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Identification of pathways and 
genes associated with synovitis in 
osteoarthritis using bioinformatics 
analyses
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Jianping Lin2 & Jianning Zhao1

Synovitis in osteoarthritis (OA) is a very common condition. However, its underlying mechanism is 
still not well understood. This study aimed to explore the molecular mechanisms of synovitis in OA. 
The gene expression profile GSE82107 (downloaded from the Gene Expression Omnibus database) 
included 10 synovial tissues of the OA patients and 7 synovial tissues of healthy people. Subsequently, 
differentially expressed gene (DEG) analysis, GO (gene ontology) enrichment analysis, pathway 
analysis, pathway network analysis, and gene signal network analysis were performed using Gene-
Cloud of Biotechnology Information (GCBI). A total of 1,941 DEGs consisting of 1,471 upregulated genes 
and 470 downregulated genes were determined. Genes such as PSMG3, LRP12 MIA-RAB4B, ETHE1, 
SFXN1, DAZAP1, RABEP2, and C9orf16 were significantly regulated in synovitis of OA. In particular, 
the MAPK signalling pathway, apoptosis, and pathways in cancer played the most important roles in 
the pathway network. The relationships between these pathways were also analysed. Genes such as 
NRAS, SPHK2, FOS, CXCR4, PLD1, GNAI2, and PLA2G4F were strongly implicated in synovitis of OA. In 
summary, this study indicated that several molecular mechanisms were implicated in the development 
and progression of synovitis in OA, thus improving our understanding of OA and offering molecular 
targets for future therapeutic advances.

In terms of joint disease, osteoarthritis (OA) is the most common form of arthritis and is linked to a high rate of 
disability. Characterized by the degeneration and destruction of the arthrodial cartilage and hyperosteogeny, the 
predilection age group of OA is middle age1. It is well established that OA is not only a single cartilage lesion but 
also a lesion involving the entire articular cartilage, subchondral bone, and synovial membrane2,3.

For a long time, researchers who studied the pathogenesis mechanism of OA have focused on the pathological 
changes of articular cartilage and chondrocytes and have not paid much attention to the inflammatory changes 
of the synovium4,5. In particular, they even consider synovial inflammation a secondary change in the pathogen-
esis of osteoarthritis6. In addition, the intensity of research in recent years has revealed that the inflammatory 
mediators produced by synovial inflammation of joints can act not only on articular cartilage but also on some 
cytokines and proteases that regulate the metabolism of articular cartilage7. On the one hand, synovial inflamma-
tion leads to changes in articular cartilage structures and destroys and degrades the cartilage matrix. On the other 
hand, synovial inflammation exerts a physicochemical action on some cytokines and proteases, accelerating the 
process of joint degeneration8.

In OA, the synovium, which is the tissue that lines the joint capsule, frequently reveals inflammation signs, 
such as those of macrophages that infiltrate the synovium. Pro-inflammatory cytokines such as TNFα and 
IL1β are produced by these macrophages, activating fibroblast-like synoviocytes to release matrix-degrading 
enzymes and extra cytokines (IL8, IL6)9. These enzymes and cytokines impair the articular cartilage, leading to 
the discharge of damage-associated molecular patterns that also have pro-inflammatory functions, producing a 
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perpetuating loop that causes chronic low-grade inflammation10,11. This inflammation is indicated to contribute 
to disease progression and disease phenotype12. Studying the fundamental pathological processes in the OA syn-
ovium would help in obtaining a treatment for this disease.

In the present study, we downloaded the microarray data of accession number GSE82107, which included 10 
synovial tissues of osteoarthritis patients (OA) and 7 synovial tissues of healthy controls (HC)13. Then, we identi-
fied the differentially expressed genes (DEGs) between OA and HC samples to explore the molecular mechanisms 
of synovitis in osteoarthritis. In addition, we performed GO enrichment analysis, pathway analysis, pathway 
network analysis, and gene signal network analysis. This study findings may play significant roles in the genesis of 
OA and may serve as potential biomarkers in both the prognosis and diagnosis of OA.

