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The Role of PET-Based Radiomic 
Features in Predicting Local Control 
of Esophageal Cancer Treated with 
Concurrent Chemoradiotherapy
Junfeng Xiong1, Wen Yu2, Jingchen Ma1, Yacheng Ren1, Xiaolong Fu2 & Jun Zhao1

This study was designed to evaluate the predictive performance of 18F-fluorodeoxyglucose positron 
emission tomography (PET)-based radiomic features for local control of esophageal cancer treated 
with concurrent chemoradiotherapy (CRT). For each of the 30 patients enrolled, 440 radiomic features 
were extracted from both pre-CRT and mid-CRT PET images. The top 25 features with the highest areas 
under the receiver operating characteristic curve for identifying local control status were selected as 
discriminative features. Four machine-learning methods, random forest (RF), support vector machine, 
logistic regression, and extreme learning machine, were used to build predictive models with clinical 
features, radiomic features or a combination of both. An RF model incorporating both clinical and 
radiomic features achieved the best predictive performance, with an accuracy of 93.3%, a specificity 
of 95.7%, and a sensitivity of 85.7%. Based on risk scores of local failure predicted by this model, the 
2-year local control rate and PFS rate were 100.0% (95% CI 100.0–100.0%) and 52.2% (31.8–72.6%) in 
the low-risk group and 14.3% (0.0–40.2%) and 0.0% (0.0–40.2%) in the high-risk group, respectively. 
This model may have the potential to stratify patients with different risks of local failure after CRT for 
esophageal cancer, which may facilitate the delivery of personalized treatment.

Esophageal cancer is the sixth most common cause of cancer-related death worldwide1. China has a particularly 
high rate of esophageal cancer, with the highest prevalence and mortality rates in the world, especially for esoph-
ageal squamous cell carcinoma (ESCC). Concurrent chemoradiotherapy (CRT) has become the current standard 
treatment for locally advanced esophageal cancer since RTOG 85-01. However, even with the current treatment, 
the prognosis for patients with unresectable esophageal cancer is poor, and local failure after definitive CRT 
continues to follow the primary failure pattern2. Future therapeutic strategies should focus on enhancing local 
control, and potential factors that could predict the risk of local failure may help physicians deliver personalized 
treatment to patients with different risks. For example, radiation dose escalation could be delivered to those with 
a higher risk of local relapse.

In addition to the frequently used patient-based clinical factors, including TNM stage and tumor size, 
18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) image-derived parameters, such as the 
Standardized Uptake Value (SUV), metabolic tumor volume (MTV), and total lesion glycolysis (TLG), have been 
reported to be useful in predicting the pathological response to neoadjuvant CRT or determining the prognosis 
of patients with esophageal cancer3–15. However, predicting treatment outcomes with a single traditional feature, 
usually correlated with SUVmax or SUVmean, has two considerable limitations: 1) Tumors show significant hetero-
geneity in both the range and spatial distribution of 18F-FDG uptake5,6,8, which cannot be represented by a single 
point (SUVmax) or a mean value (SUVmean); and 2) the noise of the PET image may result in inaccurate estimation 
of a single point7. Therefore, to improve the prediction accuracy, it is necessary to explore additional features to 
describe the heterogeneity within a tumor and determine the underlying correlation between these features and 
treatment outcomes.

1School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China. 2Department of Radiation 
Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China. Junfeng Xiong and Wen Yu 
contributed equally to this work. Correspondence and requests for materials should be addressed to J.Z. (email: 
junzhao@sjtu.edu.cn)

Received: 17 May 2017

Accepted: 19 June 2018

Published: xx xx xxxx

OPEN

mailto:junzhao@sjtu.edu.cn


www.nature.com/scientificreports/

2SCiEnTifiC REPORTs |  (2018) 8:9902  | DOI:10.1038/s41598-018-28243-x

In recent years, radiomics analysis has been widely studied in lung, breast, prostate, and head-and-neck can-
cer16–22 as a tool that converts medical images into mineable data by the high-throughput extraction of quanti-
tative features, which may potentially improve diagnostic, prognostic, and predictive accuracy. Therefore, we 
hypothesized that radiomic features could help in predicting treatment outcomes in patients with esophageal 
cancer.

