pairs. Each node represents a metabolite. Up-regulated nodes are marked red and 
down-regulated nodes are marked blue. Node size reflects the magnitude of the effect. Only the compounds that 
pass a p-value cutoff of 0.05 are labeled. Red lines show the biochemical reactions and blue lines are chemical 
similarity scores above 0.85 Tanimoto similarity coefficients. The network was created using www.metamapp.
fiehnlab.ucdavis.edu18 and visualized in Cytoscape using the organic layout algorithm. MetaMapp identified 
perturbations in tryptophan metabolism, carnitine shuttle/energy homeostasis and complex lipids. Metabolites 
representing the tryptophan and carnitine pathway were decreased in ME/CFS compared to controls. In 
contrast, threonic acid, amino acids (tyrosine, methionine and lysine), phenylacetylglutamine, pantothenic 
acid, hexaethylene glycol and ε-caprolactam were enriched in ME/CFS. Lipid analyses showed that whereas 
metabolites representing the SM, Cer/CE and PC/LPC pathways were decreased in ME/CFS, TG pathways 
were enriched. 5-MT: 5-methoxytryptamine, 9-HOTE: C18:3n3, 19,20-DiHDPE: C22H34O4, AC: acylcarnitine, 
Cer/CE: ceramide, DG: diacylglycerol, FA: fatty acid, LPC: lysophosphatidylcholine, PC: phosphatidylcholine, PE: 
phosphatidylethanolamine, SM: sphingomyelin, TG: triglyceride, Tyr Met Lys: tyrosine methionine lysine.

http://www.metamapp.fiehnlab.ucdavis.edu
http://www.metamapp.fiehnlab.ucdavis.edu
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In ME/CFS with IBS, 5-methylthioadenosine (a metabolite derived from S-adenosylmethionine as a 
by-product of polyamine biosynthesis that can be toxic to mammalian cells21) was associated with functional 
impairment. Ceramides were associated with increased physical fatigue (Table S4). Decreased γ-butyrobetaine 
correlated with increased Faecalibacterium, a bacterium known to play an important role in the production of 
colonic butyrate, a by-product of fermentation with known beneficial impacts on intestinal barrier function and 
anti-inflammatory effects22,23.

In ME/CFS without IBS, decreased tyrosine correlated with decreased P. distasonis. Increased TG 54:6 A was 
correlated with D. formicigenerans and TG 54:8 was correlated with decreased B. caccae and D. formicigenerans. 
Parabacteroides and Bacteroides species have the ability to convert complex polysaccharides into energy sources24. 
D. formicigenerans is a carbohydrate-fermenting bacteria producing formic acid and lactate25.

TDA analysis for network identification. Topological data analysis (TDA) based on plasma metabolo-
mic and fecal metagenomic data and clinical symptom severity identified networks that distinguished ME/CFS 
cases from controls (Fig. 3A–C). Profiles of bacterial relative abundance were stronger drivers of network distinc-
tion than plasma metabolites (Fig. 3D,E).

Discussion
We recently reported that ME/CFS patients with IBS, ME/CFS patients without IBS and normal control subjects 
have group-specific differences in fecal microflora11. We have extended characterization of these same subjects 
through targeted and untargeted metabolomic analyses of plasma and integrated analysis of plasma metabolomic, 
fecal metagenomic and clinical data.

The Naviaux group previously reported decreased plasma levels of SM, ceramides and PLs with the exception 
of PC 18:1 and PC 22:6, which were increased8. Tomic et al. reported increased plasma levels of TGs26. Germain 
et al. reported metabolomic biomarkers of disturbed amino acid, energy, sugar and fatty acid metabolism in ME/
CFS patients13. Neither group examined the impact of IBS on metabolomic profiles in ME/CFS. Our analysis 
confirmed decreased levels of phospholipids and SM, and increased levels of TGs, but differed with respect to 
specific compounds. We did not find case-control differences in levels of PC 18:1 and PC 22:6. Nor did we find a 
consistent decrease in ceramide levels. Whereas ME/CFS without IBS had decreased levels of ceramides d43:1 and 
d42:1, ME/CFS with IBS had increased levels of six ceramide species: d36:1, d40:0, d42:0, d 34:1, d38:1 and d40:1.

