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Protein Secondary Structure 
Prediction Based on Data Partition 
and Semi-Random Subspace 
Method
Yuming Ma   , Yihui Liu & Jinyong Cheng

Protein secondary structure prediction is one of the most important and challenging problems in 
bioinformatics. Machine learning techniques have been applied to solve the problem and have gained 
substantial success in this research area. However there is still room for improvement toward the 
theoretical limit. In this paper, we present a novel method for protein secondary structure prediction 
based on a data partition and semi-random subspace method (PSRSM). Data partitioning is an 
important strategy for our method. First, the protein training dataset was partitioned into several 
subsets based on the length of the protein sequence. Then we trained base classifiers on the subspace 
data generated by the semi-random subspace method, and combined base classifiers by majority vote 
rule into ensemble classifiers on each subset. Multiple classifiers were trained on different subsets. 
These different classifiers were used to predict the secondary structures of different proteins according 
to the protein sequence length. Experiments are performed on 25PDB, CB513, CASP10, CASP11, 
CASP12, and T100 datasets, and the good performance of 86.38%, 84.53%, 85.51%, 85.89%, 85.55%, 
and 85.09% is achieved respectively. Experimental results showed that our method outperforms other 
state-of-the-art methods.

Proteins play a key role in almost all biological processes; they are the basis of life. For example, they take part 
in maintaining the structural integrity of the cell, transport and storage of small molecules, catalysis, regulation, 
signaling, and the immune system. There are 20 different amino acids that form proteins in nature1. The amino 
acids of a protein are connected in sequence with the carboxyl group of one amino acid forming a peptide bond 
with the amino group of the next amino acid. Protein structure is essential for the understanding of protein 
function. In order to recognize the protein functions of proteins at a molecular level, it is sometimes necessary to 
determine their 3D structure. Accurately and reliably predicting structures from protein sequences is one of the 
most challenging tasks in computational biology2. Protein secondary structure prediction provides a significant 
first step toward tertiary structure prediction, as well as offering information about protein activity, relationships, 
and functions.

Protein secondary structure refers to the local conformation proteins’ polypeptide backbone. There are two 
regular secondary structure states, α-helix (H) and β-strand (E), and one irregular secondary structure type, the 
coil region (C). Sander developed a secondary structure assignment method Dictionary of Secondary Structure 
of Proteins (DSSP)3, which automatically assigns secondary structure into eight states (H, E, B, T, S, L, G, and I) 
according to hydrogen-bonding patterns. These eight states are often further simplified into three states of helix, 
sheet and coil. The most widely used convention is that helix is designated as G, H and I; sheet as B and E; and all 
other states are designated as a coils. Most commonly, the secondary structure prediction problem is formulated 
as follows: given a protein sequence with amino acids, predict whether each amino acid is in the α-helix (H), 
β-strand (E), or coil region (C). Protein secondary structure prediction is usually evaluated by Q3 accuracy, which 
measures the percentage of residues for three-state secondary structures to determine whether they have been 
predicted correctly.