Results
DEG identification. The identification of DEGs is a statistical method of screening high-throughput genetic 
data and selecting genes with significant differences between samples14. The significance of DEG identification 
is Q < 0.05, P < 0.05 and a fold change >1.2. After data preprocessing, a total of 1,941 genes were determined 
to be differentially expressed in the OA samples compared to the HC samples. Among these DEGs, 470 genes 
were downregulated, and 1,471 were upregulated. The result is displayed in the volcano plot and the dendrogram 
(Fig. 1). The top 13 genes with the most significant expression were PSMG3, LRP12, unnamed, MIA-RAB4B, 
ETHE1, SFXN1, DAZAP1, RABEP2, C9orf16, HEMK1, SAC3D1, EIFIAD, and PSPC1 (Table 1).

Results of the GO enrichment analysis. In this paper, the GO enrichment analysis using the GCBI 
platform formed the basis for the obtained DEGs. By studying the enrichment degree of GO terms in the sta-
tistical analysis of DEGs, the biological processes that are most likely to be related to the DEGs were calcu-
lated, including the p-value and the FDR value of the GO term of the DEG. For the significance of the GO 
enrichment analysis, biological processes with P < 0.05 and FDR < 0.05 were selected as statistically significant 
biological processes. We developed enrichment analysis and significance analysis diagrams based on the GO 
enrichment analysis. After a comprehensive analysis, the top 10 biological processes were summarized, including: 
transcription DNA-dependent, protein transport, small molecule metabolic process, regulation of transcription, 
DNA-dependent, blood coagulation, cellular protein metabolic process, apoptotic process, negative regulation 
of transcription, DNA-dependent, gene expression, and small GTPase mediated signal transduction (Table 2).

Results of the pathway analysis and pathway network analysis. Through the pathway analysis 
of the DEGs, we can determine pathway items of the enriched DEGs and identify the cell pathway changes that 
may be related to the DEGs of different samples. Pathways with P < 0.05 were selected as statistically significant 
pathways. The pathway network analysis was used to analyse the signal transduction between significant path-
ways, which was found by the pathway analysis. In the network, the signalling pathway had more interactions, 
and therefore, it was more important. We identified a total of 117 pathways that were differentially regulated. 
These pathways included metabolic processes, lysosome, p53 signalling, viral carcinogenesis, Hepatitis B, HTLV-I 
infection, Vibrio cholerae infection, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, protein processing 
in endoplasmic reticulum, and N-Glycan biosynthesis. In the pathway network analysis, a total of 56 pathways, 
including 37 upregulated pathways and 19 up/downregulated pathways, were identified. We identified 156 rela-
tionships between all determined pathways (Fig. 2). In the pathway relation network analysis (Table 3), there 

Figure 1. (A) The volcano plot. Orange represents DEGs; the downregulated DEGs are on the left side of 
the midline, and the upregulated DEGs are on the right. OA represents osteoarthritis patients; HC represents 
healthy controls. (B) The dendrogram. Profiles of DEGs in synovitis of OA. Data of mRNA were clustered using 
GCBI (P < 0.05). In total, 1941 DEGs were determined compared to the HC group (yellow). The OA group is 
blue, and the HC group is yellow.
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were 10 pathways with a degree score ≥10, including the MAPK signalling pathway (degree score = 33, pathway 
feature: up and down), apoptosis (degree score = 25, pathway feature: only up) and cancer pathways (degree 
score = 23, pathway feature: up and down).

These results indicated that the degree values of the MAPK signalling pathway, apoptosis, and cancer path-
ways were the highest. The nature of their relationships remains unknown. Based on the information listed in the 
GCBI, the cancer pathways were upstream of the MAPK signalling pathway, which was in turn upstream of the 
apoptosis pathway. In other words, the pathways downstream of the cancer signalling pathways were the apop-
tosis and MAPK signalling pathways, while the pathways upstream of the apoptosis signalling pathway were the 
cancer and MAPK signalling pathways.