Ceramide is a waxy lipid implicated in suppression of electron transport, insulin and leptin resistance and 
apoptosis27,28. Previous studies reported that ceramides might be involved in the pathology of IBS and metabolic 
disorders29,30. Increased levels of lipopolysaccharides (LPS) associated with an altered gut microbiome31 may 
trigger the activation of sphingomyelinases (SMAse) and the hydrolysis of SM to produce ceramides. Ceramides 
are toxic to many cell subtypes via the production of reactive oxygen species and may play a role in gut barrier 
dysfunction and increased gut permeability. Increased levels of ceramides were reported in mucosal samples from 
IBS patients29 as well as in plasma and tissue samples in diabetes, cardiomyopathy, insulin resistance, atheroscle-
rosis and steatohepatitis. Blocking SMAse to decrease ceramide levels may be therapeutic in reducing inflamma-
tion32. Patients with ME/CFS and IBS also had higher plasma mannitol levels. We speculate that mannitol may 
increase permeability of both the gut mucosa and the blood-brain barrier resulting in trafficking of molecules 
such as cytokines and neurotransmitters that contribute to disease.

Similar to Armstrong and colleagues11, we found alterations in metabolites associated with mitochondrial 
energy metabolism. Previous study reported significant decreases in TCA cycle metabolites related to energy 
metabolism in ME/CFS patients9. The reported dysfunction impacted carnitine metabolism and ATP/energy 
metabolism in the muscle of ME/CFS patients11. Carnitine is an important supplement that transfers acyl-CoA 
group into the mitochondrial matrix and participates in fatty acid β-oxidation (TCA cycle, ATP production and 
energy metabolism). Studies of carnitine levels in serum and plasma in ME/CFS have been inconclusive, with 
some groups reporting reductions whereas others find normal levels33,34. In an open label study of 30 patients, 
acetyl-carnitine supplements were reported to improve fatigue and cognitive function in up to 59% of patients 
with ME/CFS35. In our study (Table 2), compounds in the choline-carnitine pathway were decreased in ME/CFS 
patients regardless of their IBS status.

Our results are consistent with earlier reports that suggest that metabolites linked to lipid and energy metab-
olism are affected in ME/CFS. They extend earlier work by demonstrating that ME/CFS subjects with IBS 
co-morbidity have a distinct metabolomic profile compared to subjects without IBS and controls.

Many ME/CFS patients in our cohort take vitamin B supplements (26/50, 52%) that have the potential to 
increase levels of pantothenic acid. Use of vitamin B supplements was associated with higher levels of pantothenic 
acid and lower fatigue scores (data not shown). However, the numbers of samples were not sufficient to test for 
a significant relationship. Plasma levels of 5-MT, a compound related to tryptophan, serotonin and melatonin 
metabolism, were decreased in ME/CFS; however, this finding was confounded by the use of selective serotonin 
reuptake inhibitors (SSRIs) or other antidepressants (serotonin-norepinephrine reuptake inhibitors [SNRIs] and 
tricyclic antidepressant [TCAs]) in 25 of 50 (50%) ME/CFS subjects vs. 6 of 50 (12%) healthy controls. Prior metab-
olomic studies have shown reduced levels of plasma 5-MT with chronic, but not acute, SSRI administration36,37. 
In human cells, 5-MT is an important metabolite involved in two-step conversion pathways between serotonin 
(5-hydroxytryptamine) and melatonin (N-acetyl-5-methoxytryptamine)38,39. Reduced levels of serotonin trans-
porters, which play a role in regulating serotonin levels at synapses, have previously been reported in ME/CFS40.