Protein secondary structure prediction began in 1951 when Pauling and Corey predicted helical and sheet 
conformations for protein polypeptide backbones, even before the first protein structure was determined2. 
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Many statistical approaches and machine learning approaches have been developed to predict secondary struc-
ture. One of the first approaches for predicting protein secondary structure, uses a combination of statistical 
and heuristic rules4,5. The GOR6 method formalizes the secondary structure prediction problem within an 
information-theoretic framework. Position specific scoring matrix (PSSM)7 based on PSIBLAST8 reflects evo-
lutionary information and has made the most significant improvements in protein secondary structure predic-
tion. Many machine learning methods have been developed to predict protein secondary structure, and exhibit 
good performance by exploiting evolutionary information, as well as statistic information about amino acid sub-
sequences9. For example, many neural network (NN)10–14 methods, hidden Markov model (HMM)15–17, sup-
port vector machines (SVM)18–21, and K-nearest neighbors22 have had substantial success, and Q3 accuracy has 
reached to 80%. The prediction accuracy has been continuously improved over the years, especially by using 
hybrid or ensemble methods and incorporating evolutionary information in the form of profiles extracted from 
alignments of multiple homologous sequences23. Recently, several papers used deep learning networks24–28 to pre-
dict protein secondary structure and obtained good success. The highest Q3 accuracy without relying on structure 
templates is now at 82–84%3. DeepCNF27 is a deep learning extension of conditional neural fields (CNF), which 
integrates conditional random fields and shallow neural networks. The overall performance of DeepCNF is sig-
nificantly better than other state-of-the-art methods, breaking the long-lasting ~80% accuracy. Recently SPIDER3 
improved the prediction of protein secondary structure by capturing non-local interactions using long short-term 
memory bidirectional recurrent neural networks29. In the paper30, a new deep inception-inside-inception net-
work, called MUFOLD-SS, was proposed for protein secondary structure prediction. SPIDER3 and MUFOLD-SS 
achieved better performance, compared to DeepCNF.

In this paper, we presented a data partition and semi-random subspace method (PSRSM) for protein second-
ary structure prediction. The first step was partitioning the protein training dataset into several subsets based 
on the lengths of proteins sequences. The second step was generating subspaces by the semi-random subspaces 
method, training base classifiers on the subspaces, and then combining them by majority vote rule on each subset. 
Fig. 1 demonstrates our PSRSM experimental framework.

A key step of our method was to partition the training dataset into several subsets according to the length of 
the protein. The length of a protein sequence is the number of amino acids (AAs) in a protein sequence. Then 
we trained base classifiers in parallel on subspace data generated by using semi-random subspace method and 
combined them on each subset. In the conventional random subspace method, the low-dimensional subspaces 
are generated by random sampling of the original high-dimensional spaces. In order to get good performance of 
the ensemble, in this paper, we proposed a semi-random subspace method for protein secondary structure pre-
diction. This method ensured that the base classifiers were as accurate and diverse as possible. We used support 

Figure 1.  PSRSM framework. Training Data D is partitioned into k subsets D1, D2,…, Di, … Dk, and Sij is the jth 
subspace data of subset Di; Cij is a base classifier trained on Sij.
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vector machines (SVMs) as the base classifier. Support vector machines are a popular machine learning method 
for classification, regression, and other learning tasks. Compared to other machine learning methods, SVM has 
the advantages of high performance, absence of local minima, and ability to deal with multidimensional datasets, 
in which with complex relationships exist among data elements. Support vector machines (SVMs) have had sub-
stantial success in protein secondary structure prediction.

Experimental results show that the overall performance of PSRSM was better than the current state-of-the-art 
methods.

Results
Datasets.  We used six publicly available datasets (1) ASTRAL31, (2) CullPDB32, (3) CASP1033, (4) CASP1134, (5) 
CASP1235, (6) CB51336, and (7) 25PDB37 (8) a dataset T100 developed in-house. ASTRAL, ASTRAL + CullPDB, 
and T100 datasets are available from supplement files.

In this research, we combined the ASTRAL dataset and CullPDB dataset to be our training dataset, i.e., 
the ASTRAL + CullPDB dataset. The CullPDB dataset was selected based on the percentage identity cutoff 
of 25%, the resolution cutoff of 3 angstroms, and the R-factor cutoff of 0.25. There are 12,288 proteins in the 
CullPDB dataset. ASTRAL dataset had 6,892 proteins, with less than 25% sequence identity. Our training dataset 
ASTRAL + CullPDB had 15,696 proteins; we removed all duplicated proteins.

Publicly available datasets CASP10, CASP11, CASP12, CB513, and 25PDB were used to evaluate our method 
and compared using SPINE-X38, JPRED39, PSIPRED40 and DeepCNF. 99 proteins of the CASP10 dataset, 81 pro-
teins of the CASP11 dataset, and 19 proteins of the CASP12 dataset were selected according to the availability of 
crystal structure. The CB513 dataset has 513 protein sequences. Any two proteins of CB513 share less than 25% 
sequence identity with each other. The 25PDB dataset was selected with low sequence similarity of no more than 
25%, and has 1673 proteins, consisting of 443 all-α, 443 all-β, 346 α/β and 441 α + β. Note that the number of 
proteins in these datasets may be different from those reported in other published papers because we only used 
the available online (http://www.rcsb.org/) or with the PSSM program.