Results of gene signal network analysis. The gene signal network analysis constructs the network of 
gene interactions, based on the interaction between the proteins and the proteins in KEGG database. In the gene 
signal network analysis, a total of 257 hub nodes (hub genes), including 246 upregulated genes and 11 downreg-
ulated genes, were identified. In addition, there were 337 relationships between all identified genes (Fig. 3). The 
top 15 hub nodes with a higher betweenness centrality value were screened. These hub genes included NRAS, 
SPHK2, FOS, CXCR4, PLD1, GNAI2, PLA2G4F, PIK3R2, PRKCA, ASAH1, CCL5, CCL3, UGCG, RELA, and 
ITGB5 (Table 4). We subsequently selected the top seven hub genes and analysed the upstream and downstream 
relationships between them (Fig. 4).

Discussion
OA is a chronic joint disease characterized by degeneration of articular cartilage and hyperosteogeny. OA inflam-
matory synovitis of the knee has been considered a secondary reaction to the stimulation of articular cartilage 
remnants and debris and is the main cause of joint swelling and joint pain15. However, recent studies have shown 
that a separate relationship exists between the degree of OA synovitis and the stimulation of articular cartilage 
remnants and debris, for which the cause is unknown. The results of OA arthroscopic synovial tissue examination 
of moderate-to-severe knee joint OA have also shown that there are pathological changes in synovium, which are 
not simply secondary reactions. OA synovitis may be caused by many unexplained factors, and the stimulation 
of articular cartilage remnants and debris is only one of the mechanisms that cause knee OA clinical symptoms. 
In the late stage of OA, the synovium in the articular cavity has been stimulated for a long time, showing villous 
hyperplasia and an erosion of the articular cartilage surface, destroying cartilage and bone, which accelerates the 
progression of the disease and worsens the symptoms16. Therefore, the clarification of signalling pathways and 

Gene symbol Gene Description P-value Gene feature Rank

PSMG3 Proteasome (prosome, macropain) assembly chaperone 3 1.9e-05 up 1

LRP12 Low density lipoprotein receptor-related protein 12 2e-05 up 2

— unnamed 2.3e-05 down 3

MIA-RAB4B MIA-RAB4B readthrough (NMD candidate) 2.3e-05 up 4

ETHE1 ethylmalonic encephalopathy 1 2.5e-05 up 5

SFXN1 sideroflexin 1 2.7e-05 up 6

DAZAP1 DAZ associated protein 1 2.9e-05 up 7

RABEP2 rabaptin, RAB GTPase binding effector protein 2 3e-05 up 8

C9orf16 chromosome 9 open reading frame 16 3.1e-05 up 9

HEMK1 HemK methyltransferase family member 1 3.1e-05 up 10

SAC3D1 SAC3 domain containing 1 3.2e-05 up 11

EIF1AD eukaryotic translation initiation factor 1A domain containing 3.2e-05 up 12

PSPC1 paraspeckle component 1 3.3e-05 down 13

Table 1. Top 13 genes with the most significant expression.

BP name Enrichment score P-value FDR Rank

transcription, DNA-dependent 2.67 5.23e-33 1.62e-29 1

protein transport 4.50 1.17e-23 1.82e-20 2

small molecule metabolic process 2.56 5.92e-22 6.12e-19 3

regulation of transcription, DNA-dependent 2.57 3.18e-21 2.47e-18 4

blood coagulation 3.52 6.8e-17 4.22e-14 5

cellular protein metabolic process 3.34 1.54e-16 7.95e-14 6

apoptotic process 2.88 1.07e-14 4.73e-12 7

negative regulation of transcription, DNA-dependent 3.24 1.42e-13 5.51e-11 8

gene expression 2.74 2.94e-13 1.01e-10 9

small GTPase mediated signal transduction 3.49 2.66e-12 8.24e-10 10

Table 2. The top 10 biological processes of the gene ontology analysis. FDR, false discovery rate.
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signal molecules that abnormally change in OA synovial cells is of great theoretical significance and informs clin-
ical guidance for an in-depth understanding of the occurrence and development of OA and the role of synovial 
cells in this process.