Correlation studies suggested potential relationships between the 5-MT neurotransmitter metabolites and 
ME/CFS severity symptoms including impaired cognitive function, sleeping disturbances and overall elevated 
ME/CFS fatigue scores. Additional studies with larger subject numbers will be required to address whether 
plasma levels of pantothenic acid or 5-MT can be correlated with symptoms and to determine whether there is a 
subset of ME/CFS patients who might be predicted to benefit from drugs that modulate the associated pathways.
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Women accounted for 41 of 50 ME/CFS subjects (82%) and 41 of 50 (82%) control subjects in our study. Given 
that the vast majority of cases and controls were women, it is not surprising that findings in women with ME/CFS 
were similar to findings in the overall ME/CFS case group. Both had lower levels of complex lipids (LPC and PC) 
and higher levels of TGs than controls. The cohort contains only 9 ME/CFS men and 9 control men; thus, we do 
not have the power needed to address differences between males and females. This difference in prevalence by sex 
in our cohort is characteristic of ME/CFS (typical 4:1 ratio of women to men).

Our predictive modeling distinguished ME/CFS patients from controls with high accuracy; however, it needs 
to be verified in another independent study.

ME/CFS is a heterogeneous disorder. Identification of ME/CFS subgroups characterized by specific metabo-
lomic profiles that integrate primary metabolites, biogenic amines, complex lipidomics and oxylipins may enable 
delineation of subtypes and lead to specific diagnostic and therapeutic strategies.

Figure 3. Topological data analysis (TDA) revealed altered metabolomic and metagenomic profiles in ME/CFS. 
The color scheme represents the strength of association with ME/CFS diagnosis (white: strongly associated with 
control, red: strongly associated with ME/CFS). Each node in a network comprises 1 or more subject(s) who 
share variables in multiple dimensions. Lines connect network nodes that contain shared variables and subjects. 
Unlike traditional network models wherein each node reflects only a single sample, the size of a node in the 
topological network is proportional to the number of variables with a similar profile. (A), (B) and (C) integrate 
plasma metabolomic, fecal metagenomic and plasma immune profiles, and symptom severity scores using the 
Jaccard metric to define multidimensional subgroups. Irrespective of the lenses used [(A) neighborhood lenses 
NL1 and NL2, (B) MDS coordinate 1 and 2, and (C) metric PCA 1 and 2], ME/CFS and control samples formed 
distinct networks. ME/CFS and control samples also formed distinct networks in TDA based on either fecal 
bacterial relative abundance or plasma metabolomic data in isolation using a variance normalized Euclidean 
distance metric with neighborhood lenses (NL1 and NL2). Fecal bacterial relative abundance features (D) were 
stronger drivers of the network distinction than plasma metabolomic features (E).
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Methods
Study design. We report association modeling, biomarker discovery, biochemical enrichment analysis and 
topological network visualization of plasma metabolomic, fecal bacterial metagenomic and clinical data from 50 
ME/CFS patients and 50 healthy controls. 562 plasma metabolites were assessed using targeted and untargeted 
mass spectrometry platforms. Figure 1 shows the pipeline for metabolomic data processing and the statistical 
methods used.

Study population and plasma collection. Subjects included 50 cases and 50 controls from the Chronic 
Fatigue Initiative (CFI) cohort41 recruited at four sites across the US who met the 1994 CDC Fukuda15 and/or 
Canadian consensus criteria for ME/CFS16. Controls were frequency-matched to cases on age, sex, race/eth-
nicity, geographic/clinical site and season of sampling42. All ME/CFS subjects (n = 50) completed standardized 
screening and assessment instruments including medical history and symptom rating scales, had a physical 
examination and provided blood samples. Controls (n = 50) of the CFI cohort study42 had been found to be free 
of: self-reported ME/CFS or ME/CFS symptoms or other conditions deemed by the recruiting physician to be 
non-representative of a healthy control population including substance abuse in the prior year and any history 
of self-reported psychiatric illness; antibiotics in the prior three months; immunomodulatory medications in 
the prior year; and clinically significant findings on physical exam or screening laboratory tests. All participants 
provided informed written consent in accordance with protocols approved by the Institutional Review Board at 
Columbia University Medical Center. All participants consented to phlebotomy, collection of stool samples and 
completion of clinical questionnaires.

Blood samples were collected into BD VacutainerTM Cell Preparation Tubes (CPT with sodium citrate anti-
coagulant) between June and October 2014, and centrifuged to pellet red blood cells. The plasma was shipped 
to Columbia University at 4 °C. After aliquoting, samples were stored at −80 °C until thawed for metabolomic 
analyses. All samples were analyzed within 2 years of collection.