In addition, we randomly downloaded 100 new proteins (T100) released after 1 January 2018 from http://
www.rcsb.org/. The dataset (T100) contains 100 proteins with sequence lengths ranging from 18 to 1460. We used 
T100 to test PSRSM and deepCNF using our online servers and their online server RaptorX-Property which was 
ranked first in secondary structure prediction.

Because T100 dataset is released after 2018, there is no duplicated proteins with our training dataset. All our 
training datasets were collected before February 2017.

Performance measures.  Several different measures can be used to measure the secondary structure pre-
diction accuracy, the most common being Q3. The Q3 accuracy is defined as the percentage of residues for which 
the predicted secondary structures are correct, Q3 is calculated as follows:

=
+ +

×Q N N N
N

3 100, (1)
H E C

where, NH, NE, and NC, are the number of correctly predicted secondary structures: helix, strand and coil, respec-
tively. N is the total number of residues (amino acids).

We calculate the average accuracy of the whole test dataset and use average Q3 to evaluate the performance of 
our model on the test dataset, the average Q3 is defined as

= ∑ =Average Q3
Q3(X )
n (2)

i 1
n

i

Where n is the number of protein sequences that has the valid predicted results in the test dataset, Xi denotes a 
protein sequence, and Q3(Xi) is the Q3 accuracy of Xi.

Performance.  We used Q3 accuracy to compare our PSRSM method with other state-of-the-art methods, 
SPINE-X, PSIPRED, JPRED, and DeepCNF, on four publicly available datasets (CASP10, CASP11, CASP12, and 
CB513). Table 1 shows the Q3 accuracy of PSRSM and the other state-of-the-art methods on the four data-
sets. The experimental results show that PSRSM is significantly outperforming SPINE-X, PSIPRED, and JPRED. 
Moreover, PSRSM had 1–3% higher Q3 accuracy than DeepCNF. We also tested our method on 25PDB dataset 
with 1674 proteins, and Q3 accuracy is 86.38%.

In addition, we compared our proposed method to DeepCNF using our online servers (http://210.44.144.20:82/
protein_PSRSM/default.aspx) and their online server RaptorX-Property (http://raptorx.uchicago.edu/
StructurePropertyPred/predict/) on T100 dataset. Table 2 lists the Q3 accuracy of PSRSM and DeepCNF for each 
protein. The average Q3 accuracy of PSRSM was higher 2.5% than that of DeepCNF. In addition, we analyzed Q3 
accuracy of predicted secondary structures in internal regions and at boundaries2. Here, we defined a helical/sheet 
residue as internal if its two nearest neighboring residues were also helical/sheet residues; we defined it as a boundary 
if one or both of the nearest neighbors had a different secondary structural assignment. The overall Q3 accuracies of 
PSRSM and DeepCNF, respectively, were 89.89% and 85.68% in internal regions, and 75.33% and 73.30% at bound-
aries. We also compared our method with other state-of-the-art methods (SPIDER3, MUFOLD, PSIPRED and 
JPRED) using their online server on T100 dataset in Table 3. The newly updated MUFOLD and SPIDER3 obtained 
89.28% and 88.25% in internal regions, and 74.65% and 70.72% at boundaries. We can see that PSRSM was superior 
to current state-of-the-art methods not only in internal regions, but also at boundaries.

