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Extracting the Energy Sensitivity 
of Charge Carrier Transport and 
Scattering
Shuang Tang

It is a challenge to extract the energy sensitivity of charge carriers’ transport and scattering from 
experimental data, although a theoretical estimation in which the existing scattering mechanism(s) 
are preliminarily assumed can be easily done. To tackle this problem, we have developed a method to 
experimentally determine the energy sensitivities, which can then serve as an important statistical 
measurement to further understand the collective behaviors of multi-carrier transport systems. This 
method is validated using a graphene system at different temperatures. Further, we demonstrate the 
application of this method to other two-dimensional (2D) materials as a guide for future experimental 
work on the optimization of materials performance for electronic components, Peltier coolers, 
thermoelectricity generators, thermocouples, thermopiles, electrical converters and other conductivity 
and/or Seebeck-effect-related sensors.

The study of charge carrier transport focuses on the collective behaviors of electrons and holes in both real space 
and momentum space under external force fields, especially electrical fields. Quantum transport can be observed 
in single-electron devices1–6 and in highly ordered mesoscopic systems at cryogenic temperatures7–13, but the 
statistical transport behavior of multiple carriers for most material systems in modern applications must be 
described by diffusive models, such as the Boltzmann equations14–27.

Various scattering mechanisms may exist in diffusive transport10,28–37. Generally, the scattering strength and 
transport strength are inversely proportional to each other. By using an electrical conductivity (σ) matching 
method10,33,38–48 or observations of fast laser-assisted photon-electron interactions49–54, the average scattering time 
of carriers can be obtained and used to estimate the scattering strength. However, scattering and transport are also 
sensitive to the carrier energy. Therefore, if we can develop a method to extract the energy sensitivities of both 
carrier scattering and transport from experiments with real materials, we will have more instructive information 
on how to improve diffusive-transport-related applications in electronics, mechatronics and thermoelectronics.

The advancement of novel layered two-dimensional (2D) materials, including graphene41,42,55–65, transition 
metal dichalcogenide (TMD) layers66, and black phosphorene (BP)67–71, has provided a convenient testing plat-
form for developing an energy sensitivity extraction method. These materials have simple band structures, where 
only a single valley or a few degenerate valleys are involved in transport72–81. Further, the Fermi levels and carrier 
concentrations of these materials can be efficiently tuned67,70,82–96. The transport behavior of graphene carriers has 
been intensively studied10,33,38–48,97 and can serve as a reliable system for testing new methods. Most importantly, 
this new method could also be used to improve the fundamental understanding of TMD and BP layers.

In this paper, we first define the energy sensitivities of carrier scattering and carrier transport within the diffu-
sive transport regime. We then develop a new method to detect such energy sensitivities and test it in a graphene 
system at different temperatures. After that, we show how to use this method in other novel 2D material systems. 
Doing so will open a wide range of potential applications in transport-related research. For example, the method 
can provide information that can be used to analyze the major scattering sources in materials for conductivity 
improvement, to help engineer the types and concentrations of scattering centers to enhance the efficiency of 
Peltier cooling and/or thermoelectricity generating, and to help design various sensors, including thermocou-
ples98, thermopiles98, electrical converters99,100, vacuum sensors101,102, flow sensors103,104, radiation sensors105,106, 
and special chemical sensors107,108, using the Seebeck effect.
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Method
Within the diffusive transport regime, the relation between the carrier scattering and the transport, including 
the electrical conductivity (σ) and the Seebeck coefficient (S)35,109, can be described by the Boltzmann equations. 
Rigorous solutions that include the elastic and inelastic scatterings in both degenerate and non-degenerate cases 
can be obtained by iterative approaches, e.g., Rode’s method36,110–118 (See the supplementary materials for further 
explanations). It is well known that under the relaxation time approximation, the transport properties can gen-
erally be approximated as
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where q is the charge per carrier, T is the absolute temperature, kB is the Boltzmann constant, ε is the reduced 
carrier energy (i.e., ε = E/kBT), εf is the reduced Fermi level, f0 is the Fermi-Dirac distribution, and Ξ (ε), τ(ε), and 
D(ε) are the transport distribution, scattering time and electronic density of states as a function of ε31, respec-
tively. Further, v is the group velocity of the carriers, and the operator ⋅ ε stands for the mean value on the con-
stant energy surface. Here, ε∝