Clinical assessments and medical history. Clinical symptoms and baseline health status were assessed 
on the day of physical examination and biological sample collection from both cases and control subjects using 
the following surveys: the Short Form 36 Health Survey (SF-36), the Multidimensional Fatigue Inventory (MFI), 
DePaul Symptom Questionnaire (DSQ) and Pittsburgh Sleep Quality Index (PSQI43). Table S5 describes the indi-
vidual surveys with the specific questions listed. The SF-36 includes the following subject-reported evaluations 
about current health status: physical and social functioning, physical and emotional limitations, vitality, pain, 
general health perceptions and mental health change44. The MFI comprises a 20-item self-reported questionnaire 
focused on general, physical and mental fatigue, activity and motivation45. Cognitive function was tested based 
on the DSQ questionnaire data46 and was scored using a standard cognitive disturbance definition as well as a 
modified definition based on a subset of questionnaire variables. Sleeping disturbances linked to ME/CFS were 
tested and scored based on DSQ and PSQI questionnaire items. Each instrument was transformed into a 0–100 
scale to facilitate combination and comparison, wherein a score of 100 is equivalent to maximum disability or 
severity and a score of zero is equivalent to no disability or disturbance.

IBS co-morbidity was based on self-reported diagnosis of IBS on the medical history form. IBS was diagnosed 
in 24 of the 50 ME/CFS patients (48%). One control subject of out 50 reported a diagnosis of IBS (2%). Three ME/
CFS cases and 1 control were newly diagnosed with IBS.

Metabolomics. Three untargeted metabolomic assays and 1 targeted assay for 562 metabolites from over 
20 biochemical pathways were performed with gas chromatography time-of-flight (GCTOF) and liquid chro-
matography–tandem mass spectrometry (LC-MS/MS) instruments by the West Coast Metabolomics Center 
at University of California, Davis, USA. Sample preparation and metabolomic analyses were described previ-
ously47–49. Mass spectrometry metabolomic data have been deposited in the Metabolomics Workbench (http://
www.metabolomicsworkbench.org) with project identifier PR000576.

Statistical analyses. Mass spectrometry data were initially filtered for internal standard metabolites (qual-
ity control spike-in metabolites) and unannotated/unknown metabolites. Annotated metabolites were further 
filtered out if more than 50% of samples (50 individuals out of 100) showed non-detectable or missing profiles. 
For each metabolite, we created a dummy variable for whether the values were missing, and ran chi-squared tests 
between this dummy variable and the ME/CFS status variable. We found no significant difference in prevalence of 
missing metabolite values between ME/CFS and controls. For each of the remaining metabolites, missing values 
were imputed using 50% of its smallest available value. Normalization was performed by dividing each metabolite 
profile by the total sum of metabolite intensities per sample50. Base-10 log transformation was applied to limit 
outlier effect. Keeping features on a positive domain, all data points were multiplied by a factor of 1.0e + 09 before 
log transformation. Data for each metabolite were then scaled by the control standard deviation.

The nonparametric Mann-Whitney U test and adjusted univariate logistic regression were applied to identify 
potential predictors differentiating ME/CFS from controls. For the binary outcome of IBS subgroups vs. controls, 
logistic regression models were adjusted for all frequency matched variables and BMI. For the binary outcome of 
ME/CFS vs. controls, additional adjustment for IBS was included. The metabolites with a p-value below 0.05 in 
both U test and adjusted univariate logistic regression were then used to develop a representative set of variables 
by random forests17. The top 10 random forests ranked metabolites were fitted as predictors in the predictive 
multivariate logistic regression models51,52. Table S6 shows the descriptive value of chemical compounds differed 
in ME/CFS, subgroups and ME/CFS female subjects only. 5-MT was excluded from random forests analysis as it 
is confounded by the use of antidepressants in 50% of cases. In-sample receiver operating characteristic (ROC) 
curves were plotted and area under the curve (AUC) was measured to assess the goodness-of-fit of the models.  

http://www.metabolomicsworkbench.org
http://www.metabolomicsworkbench.org
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To examine the predictive performance of the multivariate logistic regression models, random resampling 
cross-validation was performed with 1000 iterations. Data were randomly split into a training set (80%) and a test 
set (20%) within each iteration.