In the present study, we proposed and compared models of 18F-FDG PET-based radiomic features with or 
without clinical features using four machine-learning methods [random forest (RF)23,24, support vector machine 
(SVM)25, logical regression (LR), and extreme learning machine (ELM)26] to predict local control in patients with 
esophageal cancer treated with CRT.

Related Works
Recently, radiomics analysis has been widely used in diagnosis and treatment response prediction. Lambin et al.11  
described radiomics as a bridge between medical imaging and personalized medicine. Fehr et al.12 proposed 
using MRI-based texture features to automatically classify prostate cancer using Gleason scores. Coroller et al.13 
found radiomic phenotype features were predictive for pathological response in non-small cell lung cancer. 
Maforo et al.16 investigated computer-extracted tumor phenotypes by using radiomic features extracted from 
diffusion-weighted imaging. Aerts et al.19 used the radiomics approach to decode tumor phenotypes by non-
invasive imaging. Zhao et al.5 reported that intratumoral 18F-FDG distribution corresponds well to the expres-
sion levels of Glut-1, Glut-3, and HK-II. Tixier F. et al.6 proposed several textural features to predict the therapy 
response in esophageal cancer and demonstrated that these features of tumor metabolic distribution allowed 
the best stratification of esophageal carcinoma patients in the context of therapy response prediction. Tan et al.8 
tried to use spatial-temporal 18F-FDG-PET features to predict the pathologic response of esophageal cancer to 
neoadjuvant chemoradiation therapy. Moreover, many studies have focused on the changes in radiomics features 
(delta-radiomics features), and found their potential prognostic value in cancer. Fave et al.14 reported that the 
delta-radiomics features calculated from CT images can be used to predict the patient outcomes in non-small cell 
lung cancer. Cunliffe et al.15 utilized delta-radiomics features to identify patients who would develop radiation 
pneumonitis during treatment in esophageal cancer.

Many machine-learning methods can be used to identify the radiomic features predicting the local control 
status, such as RF, SVM, LR, and ELM23,25,26. The RF classification method is robust against overfitting and con-
tains several decision trees. Each decision tree generates a prediction and the final result is determined by accu-
mulating the votes of all decision trees. The SVM model uses an RBF kernel to map training samples into a 
high-dimensional space, and aims to find a hyper-plane that can linearly separate the two classes (local control 
and local failure) by the widest margin. The LR model first uses a logit function to transform training samples 
to make the corresponding output values fall within a range (usually [0–1]). Then, a linear function is used to 
approximate the transformed samples. ELMs are feedforward neural networks for classification and regression 
with a single layer or multiple layers of hidden nodes, and the parameters of the hidden nodes does not need to 
be tuned.

Materials and Methods
Patient Population. This study comprised 30 ESCC patients who were prospectively included in a clinical 
trial (NCT01843049) and were treated with definitive concurrent CRT between April 2012 and June 201527. The 
study was approved by the local institutional review board at Shanghai Chest Hospital, Shanghai, China. All 
patients were required to provide informed consent at the time of enrollment. We confirmed that all methods 
were performed in accordance with the relevant guidelines and regulations.

