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Stepwise Reduction of Graphene 
Oxide (GO) and Its Effects on 
Chemical and Colloidal Properties
Samar Azizighannad1 & Somenath Mitra2

Graphene Oxides (GO) typically contains different oxygen containing groups such as hydroxyl, carboxyl 
and epoxy, and reduced GO (r-GO) represents a family of material with diverse chemical properties. In an 
effort to understand how properties of r-GO change as GO is reduced, a stepwise reduction of the same 
GO to r-GO containing different levels of oxygen was carried out, and their corresponding chemical and 
colloidal properties are reported. Starting with GO containing 49 percent oxygen, r-GOs containing 
31, 19 and 9 percent oxygen were synthesized. The aqueous behavior in terms of solubility gradually 
decreased from 7.4 µg/ml for GO to nearly zero for r-GO with 9% oxygen, while dispersibility under 
sonication decreased from 8 to 2.5 µg/ml for the same samples. Hydrophobicity index as measured 
as the octanol water partition coefficient decreased from −3.89 to 5.2% as oxygen content dropped 
from 49 to 9%. Colloidal behavior was also dramatically affected by reduction, and critical coagulation 
concentration (CCC) dropped from 28 to 15 in presence of 0.5 mmole/l NaCl and from 6 to 2 in presence 
of 0.5 mmole/l MgCl2 as the oxygen in the original GO was reduced to 9%.

Graphene-based materials have unique optical, mechanical and electrical properties which make them attractive 
for many applications1–5. Oxidation of graphite powder to graphene oxide (GO) followed by chemical reduc-
tion to reduced graphene oxide (r-GO) is a well-established approach to generating graphene based materials. 
Numerous methods of chemical reduction to r-GO have been published where hydrazine hydrate6, dimethyl-
hydrazine3, hydroquinone3, NaBH4

7, HI3,7 and Fe and Zn powder3,8 have been used to reduce GO. Since the GO 
from different sources vary widely and contains a wide range of oxygen containing groups such as hydroxyl, car-
boxyl and epoxy2–29, r-GO represents a family of material with different physical/chemical properties. While there 
are several reports on different aspects and applications of GO and r-GO8,27,28,30,31 where GO and r-GO were used 
from diverse sources, a systematic study of physical and chemical property variation in r-GO containing different 
levels of oxygen from the same GO is yet to be studied.

The level of reduction in r-GO is also expected to alter aqueous dispersibility of these species. Besides chem-
ical behavior, this also has ecological consequences. As the applications of GO and r-GO proliferate, mass pro-
duction and disposal of products containing these nanocarbon will increase with potential for environmental 
contamination and water pollution. Recent studies have shown that graphene can be toxic toward organisms 
including bacteria32, nematodes zebra fish and humans32,33. Cytotoxicity toward bacteria through both membrane 
and oxidative stress has been demonstrated for both GO and r-GO and level of oxidation has been shown affect 
cytotoxicity32,34. While a hydrophobic r-GO can be expected to settle out of aqueous media into solid phases such 
as river sediments, hydrophilic r-GO will stay dispersed. Therefore, there is a need to develop an understanding 
of the fate of different r-GOs in aqueous media. There have been very limited reports on this topic10,22,23,29, and the 
variation in colloidal behavior with oxygen content in r-GO is yet to be studied. Similarly, aqueous behavior in 
terms of solubility, dispersibility and hydrophobicity of these r-GOs is not well understood.

Theoretical predictions of GO aggregation kinetics and stability using Derjaguin− Landau− Verwey− 
Overbeek (DLVO) theory has been used to estimate the attachment efficiency9,10,14, and an alternative Maxwell 
approach35 taking into account has also been used to determine particle collision efficiencies and aggression 
kinetics of GO and r-GOs. Time resolved dynamic light scattering has been used to study dispersibility of GO 
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and r-GOs36, and the solubility of r-GO from different methods have been measured in different solvents and 
correlated with solubility parameters5.

An important consideration is that oxygen containing groups play an important role in determining chemical 
properties as well as dispersibility and aggregation of r-GO in aqueous solutions. Since GO and r-GO form dif-
ferent sources show a wide range of variability in both structure as well as the presence of functional groups, they 
cannot be compared directly. To address this issue, the objective of this work is the stepwise reduction of the same 
GO to generate r-GO containing different levels of oxygen and study their chemical properties. The use of the 
same GO to form r-GO eliminates the variability associated with different sources of this highly diverse material. 
Yet another objective is to study the colloidal behavior of the r-GOs representing different levels of GO reduction.