http://www.rcsb.org/
http://www.rcsb.org/
http://www.rcsb.org/
http://210.44.144.20:82/protein_PSRSM/default.aspx
http://210.44.144.20:82/protein_PSRSM/default.aspx
http://raptorx.uchicago.edu/StructurePropertyPred/predict/
http://raptorx.uchicago.edu/StructurePropertyPred/predict/


www.nature.com/scientificreports/

4SCIenTIfIC REPOrTS |  (2018) 8:9856  | DOI:10.1038/s41598-018-28084-8

Discussion
Reason for partitioning training datasets according to protein length rather than randomly.  
Our training data was the ASTRAL+CullPDB dataset, which had 15,696 proteins, and 3,863,231 amino acids 
(AAs). Since training support vector machines on such a large dataset is a very slow process, the first step of our 
method was partitioning the training data into several different subsets and training SVMs in parallel. If we par-
titioned the training data randomly, it would just reduce the computation time, but not increase the prediction 
accuracy41. The length of a protein sequence is the number of amino acids in a protein sequence. Protein length 
is an important feature of a protein because it influences protein structure. For example, the short sequence 
‘VVDALVR’ formed ‘EEEEEE’ in six proteins: 1by5_A, 1qfg_A, 1qff_A, 1fcp_A, 1fi1_A, and 2fcp_A. Their 
lengths are 714, 725, 725, 705, 707, and 723 respectively. Meanwhile ‘VVDALVR’ formed ‘HHHHHH’ in one 
protein (3vtz_A), and its length was 269. This data can be downloaded at prodata.swmed.edu/chseq.42. Identical 
amino acid sequence has different types of secondary structures in proteins of different lengths; this is because 
protein length can affect both local and long-range interactions of the protein. Based on the above considerations, 
we partitioned training datasets according to protein length to cluster proteins in the training data.

In order to validate the effectiveness of our data partitioning strategy, we conducted another experiment. 
We randomly generated a subset of the ASTRAL+CullPDB dataset randomly instead of according to protein 
length, and similarly trained SVM base classifiers on the subset. Then we combined them into an ensemble 
(Classifier_C). We compared Classifier_C with our PSRSM1, and Table 4 shows that the performance of PSRSM1 
is quite similar to that of Classifier_C on CB513 dataset, but significantly better on subset with protein length L 
∈ [1, 100]. The main difference between the two classifiers was the training set. All training proteins of PSRSM1 
were short proteins, they had similar protein lengths, and all lengths belonged to interval [1,100]; conversely, the 
lengths of Classfier_C training data were randomly distributed.

Table 5 shows the performance of T100 dataset with different lengths based on 6 PSRSMs. 6 protein sub-
sets with different lengths achieved the best performance 79.84%, 84.58%, 87.59%, 87.51%, 83.24%, and 83.93% 
respectively using their corresponding PSRSM.

Training time analysis.  Another advantage of our method is that the training time was short. Because our 
training data ASTRAL + CullPDB is a large dataset, it was very slow to train the SVM classifier. We failed to train 
the SVM classifier on ASTRAL + CullPDB using our server.

The computational complexity to train an SVM43 is

= + +O SVM O N N N N N N( ) ( ), (3)S S S f
3 2

Where NS is the number of support vectors, Nf is the feature dimension, and N is the size of the training set.
After data partitioning and sampling, the number of support vectors NS, feature dimension Nf, and the size 

of the training set N are much smaller. Furthermore, since we trained our base classifiers in parallel, the running 
time was reduced.

Table 6 shows the training time on each subset of the ASTRAL + CullPDB. D1, D2, …, D5 and D6 were subsets 
of ASTRAL + CullPDB (Table 7). We failed to train the SVM classifier on the ASTRAL + CullPDB using our 
server. After data partitioning but before sampling we completed training of SVM classifiers on each subset; 
more time was required because D3 had more amino acids than other subsets. When we used PSRSM, the feature 
dimension was decreased, and the training time was reduced.

Conclusion and Future Work
In this paper we proposed a novel method, PSRSM, to predict protein secondary structure. The first step of our 
method was partitioning of the training set into several subsets based on protein length. In the second step, we 
generated k ensemble classifiers using the semi-random subspace method. If given a new query protein sequence, 
our method would select one, and only one, ensemble classifier from k ensemble classifiers according to length to 
predict the protein secondary structure. Experimental results showed that the overall performance of PSRSM was 
better than that of other current state-of-the-art methods. In particular, our method PSRSM is superior to other 
methods not only in internal regions, but also at boundaries.