PET Imaging. Patients underwent PET/CT scans both before CRT (pre-CRT) and after receiving 20 frac-
tions of radiation doses (mid-CRT). PET/CT scans were obtained with a BIOGRAPH 16HR (Siemens Molecular 
Imaging, Knoxville, TN) with an axial field of view of 16.2 cm. All images were composed of 128 × 128 pixels 
with voxel dimensions of 4 × 4 × 4 mm. Patients fasted for at least 6 h before the administration of 0.2 mCi/kg 
or 7.4 MBq/kg body weight of 18F-FDG, which was produced onsite using Siemens Cyclotron (Eclipse ST 111, 
Siemens/CTI, Knoxville, TN), and they then rested for approximately 60 (range, 55–75) minutes before the PET 
scan. The 16-slice CT process was performed for attenuation correction with an X-ray tube voltage and current 
peak of 120 kV and 120 mA, respectively, a slice thickness of 5 mm, and a spacing of 4 mm. The images were 
reconstructed using a three-dimensional ordered subset expectation maximization algorithm and attenuation 
correction derived from the CT data.

Treatment and Follow-Up. All patients were treated with definitive concurrent CRT. The definition and 
dose prescription of radiotherapy target volumes and dose constraints to the organs at risk followed the protocol 
of our previous study on dose escalation27.

Patients received 2 cycles of concurrent chemotherapy (cisplatin 25 mg/m2 IV daily on days 1–3 and 29–31 
plus 5-Fluorouracil (5-FU) 500 mg/m2 IV daily via continuous infusion over 24 h on days 1–4 and 29–32) dur-
ing the radiotherapy period. Consolidation chemotherapy (cisplatin 25 mg/m2 IV daily on days 1–3 plus 5-FU 
600 mg/m2 IV daily on days 1–5, cycled every 4 weeks) was given for 2 cycles 1 month after the end of concurrent 
CRT.

Follow-up evaluations were performed 1 month after the completion of all treatments, then every 3 months 
for 2 years and then every 6 months thereafter. Each evaluation included a physical examination, a blood test, 
barium esophagram, CT scan of the neck and chest, and abdominal ultrasound; endoscopy and biopsy were per-
formed once local recurrence was suspected.
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Delineation of Volumes of Interest. For each patient, a tumor volume of interest (VOI) was defined on 
pre-CRT PET images by two experienced radiation oncologists who reviewed all available resources, including 
diagnostic CT, 18F-FDG PET/CT, barium esophagography, and endoscopic reports, and then reached a consen-
sus on the contouring. VOIs contained the primary tumors only and excluded the involved lymph nodes because 
it has been found that quantitative features extracted from small lesions (particularly those less than 5 mL) yield 
less reproducible and consistent results compared with those from larger tumors25,28. The mid-CRT PET images 
of each patient were then registered with the corresponding pre-CRT images, and the contour of the VOI was 
projected onto the mid-CRT images. VOIs and their corresponding images were imported into MATLAB for 
further analysis.

Feature Extraction and Selection. Radiomic Features. Quantitative radiomic features of four catego-
ries were extracted from VOIs, with SUV computed based on body weight: 14 first-order statistics, 8 shape- and 
size-based features, 34 textural features, and 384 wavelet features19. Table 1 shows the details of these features. A 
total of 440 features were obtained from one set of PET images for each VOI.

 (1) 14 first-order statistics: these features describe the distribution of 18F-FDG uptake. They are calculated 
based on the three-dimensional PET image matrix X with N voxels and the first-order histogram P with Ng  
discrete intensity levels.

 (2) 8 shape- and size-based features: these features describe the geometric characteristics of a tumor. They are 
computed based on the volume V and the surface area A of the VOI.

 (3) 34 textural features: these features describe the patterns or the spatial distribution of voxel intensities. Dif-
ferent from the features mentioned above, which are related to the gray-level distribution of a PET image, 
the textural features are calculated from a gray-level co-occurrence matrix (GLCM) with a bin size of 0.1 
and gray-level run-length matrix (GLRLM) texture matrices with a bin size of 0.1.