ε
v r2  and r = 0 (r = 1) for a linear (parabolic) band. ε ε∝D( ) l and l = 1 (l = 0) for 

a 2D linear (parabolic) band.
We can see that the transport properties are ultimately determined by the transport distribution Ξ (ε). Without 

loss of generality, the strength of transport at an arbitrary energy ε = ε0 can be characterized by θ = Ξ (ε0). The 
energy sensitivity of transport can then be characterized by
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Generally, the energy sensitivity s is a function of the carrier energy, temperature and carrier valley. For a sin-
gle carrier, it is a specific value, but for the collective behavior of multiple carriers, it is a statistical measurement 
of the whole system. These statistical measurements are commonly used for diffusive transport; e.g., the carrier 
mobility is a statistical measurement of how mobile the carriers behave under an electrical field. Similarly, the 
strength of scattering at an arbitrary ε = ε0 can be characterized by ξ = 1/τ(ε0), and the energy sensitivity of scat-
tering can be characterized by
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These two energy sensitivities (s and j) can be connected by Equation (3), e.g., s = j + 1, for a specific 2D band 
valley.

Intuitively, it is reasonable to expect that the same crowds of point defects will have weaker scattering effects 
(and, hence, stronger transport) to the higher energy carriers near a specific carrier pocket. The carrier energy 
sensitivity defined here can be then used to quantitatively evaluate the percent change in scattering/transport with 
respect to the percent change in carrier energy. This is unlike a traditional TEP model, where a presumed constant 
is used to simplify the model and calculations. Because TEP is not sensitive to transport data, the fit can generally 
be accepted; therefore, it does not provide a perspective on how the carriers’ scattering and transport in different 
systems react to changes in the carrier energy. As we will prove below, the concept of carrier energy sensitivity is 
not a presumed constant but a physical quantity that can vary with the carriers, systems and scattering mecha-
nisms. It is also sensitive to the maximum Seebeck coefficient and can therefore be detected with a relatively high 
accuracy and used to infer the scattering mechanisms.

The rigorous Seebeck coefficients can be calculated through iterative approaches, e.g., Rode’s method36,110–118. 
Therefore, both elastic and inelastic scattering can be considered based on Equations (S14) and (S15).

Through our theoretical derivations, we have found that for a given band structure, the Seebeck coefficients 
for a specific Fermi level (i.e., carrier concentration) increase monotonically with the energy sensitivity of trans-
port (s). Further, we have discovered that the maximum values of the Seebeck coefficients (Sm) form a near-linear 
relation with the energy sensitivity, i.e.,

≈
.
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where S0 is a band-structure-specified quantity. A software application to observe this relation in a general case is 
written using Matlab for this paper. These findings imply that once we have measured the Sm values of a system at 
a specific temperature, we can deduce the energy sensitivity of transport s (and, thus, the energy sensitivity of scat-
tering j) at this temperature. Generally, there will be only one local optimal Seebeck coefficient corresponding to 
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each band valley. Therefore, for a materials system with single- or degenerate-valley transport, such as 2D layered 
materials, the valley-specific energy sensitivity can be deduced directly. For a material with non-degenerate-valley 
transport, multiple local optimums of the Seebeck coefficient should be considered for the deduction. Once the 
energy sensitivity of transport (s) is measured with this method, the energy sensitivity of scattering (j) can be nat-
urally obtained. For a material with a single scattering channel, j is simply the channel-specific energy sensitivity. 
For a case with multiple scattering channels, j is the effective energy sensitivity that represents a weighted average 
of all existing channels, which is also a statistical measurement.