Methods
Partitioning the training data.  We partitioned the training data into k different subsets according to the 
protein sequence length. Let X denote a protein sequence, and L denote the length of X. We set k−1 partition 

Methods

Q3(%)

CASP10 CASP11 CASP12 CB513

SPINE-X 80.7 79.3 76.9 78.9

PSIPRED 81.2 80.7 78.0 79.2

JPRED 81.6 80.4 75.1 81.7

DeepCNF 84.4 84.7 82.1 82.3

PSRSM 85.51 85.89 85.55 84.53

Table 1.  Q3 accuracy of the tested methods on CASP10, CASP11, CASP12, and CB513 datasets. (The results of 
SPINE-X, PSIPRED, JPRED, and DeepCNF are taken from the papers2,27).
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points of interval ∞(0, ). Let = = ∞r 0, r0 k , and r1, …, r2 and rk−1 denote partition points that satisfy 
< < < <−r r r r0 1 k 1 k. These partition points partition interval (0, ∞) into k intervals without intersection. 

Let = ∞−R r r r r{(0, ), ( , ), , ( , )}k1 1 2 1 .

Protein 
name

PSRSM 
(Q3%)

DeepCNF 
(Q3%) Length

Protein 
name

PSRSM 
(Q3%)

DeepCNF 
(Q3%) Length

5K4W_A 96.88 85.67 321 5Y5Z_A 82.70 80.45 578

5MOI_A 80.27 68.61 223 6B2N_A 71.10 87.07 263

5MOJ_A 89.24 78.30 223 6BT3_C 85.00 73.64 220

5MOK_ 89.24 77.58 223 6F0E_A 86.86 80.45 312

5NA1_A 76.47 79.66 408 6F1T_G 82.45 80.85 376

5O7K_A 80.21 86.46 96 6F40_A 75.75 74.79 1460

5QAN_A 91.77 78.60 243 5GZJ_A 85.24 88.30 359

5UB4_A 83.93 84.29 280 5BK1_H 93.22 80.93 236

5VSA_A 86.62 83.44 314 5GZI_B 84.68 87.74 359

6AOK_A 85.71 75.12 217 5K4Y_A 97.19 86.56 320

6FEL_A 94.07 89.83 236 5LCP_B 95.00 — 20

6F2L_A 70.07 85.53 304 5LH4_A 99.55 87.44 223

6F0Z_A 80.13 87.70 317 5MB5_A 88.18 81.82 330

6EM0_ 78.83 85.20 581 5MR9_A 81.37 71.57 102

6EHH_A 94.89 85.80 176 5NXG_A 98.05 83.27 257

5QAE_A 92.18 79.84 243 5O5I_A 72.83 90.22 92

5QAK_A 92.18 79.84 243 5V6F_A 76.81 76.81 138

6AX2_A 73.91 82.61 46 5WHI_A 93.79 90.06 161

6AZ2_A 91.70 81.22 229 5WXE_A 60.71 60.71 28

6B5G_A 94.32 89.86 493 6F1D_A 94.87 88.03 117

6B7Z_A 86.54 85.09 966 5KDB_A 96.18 86.01 393

6BB5_A 94.96 84.89 139 5KDY_A 95.42 86.26 393

6BBQ_A 76.73 89.62 520 5N2O_A 88.57 92.86 70

6FD3_A 80.67 85.33 300 5NEC_A 84.48 86.64 741

6B3G_A 87.88 87.88 99 5O3U_A 91.99 83.70 724

5XXR_A 87.12 88.64 132 5O6V_A 70.36 74.19 496

5WVM_ 84.68 80.16 509 5OQZ_A 77.78 — 18

5WCT_A 63.64 73.80 187 5OYD_A 89.39 85.10 396

5W30_A 79.44 79.44 180 5UG6_A 91.28 87.25 149

5MZV_B 80.81 80.81 198 5UOE_A 94.24 86.77 990