 (4) 384 wavelet features: wavelet transform uses “coiflet 1” filters to decompose the original image in low 
frequencies and high frequencies in a similar manner as Fourier analysis, which can decouple textural 
information. Specifically, the original three dimensional PET image (X) is decomposed into eight decom-
positions, i.e., XHHH, XHHL, XHLH, XHLL, XLHH, XLHL, XLLH, and XLLL, where H and L indicate high-pass and 
low-pass functions, respectively. Mathematically, XHLH is calculated by a formula and results from 
directional filtering with a high-pass filter along the x direction, a low-pass filter along the y direction and a 
high-pass filter along the z direction.
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where X is the original image. RH and RL are the lengths of filters H and L, respectively. The other decompositions 
are formulated in the same way. After eight decompositions are obtained, each decomposition is used as an input 
image to calculate the first-order statistics and the textural features as mentioned above.

Clinical and demographic features. Eight clinical and demographic features were incorporated into the analysis, 
including tumor location, TNM stages, radiation therapy doses, cycles of chemotherapy, age, and gender.

Feature Selection. Receiver operating characteristic (ROC) analysis was performed to determine the perfor-
mance of the radiomic features in predicting the local control status, and the area under curve (AUC) was calcu-
lated. Features with higher AUC values were selected as discriminative radiomic features. The number of selected 
features was tuned form 10 to 400 with step size of 5.

Radiomic Features

14 first order statistics:
Energy, entropy, kurtosis, maximum, mean, mean absolute deviation, median, minimum, range, root mean square, skewness, standard 
deviation (Std), uniformity, variance.

8 shape- and size-based features:
Compactness 1, compactness 2, maximum 3D diameter, spherical disproportion, sphericity, surface area, surface to volume ratio, volume.

34 textural features:
Autocorrelation, cluster prominence, cluster shade, cluster tendency, contrast, correlation, difference entropy, dissimilarity, difference 
variance, energy_c, entropy_c, homogeneity 1, homogeneity 2, informational measure of correlation 1 (IMC1), informational measure of 
correlation 2 (IMC2), inverse difference moment normalized (IDMN), inverse difference normalized (IDN), inverse variance, maximum 
probability, sum average, sum entropy, sum variance, variance, short run emphasis (SRE), long run emphasis (LRE), gray-level non-
uniformity (GLN), run length non-uniformity (RLN), run percentage (RP), low gray-level run emphasis (LGLRE), high gray-level run 
emphasis (HGLRE), short run low gray-level emphasis (SRLGLE), short run high gray-level emphasis (SRHGLE), long run low gray-level 
emphasis (LRLGLE), long run high gray-level emphasis (LRHGLE).

384 wavelet features:
Wavelet features consist of the first order statistics and textural features extracted from eight wavelet decompositions (XHHH, XHHL, XHLH, 
XHLL, XLHH, XLHL, XLLH, and XLLL). For example, Energy_HHL represents the energy feature calculated from decomposition XHHL.

Table 1. The detailed radiomic features.



www.nature.com/scientificreports/

4SCiEnTifiC REPORTs |  (2018) 8:9902  | DOI:10.1038/s41598-018-28243-x

Predictive Model Construction. Four machine-learning methods were used, including random forest 
(RF), support vector machine (SVM), logistic regression (LR), and extreme learning machine (ELM), to con-
struct predictive models. According to the last follow-up status, patients who experienced local progression were 
defined as positive samples (label is 1) and were regarded as a high-risk group. The others were defined as negative 
samples (label is 0) and assigned into a low-risk group. Five groups of features were respectively fitted in different 
models, including clinical features, pre-CRT radiomic features, mid-CRT radiomic features, all radiomic features, 
and all features.

Random Forest. The RF classification method, which is robust against overfitting, was adopted to combine the 
merits and ignore the weaknesses of selected features. In each fold of cross validation, 100 decision trees were 
grown. For each node of the tree, p samples were randomly drawn with replacement from the original data and 
q candidate features were randomly selected from input features. We used the grid searching method to tune 
the two parameters of RF, the samples (p) and candidate features (q) of each tree. The value of p was varied from 
5 to 20 with a step size of 5 and the q value was similarly tuned from 5 to 50 with a step size of 5. In the testing 
step, each decision tree generated a prediction for the local control status of a patient, and the risk score for this 
patient was determined by the percentage of the number of trees voting for local failure among all decision trees. 
Patients with risk score greater than 0.5, who were more likely to experience local progression, were classified into 
high-risk group, and those with risk score less than 0.5 were classified into low-risk group.