Method Validation
Now, we test this method in a graphene system. With the development of nanotechnology for device fabrication, 
the measurement of Seebeck coefficient (S) as a function of Fermi level is now available82–91. The carriers that con-
tribute to electronic transport come mainly from the two isotropic Dirac cones, whose apexes are near the Fermi 
level in the first Brillouin zone. The rigorous Seebeck coefficient can be calculated using the iterative approaches 
method36,110–118. Therefore, both the elastic and inelastic scatterings can be considered based on Equations (S14) 
and (S15). For convenience of calculation, we can first calculate a map of Sm as a function of s and γ = θh/θe for 
both the P- and N-type regimes. This Sm map will vary with temperature. We illustrated an example at T = 300 K 
in Fig. 1(a). Then, by matching the measured values of Sm to this map, we can obtain a single solution set for s and 
γ = θh/θe at each temperature. The Sm values of graphene at different temperatures have been measured in previous 
reports82–91. Using ref.84 as an example, where a graphene system on a SiO2 substrate is measured using a gated ther-
moelectric device with Fermi level tuning. The configuration used for the experimental setup is explained in Fig. 1 
of ref.84. Their data are summarized in Table 1. We then determined the values of the energy sensitivity of transport 
s and the asymmetry ratio γ = θh/θe at each temperature, according to Table 1. Our results are shown in Fig. 1(b).

From Fig. 1(b), we see that the energy sensitivity s changes significantly with temperature, which implies that 
the effective carrier scattering mechanism is very temperature-sensitive. When approaching the low temperature 
end, the energy-sensitivity behaves as s → 0, which implies that τ τ ε→ ∝− − D( ),1 1  and the scattering is nega-
tively sensitive to the energy of carriers. When approaching high temperatures end, the sensitivity behaves as 

Figure 1. The new method was validated using a graphene system. (a) Plots of the optimal Seebeck coefficient 
(Sm) of graphene are presented for both N-type and P-type regimes, as a function of energy sensitivity (s) 
and the asymmetry ratio of scattering strength θh/θe at 300 K. (b) The results of the energy sensitivity (s) and 
asymmetry ratio (θh/θe) of carrier scatterings near the band valley in graphene correspond to the data in Table 1.

Temperature (K) 300 150 80 40

P-type Sm (μV/K) 92.52 57.94 33.64 14.95

N-type Sm (μV/K) −59.81 −39.25 −24.30 −10.28

Table 1. Measured Optimal Seebeck Coefficient84 for the Graphene on a SiO2 substrate84.
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s → 1, which implies that τ tends to become constant over a different range of carrier energies. This information 
about τ(ε) can be explained by the scattering mechanism(s) of graphene carriers. In the low temperature range, 
the dominant scattering mechanisms should be acoustic phonon scattering and short-range disorder scattering, 
such as surface roughness119–121, point defects and vacancies122, that are intrinsically formed by the carbon atoms 
within the graphene sheet. For these scattering mechanisms, the scattering time τ(ε) will be inversely propor-
tional to the density of states D(ε)120,123. Equation (3) then suggests that s → 0. The small deviation of s from 0 
might be due to minor scattering mechanism(s) or may occur because the dispersion relation can be disturbed 
from linearity to a certain extent near the apex of Dirac cones124–126. At elevated temperatures, the inelastic scat-
tering due to the optical phonons becomes important. The scattering time for such inelastic scattering is usually 
constant over a range of carrier energies, i.e., j = 0, either by the rigorous solution or the relaxation time approxi-
mation of the Boltzmann equation, which is consistent with the results. On the other hand, at elevated tempera-
tures, the carrier scattering mechanism(s) induce higher values of j, which then become(s) important; e.g., 
thermal ripple scattering119,127–130 will have j = 2. This high-j scattering now coexists with and compensates for the 
low-j scatterings, e.g., the acoustic phonon scattering (j = −1), which makes the statistical j → 0, i.e., s → 1.

Another important trend is shown in Fig. 1(b), where the asymmetry ratio θh/θe increases with temperature, 
but the electrons and the holes are close to being symmetric at temperatures as low as 40 K. This is consistent with 
the previous report that electrons and holes are asymmetric when they transported in graphene-related sys-
tems131, even though they are symmetric in the dispersion relation. Furthermore, the scattering strengths for 
electrons and holes deduced from this new approach are ξ = . × −0 5 10 se

14 1 and ξ = . × −2 63 10 sh
13 1 at 300 K, 

respectively. Further, in our above calculations for graphene, we assume that the electronic transport comes from 
only the carriers near the apex of the Dirac cones, and ignoring the contributions from higher energy carriers. To 
evaluate how this deviates from reality, we compared the electrical conductivity data from the above model to 
experimental measurements at different temperatures, as shown in Fig. 2. Although we are now considering only 
the two band valleys of the Dirac cone, the modeled data are already quite consistent with the experimental meas-
urements. The deviations at higher energy occur because more bands are contributing to the transport.