6F73_B 62.02 78.22 574 5UOZ_A 71.43 — 21

6BVC_A 83.62 81.92 177 5V23_A 78.57 86.73 98

5M3U_ 91.35 83.17 416 5VDF_A 94.52 87.67 73

5BJZ_B 97.24 85.18 398 5W92_A 71.07 78.68 197

5LUH_A 90.74 79.26 270 5WAT_A 82.22 86.36 315

5MOP_ 90.13 83.41 223 5WOT_A 93.43 80.30 198

5MR5_A 80.39 72.55 102 5WOZ_A 89.86 92.03 138

5NXP_A 98.45 83.33 258 5WPX_A 79.78 78.65 89

5XEE_A 76.53 77.55 98 5XBK_A 80.77 81.01 416

5YPK_A 91.32 83.88 242 5M88_A 89.71 92.65 136

5YQW_A 87.41 79.89 532 5MNV_A 89.19 87.71 407

5YWZ_A 73.55 80.17 242 5MOS_A 99.55 87.44 223

5Z0T_A 94.03 80.38 637 5MVO_A 70.45 75.95 291

6AX6_A 79.15 81.28 235 5N1D_A 90.37 84.99 353

6BGN_A 98.33 83.33 60 5N1N_A 88.95 88.67 353

6C2I_A 74.21 79.08 411 5O5C_A 82.08 84.39 519

6C8S_A 88.13 78.63 379 5OQ1_A 85.40 81.02 137

5WDD_A 93.45 91.07 168 5ORK_B 78.41 85.51 352

6AVD_A 70.00 80.00 40 5OTY_A 73.39 77.49 342

6FO0_N 88.75 87.28 480 5URT_A 71.43 — 21

Table 2.  Q3 accuracy of PSRSM and DeepCNF for each protein in the T100. (If a protein sequence has more 
than 4000 or less than 26 amino acids, DeepCNF online server will report errors).
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Method Q3(average) Q3 (internal) Q3 (boundary) Website

DeepCNF 82.78 85.68 73.30 http://raptorx.uchicago.edu/StructurePropertyPred/predict/

SPIDER3 82.41 88.25 70.72 http://sparks-lab.org/server/SPIDER3/

MUFOLD 84.35 89.28 74.65 http://mufold.org/mufold-ss-angle/

PSIPRED 76.33 82.84 63.06 http://bioinf.cs.ucl.ac.uk/psipred/

JPRED 74.45 81.42 60.25 http://www.compbio.dundee.ac.uk/jpred4/index.html

PSRSM 85.09 89.89 75.33 http://210.44.144.20:82/protein_PSRSM/default.aspx

Table 3.  PSRSM, DeepCNF, SPIDER3, MUFOLD,PSIPRED and JPRED average Q3 accuracies and Q3 
accuracies in the internal regions, and at boundary regions of secondary structures on the T100. The DeepCNF 
method is available only to proteins with a length of [26, 4000], MUFOLD is [30,700], and JPRED is [20,800].

Protein 
length L

Q3(%)

Training data

Classifier_C PSRSM1

Classifier_C PSRSM1

Number 
(protein)

Number 
(amino acid)

Number 
(protein)

Number 
(amino acid)

[1,100] 75.48 83.25 176 10996 2260 161952

(100,200] 78.17 76.44 255 37369 0 0

(200,300] 78.60 75.83 137 34072 0 0

(300,400] 75.94 73.82 105 35529 0 0

(400,500] 75.81 72.07 63 27818 0 0

L > 500 74.01 71.23 64 42277 0 0

all 77.16 77.57 800 188061 2260 161952

Table 4.  Comparison of classifier_C and PSRSM1 on CB513.