Support Vector Machine, Logistic Regression, and Extreme Learning Machine. For comparison with RF, we also 
implemented the widely used SVM, LR, and ELM models.

SVM models map training samples into a high-dimensional space and find hyper-planes that can linearly 
separate the samples by the widest margin. We used the grid searching method to tune the two parameters of 
SVM with a radial basis function (RBF) kernel, the penalty factor C and the σ of the RBF kernel. The value of C 
was varied around 10t, where t ranged from −5 to 5 with a step size of 1. The σ was tuned from 0.1 to 1 with a step 
size of 0.1. Given a test patient, the output of the model was the “distance” of the specific patient to the optimized 
hyper-plane. Patients with the distance >0 would be regarded as local control and classified into low-risk group, 
and those with the distance ≤0 would be regarded as local progression and classified into high-risk group.

The LR model first used a logit function to transform the training samples to make the corresponding output 
values fall within a range (usually [0–1]). Then, a linear function was used to approximate the transformed sam-
ples. In the testing step, a linear predictor would be generated by the LR model for each patient, which was the 
risk score. Patients with risk score greater than 0.5, who were more likely to experience local progression, were 
classified into high-risk group, and those with risk score less than 0.5 were classified into low-risk group.

ELM is defined as a single-hidden layer feedforward neural network, and it randomly chooses hidden nodes 
and analytically determines the output weights of the feedforward neural networks. We used the grid searching 
method to tune the number of hidden nodes of the ELM with sigmoidal or sine functions, ranging from 5 to 30 
with a step size of 5. Our ELM had two output nodes, and a test patient would be regarded as local control and 
classified into the low-risk group if the value of the first node was bigger than the second one, otherwise the 
patient would be regarded as local progression and classified into the high-risk group.

Statistical analysis. The leave-one-out cross validation was adopted, which tests patient i in the model 
developed from the remaining cohort when i is left out. Specifically, for each cross validation fold, the i-th patient 
is used for testing and the remaining patients (except for i-th patient) are used to perform feature selection and 
the classifier construction. Figure 1 shows the workflow of the RF model development and validation with clinical 
features and radiomic features extracted from both pre- and mid-CRT images.

As mentioned in the Predicting Models Construction section, we constructed 20 models and evaluated their 
performances for the prediction of local control status. Each model was built by a classifier (RF, SVM, LR, or 
ELM) involving a specific group of features (clinical features, pre-CRT radiomic features, mid-CRT radiomic 
features, all radiomic features, or all features). Then, the patients were classified into low- and high-risk groups 
according to the model with the best predictive performance. The separation of Kaplan-Meier curves in terms 
of the local control rate and PFS was evaluated between the two groups using the log-rank test. The significance 
level was set at p < 0.05.

Results
The characteristics of the 30 enrolled patients are shown in Table 2. The median follow-up time was 18.5 (range, 
2.5~46.5) months.

Among the 440 radiomic features derived from both pre- and mid- CRT PET images, 25 features with the 
highest AUCs for discriminating the local control status were selected from each fold of the cross validation. 
Then, the 25 features that were most frequently selected in the total 30 folds were ultimately determined as dis-
criminative radiomic features, including 11 extracted from pre-CRT PET images and 14 from mid-CRT PET 
images (Table 3), most of which exhibited low correlation with each other (Supplemental materials Table S1). 
Particularly, higher values of wavelet features extracted from pre-CRT images, such as skewness_HLL, RP_HLL, 
correlation_HLL, and correlation_LHL, may indicate a higher likelihood of local progression. In addition, 
patients with larger median SUV, max_LLL, and median_HLL values or a smaller cluster prominence_HLL value 
extracted from mid-CRT images are more likely to experience local progression (Figs 2 and 3).