Traditionally, Mott’s relation is used to model the Seebeck coefficient, where
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Figure 2. Comparison between the electrical conductivity (σ) data at (a) 300 K, (b) 150 K, (c) 80 K and (d) 40 K, 
as determined by the proposed model (blue lines) and experimental measurement (red circles)84. It can be seen 
that the model is generally quite consistent with the experimental data.
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which suggests that the Seebeck coefficient can be simply obtained from the electrical conductivity data. However, 
our theoretical derivation has noted that the Mott’s relation is only suitable to obtain Seebeck coefficients that are 
far from the optimal points. To further demonstrate this, we have compared the Seebeck coefficient values from 
the experiments, the Mott’s relation, and our proposed model, as shown in Fig. 3. In the graphene system, the 
proposed method is generally better than Mott’s relation for Seebeck data near the peak, and the advantage of the 
proposed method becomes increasingly obvious at lower temperatures.

Discussion
Now, we use the new method to study other layered 2D materials. TMD monolayers are another class of 2D 
materials73–81, where the transport involved band valleys at the K and K’ points are degenerate for the conduction 
side and valence side. The electrons and holes are parabolically dispersed at the band edges. Figure 4(a) shows the 
results for how the energy sensitivity of transport is derived from the optimal values of the Seebeck coefficient 
with our new method. The one-to-one correspondence and linear relation still hold for various TMD monolayer 
systems. BP is another novel layered 2D material with parabolically dispersed band edges located at the Γ point 
in the Brillouin zone70,132–135. Figure 4(b) shows how the energy sensitivity of transport can be solved from the 
optimal values of the Seebeck coefficient for a single layer of BP. Both the Γ-X and Γ-Y directions are exhibited 
for anisotropic transport in BP136–138. Details on modeling an anisotropic system are given in the supplementary 
materials and in ref.109.

Most of these novel layered 2D materials have single-valley scattering and are therefore an ideal starting point 
for this new method. For a band structure that involves multiple non-degenerate band valleys in transport, each 
valley will induce a peak or kink in the Seebeck coefficient vs. Fermi level curve. Therefore, to extend the new 
method to such a general system, the non-primary peaks or kinks of the Seebeck coefficient will be used to solve 
the values of energy sensitivity (s).

Further, we know that for ballistic transport139–142,
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Figure 3. Comparison of the Seebeck coefficient data from experimental measurements (dotted lines), the 
Mott’s relation (dashed lines) and the proposed model (solid lines). It can be seen that the proposed model is 
generally more accurate than Mott’s relation for data near the Seebeck peak, especially at lower temperatures.
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where T is the total transmission probability function. Equations (1) and (2) are exactly the same as Equations (8) 
and (9), except for the definitions of Ξ and T. Therefore, we can use Ξ as a broader function: Ξ serves as the trans-
port distribution function for diffusive channels and the total transmission probability for ballistic channels, and 
it can describe the combination of multiple mixed channels. Therefore, the energy sensitivity can be measured 
using this more general function, Ξ .

Conclusion
Based on our theoretical derivations and numerical validations, we have proposed that the optimum values of the 
Seebeck coefficient can be used as a new tool to extract the carrier energy sensitivity of transport and scattering 
from experimental data. This statistical measurement can provide us with deeper information to improve appli-
cations related to diffusive transfer in semiconducting and metallic materials. We have validated this new method 
using a graphene system at different temperatures. Then, we have shown how to use the validated method for 
other layered 2D materials, including various transition metal dichalcogenide layers and a black phosphorene 
layer. This will allow a wide range of potential applications in transport-related research, including electronic 
devices, Peltier coolers, thermoelectricity generators, thermocouples, thermopiles, electrical converters, and 
other sensors using the Seebeck effect, e.g., vacuum sensors, flow sensors, radiation sensors, and chemical sensors.
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