Results and Discussions
To avoid the inter sample variation of GO from different sources, the same sample was reduced step wise using 
a gentle reduction technique. r-GOs containing 31, 19 and 9% oxygen were synthesized. The resulting r-GOs are 
listed in Table 1 and these were classified based on the oxygen content. The oxygen content was measured using 
Elemental Analysis(EA), Thermo Gravimetric Analysis(TGA) and energy-dispersive X-ray(EDAX). There were 
minor variations among these measurements, and EA was accepted to be the true value. The scanning electron 
microscopy(SEM) images of the different r-GO are presented in Fig. 1. In line with what has been reported before, 
the GO sheets had smooth surface while the r-GOs showed folded regimes and wrinkles37.

The chemical structure of GO before and after the reduction were studied by Fourier Transform Infrared 
spectroscopy (FTIR) and the data is presented in Fig. 2. The reduction of GO involves the elimination of oxygen 

Analysis/Sample GO r-GO-31 r-GO-19 r-GO-9

Percent Carbon 47.48% 66.87% 80.06% 87.71%

Percent Oxygen 49% 31.67% 19.11% 9.69%

La 22.6 18.5 16 13.4

Particle size in 0.5 mmole/1 NaCl(nm) 642.3 385.5 376.7 327.9

CCC in NaCl 28 27 20 15

Particle size in 0.5 mmole/1 MgCl2(nm) 1274 608.2 551.1 358.3

CCC in MgCl2 6 6 5 2

Zeta potential in 0.5 mmole/1 NaCl −33.2 −30.02 −29.5 −23.7

Zeta potential in 0.5 mmole/1 MgCl2 −9.66 −4.54 −2.2 −0.92

Hydrophobicity Index −3.89% 0.98% 1.75% 5.2%

Solubility(µg/ml) 7.4 2.1 ~0 ~0

Dispersibility(µg/ml) 8 6.3 4.1 2.5

Table 1.  Properties of GO and r-GOs produced via stepwise reduction.

Figure 1.  SEM images of (a) GO, (b) r-GO-31, (c) r-GO-19, (d) r-GO-9.
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containing groups and the restoration of conjugated π systems. Characteristic peaks including C–O (1060 cm−1), 
C–OH (1226 cm−1), O–H (1412 cm−1) and C = O (1733 cm−1), were observed in the GO spectrum, and these 
were significantly reduced in the r-GO spectra. This clearly indicated the loss of oxygen groups form GO suggest-
ing the formation of r-GO.

Figure 3 shows the Raman spectra of the GO and r-GO samples. Strong D-peak is suggestive of arm chair 
conformation near the edges. After the reduction of GO, the G band shifted to 1580 cm−1 from 1600 cm−1 in line 
with what has been reported before8. The intensity of the D band increased with reduction and so did the ID/IG 
ratio. The crystallite sizes (La) of the sp2 lattice of all the samples were calculated from the Eq. 1, where λ is the 
laser wavelength, and IG and ID are the intensities of the G- band and the D- band respectively.

λ= . × × ×−L I I2 4 10 / (1)a laser G D
10 4

The intensity of D band increased during reduction while the intensity of G band decreased. As result La decreased 
in r-GO. The values of La are given in Table 1, which shows that La decreased from 22.6 in original GO to 13.4 in 
r-GO-9.

The results from TGA analysis are presented in Fig. 4. The two weight loss steps for GO were from the pyrol-
ysis of oxygen containing functional groups and the second was from the oxidation of carbon. The former was 
around 160 °C and GO lost nearly 40% of its weight at 162 °C. The second step which is around 460 °C was related 
to the oxidation of sp2-hybridzied carbon atoms. As the reduction progressed, the weight loss at 160 °C decreased 
with r-GO-9 showing minimal decrease in weight at this temperature indicating that much of the oxygen con-
taining groups had been removed. As reported previously38, deoxygenation also led to higher thermal stability of 
the r-GO. As the oxygen concentration decreased to 9%, the residual oxygen containing groups were more stable 

Figure 2.  FTIR spectra of (a) GO, (b) r-GO-31, (c) r-GO-19, (d) r-GO-9.

Figure 3.  Raman spectra of (a) GO, (b) r-GO-31, (c) r-GO-19, (d) r-GO-9 (The ID/IG ratio as abstract value for 
in-plane lattice defects).
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and oxidized at a higher temperature and more slowly. Thus, r-GO-9 showed the highest thermal stability among 
the ones presented here.