We screened the DEGs implicated in the development of synovitis in OA using bioinformatics analysis, in 
an attempt to reveal the pathogenesis of synovitis. The results indicated that thousands of genes in OA synovial 
tissues have undergone molecular biological changes, with a total of 1,941 DEGs determined, including 1,471 
upregulated and 470 downregulated genes, compared with normal synovial tissues. The results also indicated that 
the number of the upregulated genes was significantly higher than the downregulated genes, indicating that the 
upregulation of OA synovial lesions was dominant, accounting for 75.79%. We further screened 13 genes with the 
most significant expression changes, namely, PSMG3, LRP12, unnamed, MIA-RAB4B, ETHE1, SFXN1, DAZAP1, 
RABEP2, C9orf16, HEMK1, SAC3D1, EIFIAD, and PSPC1. Among these, PSMG3 exhibited the highest expres-
sion (gene ID: 84262; updated on July 15, 2015; gene type: protein-coding; species: Homo sapiens; alias: C7orf48 
or PAC3; other sources: Ensemble: ENSG 00000157778, HPRD: 14404, and Vega: OTTHUMG00000119043; 
related diseases: neoplasms, autistic disorder, fibrosis, growth disorders, liver diseases, shock; related IncRNA: 
LINC01561 and ZRANB2-AS2; targeted miRNA: hsa-miR-92a-3p). The expression of PSMG3 has been reported 
to be upregulated in a variety of cancer tissues17–20. Our results indicated that the expression of PSMG3 was also 
upregulated in the OA synovial tissues, highlighting the tumour-like properties of the OA synovial tissue.

The GO enrichment analysis revealed that the DEGs were mainly involved in pathways related to transcrip-
tion DNA-dependent, protein transport, small molecule metabolic process, regulation of DNA-dependent 
transcription, blood coagulation, cellular protein metabolic process, apoptotic process, negative regulation of 
DNA-dependent transcription, gene expression, and small GTPase mediated signal transduction. These results 
confirmed that the pathogenesis of synovitis in osteoarthritis is the result of multiple factors and genes that, 
directly or indirectly, lead to the occurrence and development of synovitis in osteoarthritis through mutual gene 
and network regulation. In the present study, we were particularly interested in the apoptotic process (Accession 
GO:0006915). Apoptosis is a common physiological and pathological phenomenon in the process of biologi-
cal growth and development. It is the process of self-destruction of living tissue cells that is regulated by genes 

Figure 2. The constructed interaction network of pathways. The dots represent the pathway, and the size is 
represented by the degree value (the greater the value is, the more important the pathway is). Red represents 
upregulation, blue represents downregulation, and yellow represents both upregulation and downregulation. 
Arrows represent the relationship between upstream and downstream.

Pathway name Outdegree Indegree Degree Pathway feature

MAPK signalling pathway 5 28 33 up|down

Apoptosis 3 22 25 up

Pathways in cancer 23 0 23 up|down

Cell cycle 3 19 22 up

p53 signalling pathway 2 16 18 up|down

Wnt signalling pathway 6 8 14 up

Focal adhesion 7 6 13 up|down

ErbB signalling pathway 6 6 12 up

Cytokine-cytokine receptor interaction 0 12 12 up|down

Jak-STAT signalling pathway 5 5 10 up|down

Table 3. The top 10 degree scores of the analysis methodology of the pathway relation network. Greater degree 
values indicate pathways with greater importance.
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or other factors. Apoptosis is implicated in various pathological functions, including autoimmune diseases, 
viral infections, occurrence and regression of malignant tumours, and cardiovascular and cerebrovascular dis-
eases. Our present results indicated a specifically high regulation of the apoptotic process in the OA synovial 
tissue. Based on this result, we suggest that the development of synovitis of OA is related to autoimmunity and 
tumour-like lesions21. Further research is still needed to validate our findings.