PSRSM1 PSRSM2 PSRSM3 PSRSM4 PSRSM5 PSRSM6

[1,100] 79.84 63.11 62.75 63.40 62.89 64.13

(100,200] 78.19 84.58 81.02 78.99 77.18 78.16

(200,300] 74.39 78.14 87.59 78.99 75.95 75.15

(300,400] 74.00 75.63 78.80 87.51 78.62 77.64

(400,500] 74.23 76.69 77.09 80.81 83.24 77.06

L > 500 73.59 75.87 75.64 76.30 77.12 83.93

Table 5.  Q3 accuracy of each ensemble classifier on different proteins with different length in T100 dataset.

Subset No sampling Sampling (PSRSM)

D1 7 days 1.5 days

D2 30 days 6 days

D3 45 days 8 days

D4 40 days 7 days

D5 15 days 3 days

D6 35 days 6.5 days

Table 6.  Training time on each subset of the ASTRAL + CullPDB.

Subset Protein length L
Number of 
proteins

Number of 
amino acids

D1 (0, 100] 2260 161952

D2 (100, 200] 5256 774167

D3 (200, 300] 3548 877583

D4 (300, 400] 2382 822913

D5 (400, 500] 1170 519422

D6 (500, ∞) 1058 707309

Table 7.  Subsets of training data ASTRAL + CullPDB.

http://raptorx.uchicago.edu/StructurePropertyPred/predict/
http://sparks-lab.org/server/SPIDER3/
http://mufold.org/mufold-ss-angle/
http://bioinf.cs.ucl.ac.uk/psipred/
http://www.compbio.dundee.ac.uk/jpred4/index.html
http://210.44.144.20:82/protein_PSRSM/default.aspx
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Let D denote the training data ASTRAL + CullPDB. Subsets D1, D2, …, Dk−1 and Dk are defined as follows:

= | ∈ ∧ ∈ =− D X X D L r r i k{ ( , }, 1, , ; (4)i i i1

and, D1, D2, …, Dk−1 and Dk satisfy ∪ == D Di 1
k

i , and ∩ = ≠ .0D D , i ji j
In our experiment, we set k = 6 and

= ∞R {(0, 100], (100, 200], (200, 300], (300, 400], (400, 500], (500, )}
Table 7 shows the number of proteins and amino acids in =D{ }i i 1

6 .

Training classifiers.  We generated t random subspaces of r-dimension, and trained t SVM base classifiers 
on each subset Di t feature subsets are used to train t base classifiers, and each subset had r features sampled from 
the 260-dimensional dataset.

Therefore we got k × t SVM base classifiers on k subsets, we denote these classifiers as a k × t matrix, where k 
is the number of subsets of the training data.













�
�
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C C C
C C C

C C C

,

(5)

t

t

k k kt

11 12 1

21 22 2

1 2

where Cij is the SVM base classifier trained on the jth subspace data of subset Di.
We combined classifiers =C{ }ij j

t
1 into a final ensemble classifier by majority vote rule, and thus got k ensemble 

classifiers as the final decision on each subset. They are denoted as below.
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Here ‘Voting’ means combining classifiers by majority vote rule, PSRSMi represents the final ensemble classifier 
on subset Di, and,

= .PSRSM Voting C C C(( ) (7)i i i it1 2

In this study The parameters t is set to 12 base classifiers, and the dimension of subspaces r is 160 in our 
experiment.

The publicly available LIBSVM44 software was used to train SVM classifiers. There are several kernel functions, 
commonly used in SVM: “liner”, “polynomial”, and “radial basis”. In this paper, we used the radial basis function 
(RBF) as kernel, the form is = −γ −k(x, x ) exp( x x )i i

2 , where γ is a parameter. C is another parameter for 
SVM training; it is the regularization factor that controls the balance between low error and large divided margin. 
Parameters C and γ were decided using the grid search method. The optimal values of the two parameters are 
0.9956 and 0.065, respectively.