Four predicting models (RF, SVM, LR, and ELM) were developed involving specific groups of features, includ-
ing clinical features, pre-CRT radiomic features, mid-CRT radiomic features, all radiomic features, and a com-
bination of clinical and radiomic features. The prediction performance of the models developed using radiomic 
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features was better than that using clinical features, and better prediction accuracy was achieved by the mod-
els developed using mid-CRT radiomic features than that using pre-CRT features, and it was even better when 
incorporating both pre- and mid-CRT radiomic features. In most cases, the RF model performed better than 
the SVM, LR, and ELM models when built with the same group of features, except when clinical features alone 
were involved in the model. The best prediction performance was achieved by the RF model developed with all 
features, with an accuracy of 93.3%, a specificity of 95.7%, and a sensitivity of 85.7% (Fig. 4). The hyper-parameter 
values for the RF model involving all features, both the number of samples and candidate features, were set to 10. 
For the SVM classifier, the penalty factor C and the σ of the RBF kernel were 0.1 and 0.5, respectively. The number 
of hidden nodes of the ELM with a sigmoidal function was 20.

According to the median risk score of local failure estimated by the best predictive model, the patients were 
classified into two risk groups. The 2-year local control rates were 100.0% (95% CI, 100.0–100.0%) and 14.3% 
(95% CI, 0.0–40.2%) in the low- and high-risk groups, respectively (p < 0.001, Fig. 5A). The 2-year PFS rates 
were 52.2% (95% CI, 31.8–72.6%) and 0.0% (95% CI, 0.0–40.2%) in the low- and high-risk groups, respectively 
(p < 0.001, Fig. 5B). The low-risk group exhibited a significantly prolonged median PFS time compared to that of 
the high-risk group [18.6 (range, 2.5–47.2) months vs. 5.3 (range, 2.6–12.4) months].

Discussion
There is an increased number of studies showing the potential of radiomics in identifying tumor phenotypes19, 
enabling tumor diagnosis12, predicting the treatment response6,8, as well as assessing the tumor prognosis14. 
However, to the best of our knowledge, no effort has been focused on predicting the treatment outcome for unre-
sectable esophageal cancer. Here, we presented an RF model involving both clinical and discriminative radiomic 
features, which exhibited good performance in predicting the local control status for patients with esophageal 
cancer treated with CRT. The 25 discriminative radiomic features included 14 mid-CRT features (mean AUC 

Figure 1. The workflow of the development and cross validation of the RF model developed with radiomic 
features.
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of 0.762) and 11 pre-CRT features (mean AUC of 0.746), indicating that mid-CRT SUV images may be more 
informative in terms of predicting local control.

Recently, radiomics features extracted from the original images, including first-order statistics, shape- and 
size-based features8 and textural features12,13 have been widely investigated. In the present study, we analyzed 
more radiomics features, especially the wavelet features derived from low- or high-frequency decompositions of 
the original images. Interestingly, among the selected 25 discriminative features, none were shape- and size-based 
features, with a maximum AUC value of 0.67 derived from the “surface to volume ratio”. The SUVmedian_LLL 
(AUC = 0.76) and SUVmedian_HLL (AUC = 0.83) derived from wavelet decompositions showed better discrimin-
ability than SUVmedian (AUC = 0.74) derived from first order statistics extracted from the original images. It can 
be observed that wavelet features predominated among the selected discriminative features (22 out of 25). A 
possible explanation is that the wavelet transform could overcome and remove most of the noise in low-frequency 
decompositions and show more details in high-frequency decompositions. Therefore, more robust and abundant 
features could be acquired from different decompositions than from the original images.