In the pathway network analysis, the MAPK, apoptosis, and cancer signalling pathways are the three path-
ways with the highest degree value, showing that these signalling pathways may play the most important role in 
osteoarthritis synovitis. Among them, the MAPK pathway is the most important signal transduction system that 
mediates osteoarthritis cartilage injury, which binds to receptors on the cell membrane by mainly utilizing the 
specificity of affected joints, inflammatory factors (such as IL-1 and TNF-α), growth factors, and activating intra-
cellular MAPKs signal transduction pathways, causing a series of reactions, such as the increased expression of 
matrix MMPs (MMP-1, MMP-3, MMP-13), chondrocyte apoptosis, cartilage destruction and so on22. Our study 
also suggests that the MAPK pathway also plays an important role in osteoarthritis synovitis. We hypothesized 
that MAPK-related protein kinase inhibitors not only protect the OA cartilage but also play an important role 
in the control of synovitis. The procedure of apoptosis is extremely complicated; it is a significant mechanism 
that regulates the normal development of the body and is involved in a series of regulatory factors that play an 

Figure 3. The constructed interaction network of genes. The dots represent hub genes, and the size represents 
the betweenness centrality value (the greater the value is, the more important the gene is). Red represents 
upregulation and blue represents downregulation. Arrows represent the relationship between upstream and 
downstream.

Gene symbol Gene feature Gene Description Betweenness

NRAS up neuroblastoma RAS viral (v-ras) oncogene homolog 2509.5

SPHK2 up sphingosine kinase 2 2509

FOS up FBJ murine osteosarcoma viral oncogene homolog 2478.83

CXCR4 up chemokine (C-X-C motif) receptor 4 2313.33

PLD1 up phospholipase D1, phosphatidylcholine-specific 2168.5

GNAI2 up guanine nucleotide binding protein (G protein), alpha 
inhibiting activity polypeptide 2 1767.17

PLA2G4F down phospholipase A2, group IVF 1693

PIK3R2 up phosphoinositide-3-kinase, regulatory subunit 2 (beta) 1375

PRKCA up protein kinase C, alpha 1328

ASAH1 up N-acylsphingosine amidohydrolase (acid ceramidase) 1 1260

CCL5 up chemokine (C-C motif) ligand 5 1116.67

CCL3 up chemokine (C-C motif) ligand 3 1057.67

UGCG up UDP-glucose ceramide glucosyltransferase 1008

RELA up v-rel avian reticuloendotheliosis viral oncogene homologue A 999

ITGB5 up integrin, beta 5 969

Table 4. The top 15 betweenness centrality values of the gene signal network analysis. Greater betweenness 
values indicate genes with greater importance.
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important role in maintaining cell homeostasis. The occurrence, development, and treatment of tumours are also 
regulated by many apoptosis regulating proteins23,24. Our results indicated that the apoptosis signalling pathway 
was upregulated in the OA synovial tissue, suggesting that apoptosis is implicated in OA synovial lesions and may 
also promote cartilage cells apoptosis. In addition, we also found a high regulation of cancer signalling pathways 
in the synovial tissues, which corroborates our notion that OA synovial tissue lesions have tumour-like properties.