Correlations between bacteria, metabolites and disease scores were examined using Spearman correlations.
Data were analyzed and visualized with Matlab (R2013a, The Mathworks Inc., MA), R (version 3.3.3) and 

SPSS (version 24, IBM, NY). All p-values were 2-tailed.

MetaMapp network mapping and enrichment analysis. MetaMapp networks were created using 
the method described in the ref.18. Cytoscape software version 3.4.0 was used to visualize the networks with 
overlaid statistical results. Networks were visualized using the organic layout algorithm. Node size was mapped 
to fold-change differences in the case vs. control groups. Node color was mapped to the direction of the 
between-group differences. Structurally identified metabolites were grouped into 21 chemical groups. Metabolites 
were manually classified because many compounds, including complex lipids, are poorly covered in pathway 
maps from major databases such as KEGG, Reactome or MetCyc. Metabolite groups were used as input for an 
enrichment analysis using Fisher exact test in R. P-values for the enrichment were corrected for multiple hypoth-
esis testing using the Benjamini-Hochberg false discovery rate (FDR) method53 controlling the FDR at 0.05 level.

Topological data analyses. Metagenomic and metabolomic data including plasma metabolite levels, 
bacterial composition and inferred metabolic pathways, plasma immune profiles and health symptom severity 
scores were integrated for TDA using the AYASDI platform (Ayasdi, Menlo Park, California). AYASDI represents 
high-dimensional, complex biological data sets as a structured 3-dimensional network54. Each node in the net-
work comprises 1 or more subject(s) who share variables in multiple dimensions. Lines connect network nodes 
that contain shared data points. Unlike traditional network models wherein each node reflects only a single sam-
ple, the size of a node in the topological network was proportional to the number of variables with a similar profile. 
We built a network comprised of 100 samples and 1900 variables (562 variables representing plasma metabolites, 
574 representing fecal bacterial relative abundances at different taxonomic levels, 586 variables representing pre-
dicted bacterial metabolic pathways, 61 variables reflecting immune molecules, 81 variables representing different 
ME/CFS fatigue and other symptom score/health questionnaire items and information on co-morbidities; and 36 
demographic variables). All variables were weighted equally. Jaccard and variance-normalized Euclidean distance 
methods were used as the distance metrics; a range of filter lenses (neighborhood lens 1 and 2, MDS coordinate 
1 and 2, Metric PCA 1 and 2) was used to identify networks. A metric represents a notion of similarity (or dis-
tance) between rows in the data. The Jaccard metric measures the dissimilarity of asymmetric information on 
non-binary variables. Each row must be a collection of objects (no order necessary) and this metric computes the 
Jaccard score (1 - intersection/union) between the two sets. The Jaccard metric treats the columns as delimiters. 
The rows are treated as a list of objects in the set. The variance-normalized Euclidean metric is a variant on the 
Euclidean that accounts for the scale choices. For each variable, this metric finds its mean and standard deviation, 
and rescales the value of the coordinate by subtracting the coordinate mean and dividing by the corresponding 
standard deviation. A lens is a filter that converts the dataset into a vector. The neighborhood lenses generate an 
embedding of high-dimensional data into two dimensions by embedding a k-nearest neighbors graph of the data. 
A k-nearest neighbors graph is generated by connecting each point to its nearest neighbors. The MDS coordi-
nate 1/2 and Metric PCA 1/2 lenses compute a variant of PCA coordinate lenses for data that does not use the 
Euclidean metric. The AYASDI maps the data into a Euclidean space using the rows of the distance matrix as the 
coordinates and then performs PCA.

Standard statistical methods were applied to define the primary variables of these networks.

Data and materials availability. Data has been uploaded to the Metabolomics Workbench (http://www.
metabolomicsworkbench.org) with project identifier PR000576.
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