To measure solubility and dispersibility of GO and r-GOs, pre-weighed amounts of GO and r-GOs were added 
to DI water and let the solution settle for 2 hours. As shown in Table 1 solubility of graphene oxide reduces from 
7.4 µg/ml to nearly zero for r-GO-9. However, the r-GO could be dispersed into a stable suspension via sonication. 
Dispersibility was measured by sonicating the suspension for 10 min and then the suspension was allowed to 
settle for 24 hours. As presented in in Table 1, here the dispersibility decreased from 8 µg/ml for GO to 2.5 µg/ml  
for r-GO-9.

In the realm of aqueous behavior, the hydrophobicity of the different r-GOs is an important consideration. 
Hydrophobicity Index(HI) based on octanol water partitioning was used to determine dispersibility of GO in 
water39. The pictures of 1-octanol/water partitioning are shown in Fig. 5. HI was calculated based using a method 
published before36. It was computed using absorbance of GO and r-GOs solutions at 252 nm in water prior to and 
following 1-octanol extraction according the formula 239.

=
−

×HI A A
A

(%) ( ) 100
(2)

i0

0

As presented in Table 1, as oxygen content in r-GOs decreased, hydrophobicity increased. Hydrophilicity was 
high in highly carboxylated GO sheets which made it partition in the aqueous phase. HI increased from −3.89% 
to 5.2% as the oxygen content decreased implying that the it went from a highly hydrophilic GO to highly hydro-
phobic r-GO which represented a dramatic change in aqueous dispersibility. HI of GO (−3.89%) is very close to 
reported HI for reported carboxylated carbon nanotubes (−4.15%)39.

In general, colloidal stability is attributed to balance between van der Waals forces that promote aggregation 
and electrostatic repulsion which is dispersive36. Zeta potential, particle size distribution of agglomerates and 
aggregation kinetics were used to study dispersibility of the different r-GO (Table 1). Due to its anisotropic shape, 
the two fundamental interacting modes between GO sheets are edge to edge and face to face. GO is known to 
form a good dispersion in water because of the electrostatic repulsion between ionized functionalities such as 
carboxylic groups that are mainly located at the edges. With the addition of salt, typically the monovalent Na+ 
has no specific interactions with the functional groups on GO surfaces and the aggregation follows conventional 
DLVO theory. In the presence of divalent Mg2+, the mechanisms of GO aggregation kinetics could be compli-
cated because the divalent cations can also interact with surface functional groups of the GO sheets and even 
cross-link them, particularly at the edges14,36,39. Figures 6, 7 show zeta potential and particle size of GO and r-GOs 
as a function of ionic strength. As expected, the GO and r-GO particles began to aggregate with increase in ionic 

Figure 4.  TGA curves of (a) GO, (b) r-GO-31, (c) r-GO-19, (d) r-GO-9.

Figure 5.  Photographs of 1-octanol/water partitioning of (a) GO, (b) r-GO-31, (c) r-GO-19, (d) r-GO-9 after 
standing for an hour.
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strength. The addition of a divalent cation Mg2+ led to stronger aggregation of the GO sheets which is in line with 
the DLVO theory. As presented in Table 1, agglomerate size in the presence of 0.5 mmole of NaCl and MgCl2 
increased as oxygen content increased. Particle size reduces from 642.3 to 327.9 nm in presence of 0.5 mmole/1 
NaCl and from 1274 to 358.3 nm in presence of equivalent MgCl2 as oxygen containing groups are being removed. 
The zeta potential in NaCl was between 33.2 to 23.7 mV, which implied moderately stable dispersions, however 
the zeta potential in 0.5 mmole/1 MgCl2 was in the range of 9.66 to 0.92 mV, implying very unstable suspension.

The aggregation kinetics of the GO and r-GO were studied using time resolved dynamic light scattering. 
In Eq. 3, the initial rate of agglomerate size is (rh) is proportional to kno where k is the initial aggregation rate 
constant and no is the initial concentration of the solute. The attachment efficiency α which is the reciprocal of 
stability ratio of a dispersion were computed NaCl and MgCl2 as36:

∝ = →

→

( )
( ) (3)

dr h
dt t

dr h
dt t

f
0

0

( )

Figure 6.  (a) Zeta potential as a function of NaCl concentration, (b) Attachment efficiency as a function of 
NaCl concentration. GO and r-GOs concentration was maintained 4 mg/1 in DI water.