In the gene signal network analysis, we selected the 15 most important genes, which played a key role in OA 
synovial lesions, for further analysis. It was essential to reveal the molecular biological mechanism in synovial 
lesions of OA and even in OA alone. These genes were implicated in the MAPK signalling pathway, cancer sig-
nalling pathways, Wnt signalling pathway, and cytokine-cytokine receptor interaction, among others. The results 
were basically the same as those from the pathway network analysis. The biological processes involved were 
protein transport, small molecule metabolic process, blood coagulation, cellular protein metabolic process, and 
apoptotic process, among others and were consistent with the GO functional analysis. The gene NRAS is an N-ras 
oncogene encoding a membrane protein that shuttles between the Golgi apparatus and the plasma membrane. 
This shuttling is regulated through palmitoylation and depalmitoylation by the ZDHHC9-GOLGA7 complex. 
The encoded protein, which has an intrinsic GTPase activity, is activated by a guanine nucleotide-exchange factor 
and inactivated by a GTPase activating protein. Mutations in this gene have been associated with somatic rectal 
cancer, follicular thyroid cancer, autoimmune lymphoproliferative syndrome, Noonan syndrome, and juvenile 
myelomonocytic leukaemia. In the present study, we found that NRAS played an important role in synovitis in 
OA. Thus, further research is warranted to elucidate the exact effect of NRAS in the OA synovium. The FOS gene 
is an immediate early gene. When it is stimulated, the FOS gene in the nucleus is activated and FOS protein is syn-
thesized. After phosphorylation, FOS protein returns to the nucleus and forms a complex transcription activator 
protein 1 with the jun protein, encoded by another family of proto-oncogene c-jun, which binds to the target gene 
TPA response element to activate transcription. Due to its target gene diversity, transcription activator protein 1 
is closely related to the important physiological processes of cells, inflammation and other diseases. FOS not only 
has an important influence on the proliferation and differentiation of chondrocytes but is also strongly associ-
ated with cartilage inflammation. FOS acts as an important messenger in the process of cartilage inflammation, 
which mediates the inflammatory response of the interleukin family (such as interleukin 17 and interleukin 1β), 
calcium-containing crystals, and mechanical stimulation25. Our research suggests that the FOS gene plays a key 
role in the synovitis of osteoarthritis, and the NRAS gene indirectly acts on FOS, which provides the theoretical 
basis and ideas for further experimental study.

The high-throughput and high-sensitivity detection of the gene chip is a double-edged sword. In practice, 
the gene expression profiles of animal tissues and cells are not homogenous. There are certain variations among 
different individuals or cell lines, and the expression profile is also highly susceptible to changes in experimental 
conditions. Small differences in RNA extraction and cDNA reverse transcription and other steps often cause 
changes in the expression of different genes, which may make it difficult to determine the biological significance 
of a large number of genes with positive changes in the microarray assay. On the other hand, actual chip probe 
hybridization often produces a large number of false positives and false negatives. For the accuracy of single gene 
determination, the high-throughput microarray is not as accurate as a low-throughput Northern blot, real-time 
PCR and other technologies. It should also be noted that the other limitation of the application of microarrays 
is that the changes in determined mRNA levels are only intermediate products of gene expression and are not 
functional proteins, which are far from directly explaining the mechanisms that functional proteins are mainly 
involved with in a variety of physiological and pathological changes at the cell and tissue level. Moreover, even if 
the microarray profile shows different genes with significant changes and the causal relationship among them, the 
exact judgement cannot rely solely on the microarray technology, and it needs further study using corresponding 

Figure 4. The dots represent genes, and the size represents the degree value (the greater the value is, the more 
important the pathway is). Red represents upregulation and blue represents downregulation. Arrows represent 
the relationship between upstream and downstream. The dotted line indicates the indirect action.
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experimental techniques26. Therefore, DNA microarrays should be mainly positioned to use the high-throughput 
approach to observe the overall genome changes under specific experimental conditions to determine effective 
clues from the complex expression profile to develop the qualitative experiments for further study. It should also 
be noted that compared with single or few gene expression detected by traditional molecular biology techniques, 
the specific mRNA expression patterns of expression profiles observed in microarrays can reflect and predict the 
corresponding biological mechanisms more comprehensively. Before the popularization of proteome technology, 
DNA microarray technology was the most effective method for studying gene expression at the genome level27.

In summary, our present study provided a comprehensive bioinformatics analysis of DEGs, biological pro-
cesses terms, hub genes, and pathways, which might be associated with OA synovial inflammation. The present 
results could facilitate improving our comprehension of the underlying molecular mechanisms of OA synovial 
inflammation. Genes such as NRAS, SPHK2, FOS, CXCR4, PLD1, GNAI2, and PLA2G4F, and their related bio-
logical process terms and pathways, such as apoptosis, MAPK signalling pathway, and cancer signalling pathways, 
may represent potential targets for OA treatment and diagnosis. In the present data analysis, the sample size was 
small, and the samples were selected from one platform. This may result in a high rate of false positive results. 
Additional experimental and genetic studies with a larger sample size are still guaranteed to confirm our present 
findings.