Features in the correlation category showed good performance in predicting local control status, including the 
correlation features extracted from both the original images and the wavelet decompositions, as well as those from 
both the pre-CRT (correlation, correlation_LHL, and correlation_HLL) and the mid-CRT SUV images (corre-
lation_LHL and correlation_HLL). Correlation describes the local homogeneity of the input image (the original 
SUV image or its decompositions). The more similar in intensity a voxel was to its neighbors, the larger the cor-
relation would be. The correlation would be close to 1 if the intensities of the voxels within a VOI obey Gaussian 
distribution. It should be noted that the correlation feature was computed from the high-frequency decomposi-
tion, which represents the details of the original image, such as the peak of a tumor or noise in the image, and has 

Characteristics Number of patients (n = 30)

Gender

  Male 26

  Female 4

Age, years

  Median 63

  Range 44–75

Performance status (ECOG)

  0 16

  1 14

Tumor location

  Cervical 1

  Upper thoracic 10

   Middle thoracic 12

  Lower thoracic 7

T stage (UICC 2002)

  T1/T2 4

  T3 20

  T4 6

N stage (UICC 2002)

  N0 11

  N1 19

M stage (UICC 2002)

  M0 23

  M1 7

Cycles of chemotherapy

  1 cycle 2

  2 cycles 3

  3 cycles 8

  4 cycles 17

Biological equivalent dose (Gy)

  67.200 4

  71.175 12

  73.925 14

Status of local control

  Local progression 7

  Local control 23

Table 2. The characteristics of the patients.
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a different physical meaning compared with a correlation feature computed from low-frequency decomposition, 
which represents the rough information of the original image. The good performance of correlation suggested the 
underlying correlation between the homogeneity within the tumor and local tumor control.

The models incorporating radiomic features exhibited better predictive performance than those incorporating 
conventional clinical features, and no incremental value was observed when clinical features were combined into 
the model generated with radiomic features, suggesting that radiomic features may provide more information 
regarding tumor characteristics than clinical features, which have been conventionally used as predictive or prog-
nostic factors in past studies. Furthermore, as shown in Fig. 4, a higher specificity was achieved by the RF model 
with mid-CRT radiomic features compared to that with pre-CRT radiomic features, which was further improved 
by combining both pre- and mid-CRT radiomic features; This result indicates that radiomic features extracted 
from the images during treatment rather than the baseline images may efficiently discriminate local tumor con-
trol from other confounding circumstances such as inflammation after treatment or inactivating residual tumor 
bulk, and such multiple-time point observations would provide more accurate overall judgment for the tumor 
characteristics associated with treatment.

Compared to the other machine-learning models, SVM, LR, and ELM, the RF model achieved better predic-
tive performance when developed with the same group of features, except for the group of clinical features. The 
RF is a classification method designed to grow an ensemble of decision trees trained independently on a rand-
omized selection of features. The method performs implicit feature selection when building each independent 
tree, which can potentially improve the robustness and accuracy of the prediction by combining the merits of 
inputted features while resisting overfitting. In addition, RF is more robust in handling noise in data and shows 
better performance in many applications23,24,29–31. It is noted that the relative risk score generated from RF, which 
is different from the one obtained through regression, was just a probabilistic vote assigned to determine whether 
the patient was going to experience local progression or not. In the present study, the best predictive performance 
was achieved by the RF model developed with both clinical and radiomic features. Therefore, the risk scores of 
local failure were generated from this specific model.

Kaplan-Meier analysis exhibited significant separation of both local control curves and PFS curves between 
the two risk groups. Our results indicated that combining the top 25 radiomic features with RF classification 
resulted in a promising method to predict the risk of local failure for patients with esophageal cancer who were 
treated with CRT. This pretreatment and mid-treatment risk estimation and stratification could possibly allow 
clinicians to deliver more patient-specific treatment tailored to individual risk. It is reasonable that patients with 

Feature AUC (median)
P-Value 
(median)

pre-CRT SUV image:

1 correlation 0.73 0.07

2 skewness_LLH 0.75 0.06

3 RP_LLH 0.75 0.51

4 correlation_LHL 0.76 0.02

5 RP_LHL 0.72 0.42

6 kurtosis_HLL 0.74 0.14

7 skewness_HLL 0.77 0.04

8 correlation_HLL 0.76 0.04

9 cluster shade_HLL 0.74 0.52

10 RP_HLL 0.77 0.25

11 LRHGLE_HLL 0.72 0.47

mid-CRT SUV image:

12 mean 0.75 0.07

13 median 0.74 0.09

14 max_LLL 0.77 0.13

15 median_LLL 0.76 0.14

16 max-min_LLL 0.76 0.13

17 autocorrelation_LLL 0.75 0.10

18 sum variance_LLL 0.75 0.11

19 HGLRE_LLL 0.75 0.08

20 SRHGLE_LLL 0.75 0.09

21 LRHGLE_LLL 0.76 0.05

22 correlation_LHL 0.76 0.02

23 median_HLL 0.83 0.03

24 correlation_HLL 0.75 0.04

25 cluster prominence_HLL 0.75 0.04

Table 3. The discriminative radiomic features with the highest AUCs for identifying the local control status of 
esophageal cancer after CRT.
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Figure 2. Performance of typical discriminative radiomic features for determining the local control of 
esophageal cancer after CRT. The upper two rows show ROC curves based on features extracted from pre- and 
mid-CRT SUV images, respectively. The lower two rows show the values of the features extracted from pre- 
and mid-CRT SUV images plotted against local control status, with 1 on the horizontal axis representing local 
progression and 0 representing local control, respectively.

Figure 3. PET images of two typical patients with local control (left) and local progression (right), respectively. 
The skewness_HLL, RP_HLL, cluster promience_HLL, and median_HLL values are 0.164, −1.744, 65280, 
and −0.038 for the patient with local control and 0.743, −0.278, 24240, and 0.003 for the patient with local 
progression.
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a high risk of local failure could be treated with a dose boost to their GTVs; otherwise, those with a low risk could 
be prescribed lower doses (60 Gy or less) and be spared of overtreatment. However, whether radiomics-guided 
patient-specific treatment would ultimately elicit a long-term survival benefit or not requires prospective 
validation.

In this study, leave-one-out cross validation was used to improve the objectivity of our results. k-fold cross 
validation provides additional information from limited data and prevents the data from falling into the local 
minimum. A larger k corresponds to a more objective result. When k equals n, the number of samples, k-fold 
cross validation is also called leave-one-out cross validation. Leave-one-out cross validation has two main advan-
tages: first, the model is trained using almost all the samples, with a distribution similar to that of the original set; 
second, no influence is derived from random factors (e.g., randomly dividing all samples into k-fold), which can 
guarantee the reproducibility of the experiment.

One limitation of our study is that the determination of local control status is much more difficult and may 
be less accurate for patients who have not undergone surgery. Since the benefit from improved local control may 
not necessarily translate into improved survival, further investigation is needed to combine radiomics features 

Figure 4. Prediction measures of four models involving specific groups of features. RF, random forest; SVM, 
support vector machines; LR, logical regression; ELM, extreme learning machine.
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with other potential factors, such as genomic factors, for better prediction of prognosis. Another limitation is that 
this was a retrospective analysis of a small sample size. Although leave-one-out cross validation was used to avoid 
overfitting, independent validation in a larger patient cohort is required to verify the predictive performance of 
the model developed in the present study.

Conclusion
The RF model developed with both clinical and 25 PET-based radiomic features resulted in an accurate prediction 
of local control after CRT in 30 patients with esophageal cancer. Radiomic features acquired from high-frequency 
decompositions, i.e., wavelet features, and those from multiple pretreatment time points may provide more robust 
overall information for prediction. However, independent validation in a larger patient cohort is required to 
confirm the predictive performance of the model. In the future, more prognostic quantitative radiomic features 
may be explored, and their potential for pretreatment risk stratification may allow clinicians to deliver more 
patient-specific treatment tailored to individual risk.
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