Figure 7.  (a) Zeta potential as a function of MgCl2 concentration; (b) Attachment efficiency as a function of 
MgCl2 concentration. GO and r-GOs concentration were maintained 4 mg/1 in DI water.
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where 
→

( )dr h
dt t 0

 and 
→
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f

0

( )
 represent the slow and fast aggregation regimes respectively36. The attachment 

efficiency was measured as the ratio of the initial slope of the aggregation profile to that obtained under fast aggre-
gation conditions. These are plotted as a function of salt concentration for the GO and r-GO and are presented in 
Figs 6 and 7. In line with previous studies, distinct unfavorable and favorable aggregation regimes demarcated by 
the critical coagulation concentration (CCC) (Figs 6, 7) were observed. This indicated that the DLVO type inter-
actions were the dominant mechanism for colloidal stability of GO and r-GOs. The CCC values are presented in 
Table 1. Surface oxidation in r-GO clearly played an important role and higher oxygen content led to higher CCC 
values. There was no significant change in CCC value for GO and r-GO-31. Higher CCC for high oxygen contain-
ing groups was due to the fact that there was more interaction between oxygen containing group and electrolytes 
in solution. In general, the CCC value determined for GO and r-GO is significantly lower than the reported CCC 
value for fullerene but is quiet similar to CNT32.

Methods
Sample Preparation.  Graphene Oxide was purchased from Graphena Inc., Zinc was purchased from Fluka 
and all other chemicals were purchased from Sigma Aldrich with purity higher than 95%. Reduction of GO to 
r-GO was carried out using a method published before8, however the method was modified for step-wise reduc-
tion by adding different amount of Zn to the solution. 200 mg of GO was dispersed in 50 ml water and sonicated 
for 10 min to form a homogeneous solution. 0.1 M Hydrochloric acid was added to adjust the pH to 2. The Zn 
power was then added and sonicated for 10 min to generate enough hydrogen that would lead to formation of 
r-GO. Reducing the amount of Zn reduced the hydrogen generation and consequently the degree of reduction the 
addition of 200, 400 and 1000 mg Zn led to the formation r-Go containing 31, 19 and 9 percent oxygen respec-
tively. These are referred to as r-GO-31, r-GO-19 and r-GO-9. The reduction of GO took place according to the 
Eqs 4 and 5. Any remaining Zn was dissolved by adding additional HCl before filtration:

+ → +Zn 2HCl ZnCl H (4)2 2

+ → +GO H rGO H O (5)2 2

Characterization of The Reduced Graphene Oxide.  The GO and r-GOs were analyzed using scanning 
electron microscope (SEM), energy-dispersive X-ray (EDAX), Elemental Analysis (EA), Raman Spectroscopy, 
Thermo Gravimetric Analysis (TGA), and Fourier Transform Infrared spectroscopy (FTIR). SEM analysis was 
carried out on a LEO 1530 VP instrument equipped with an energy-dispersive X-ray; TGA was performed on 
Pyris 1 system from Perkin-Elmer Corp., EA analysis was carried out by Perkin-Elmer 2400 Series II analyzer, and 
FTIR measurements were carried out in purified KBr pellets using a Perkin-Elmer (Spectrum One) instrument. 
TGA analysis was carryout by heating from 30 °C to 700 °C under a flow of air at 10 mL/min, at a heating rate of 
2 °C per min.

Stock solutions of GO and r-GOs were prepared by sonication. Pre-weighed amounts of the GO and r-GOs 
were added to MilliQ water to make a 40 mg/1 stock solution. Different GO and r-GO solutions were then pre-
pared by diluting the stock solution. Stock solutions containing 400 mM of sodium chloride and magnesium 
chloride were also prepared which were used for dispersibility studies. Dynamic Light Scattering (DLS) were 
carried out using 50 mg/1 dispersions of r-GO were measured as a function of salt concentration at 25°c using 
dynamic light scattering (Malvern Instruments Zetasizer Nano ZS90). The dynamic light scattering measure-
ments were conducted at 90° with the incident laser beam and the autocorrelation function having been allowed 
to accumulate for more than 10 s with salt concentration ranging between 0.5 mM and 200 mM. Zeta potential 
of the Graphene oxide was measured on 10 mg l-1 dispersions at 25° on the Malvern Instriments Zetasizer nano 
ZS90. Hydrophobicity of GO and r-GOs were determined by measuring the UV absorbance at 252 nm before and 
after partitioning in water extraction of a 50 mg l-1 dispersion of the GO with 1-octanol.

Conclusions
Controlled, step wise reduction of GO was carried out by nascent hydrogen generated from a reaction between 
metallic zinc and HCl. r-GOs containing 31, 19 and 9% oxygen were synthesized and studied. FTIR confirmed the 
reduction of GO while Raman and SEM showed increase in defects and wrinkles in r-GOs. Aqueous dispersibility 
and colloidal behavior as measured by size of agglomerates, zeta potential r-GO were highly dependent on oxygen 
content. Higher oxygen content led to higher CCC values in both NaCl and MgCl2.
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