Methods
Gene-Cloud of Biotechnology Information (GCBI). GCBI (Shanghai, China, https://www.gcbi.com.cn) 
is a platform combining various kinds of sample information, genetic information, research findings, data algo-
rithms and bioinformatics to generate a “gene knowleDEG base”, which encompasses biology, mathematics, infor-
matics, medicine, computer science, graphics and other disciplines. Over 120 million copies of genomic samples, 
approximately 90,000 copies of tumour samples and over 17 million copies of genetic information are included in 
the GCBI platform28–32. In this study, we used GCBI to identify DEGs between OA and HC samples and perform 
GO enrichment analysis, pathway analysis, pathway network analysis, and gene signal network analysis.

Affymetrix microarray data. In the National Centre of Biotechnology Information (NCBI) Gene 
Expression Omnibus database (GEO, http://www.ncbi.nlm.nih.gov/geo/), the key words of “Synovial biopsies 
of osteoarthritis patients” were used, and the gene chip data sets GSE82107 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc = GSE82107), which were submitted by Broeren, et al. on June 1, 2016, were obtained. 
GSE82107, which contained a total of 17 samples, including 10 synovial tissues of OA and 7 synovial tissues 
of HC, was based on the platform of GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 
Array13. For microarray analysis, synovial samples were obtained by surgery or via fine-needle arthroscopy from 
10 OA patients and 7 controls.

Design of the analysis process. Sample gene chip information was input to the Gene-Cloud of 
Biotechnology Information (GCBI) analysis platform (https://www.gcbi.com.cn/gclib/html/index) for data anal-
ysis. First, the 17 samples were divided into 10 OA cases (OA group) and seven control cases (HC group). Second, 
the differentially expressed genes (DEGs) were identified. Subsequently, we performed GO enrichment analysis, 
pathway analysis, and gene signal network analysis. Finally, pathway network analysis was performed based on 
the results of the pathway analysis. The flow diagram of our study design is shown in Fig. 5.

Figure 5. Flow diagram of the study design.

https://www.gcbi.com.cn
http://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE82107
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE82107
https://www.gcbi.com.cn/gclib/html/index
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Identification of DEGs. A data stability test was performed on the microarray data of GSE82107 using 
the GCBI platform, and the microarray data of GSE82107 was filtered by two independent samples (Q < 0.05, 
P < 0.05, fold change >1.2) to screen out the difference between OA samples and HC samples’ expression of 
genes.

GO enrichment analysis and pathway analysis. GO, the abbreviation of gene ontology, is a tool that 
unifies biology by collecting structured, defined and controlled vocabulary for a large scale of genes annotation. 
Through GO enrichment analysis, it is possible to understand the biological functions of differential gene enrich-
ments33. Pathway refers to metabolic pathways. Pathway analysis of DEGs can be used to understand the signif-
icantly altered metabolic pathways under experimental conditions and is particularly important in mechanistic 
studies34. We performed GO enrichment analysis (P < 0.05, FDR < 0.05) and pathway analyses (P < 0.05) of the 
DEGs using the GCBI platform.

Pathway network analysis and gene signal network analysis. Pathway network analysis is based 
on the upstream and downstream relationship of signal pathways in the KEGG database, and the interaction 
network diagram of pathway research is constructed. The pathway network analysis can help to determine the 
pathway that has a regulating effect on the top stream and on the lowest stream at the same time. By comprehend-
ing the relationship between pathways, a deeper understanding of signal pathways can be ascertained35. A large 
number of studies have shown that the expression of genes is affected by each other. This interactive and mutually 
restrictive relationship constitutes a complex network of gene expression and regulation. The gene signal network 
deconstructs the KEGG database, which breaks through the limit of acquiring the interactions of between genes 
in a single pathway. Therefore, a gene signal network can obtain a protein’s upstream or downstream proteins 
through the entire KEGG pathway database36. We performed pathway network analysis and gene signal network 
analysis to determine hub pathways and genes using the GCBI platform.
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