Prediction.  Given a new query protein sequence X, and protein sequence length L, our method selected one 
and only one ensemble classifier from k ensemble classifiers ({PSRSM1, PSRSM2, …, PSRSMk}) according to the 
length L to predict the protein secondary structure of X. Let ∼Y denote the prediction output by PSRSM. Then

= ∈ =− ��Y PSRSM X if L r r i k( ) ( , ] 1, 2, , , (8)i i i1

where, PSRSMi is defined as (7).
For example, if a new query protein sequence X is a short protein and ∈L (0, r ]1 , then the corresponding 

PSRSM1 trained on the short protein subset is used to predict its secondary structure. In general, if ∈ −L (r , r ]i 1 i , 
the ith classifier PSRSMi will be selected from k ensemble classifiers to predict the protein secondary structure of X.

Semi-Random Subspace Method (SRSM).  The random subspace method (RSM) is an ensemble con-
struction technique. It was proposed by Ho in 199845. RSM randomly samples a set of low-dimensionality sub-
spaces from the whole original high-dimensional features space, then constructs a classifier on each smaller 
subspace and finally applies a combination rule for the final decision.

We proposed a semi-random subspace method for protein secondary structure prediction. In our research, 
each protein sequence was represented by a 260 × L matrix. The ith column vector represents features of the ith 
amino acid residue. We generated t feature subsets to train t base classifiers. Each subset had r features sampled 
from the 260-dimensional dataset.

Because the original PSSM of the associated residue is an important feature for the base classifier, those 20 
dimensions in a central location of 260-dimensional data are fixed for each sampling.

Let S represent the 260-dimensional features vector, and = v v vS ( , , , )1 2 260 . We generated t subspaces ({S }i i
t) 

from S.Si represents a feature subset sampled from S, and =   S x x x v v v y y y( , , , , , , , , , , , )i i i id i i id1 2 121 122 140 1 2 , 
where (v121, v122, …, v140) are fixed in each Si;(xi1, xi2, …, xid) and (yi1, yi2, …, yid) are sampled from (v1, v2, …, v120) 
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and (v141, v122, …, v260), respectively; here, r and d satisfy = × +r d2 20. Let Li = (xi1, xi2, …, xid), S0 = (v121, x122, 
…, v140), and Ri = (yi1, yi2, …, yid), then ∪ ∪=S L S Ri i 0 i .

Additionally, high diversity of base classifiers can make an ensemble with more accurate decisions; this is 
because different base classifiers make different errors on different patterns. The diversity of base classifiers is 
negatively correlated with the similarity of the training data. ∪| |S Si j  reflects the similarity of Si and Sj to a certain 
extent. When ∩| |S Si j  is smaller, the similarity between Si and Sj is smaller, and the diversity of base classifiers is 
higher. Let oj be the number of occurrences of vj in =S{ }i i

t
1. In our research, it can be proved that, when 

= = … = …o for i 1, 2, , 120 and i 141, 142, , 260td
i 120

, the sum ∩∑ ∑ | |= = S Si 1
t

j 1
t

i j  becomes the minimum. 
Therefore our method was to generate t feature subsets randomly, and adjust elements of each subspace to make 
oi =  td

120
 for i = 1, 2, …, 120 and i = 141, 142, …, 260.

The steps of the proposed semi-random subspace method are as follows.
	 1.	 Generating semi- random subspaces

	(1)	 Let = v v vL ( , , , )1 2 120 , = v v vS ( , , , )0 121 122 140 , and = v v vR ( , , , )141 142 260  and generate d-dimen-
sional random subspaces ={L }i i 1

t  from L, ={R }i i 1
t  from R, respectively.

	(2)	 Calculate ={o }j j 1
120 , where oj is the number of occurrences of vj in {L }i i

t. Let = =mino min {o }j j 1
120  and 

= =maxo max {o }j j 1
120 .

	(3)	 Let = | = ∧ = idmin {j o mino j 1, 2, , 120}j  and
= | = ∧ = idmax {j o maxo j 1, 2, , 120}j . Then generate a ternary ordered pairs set 

= | ∉ ∧ ∈ ∧ ∈ ∧ ∈P {(i, j, k) v L v L j idmin k idmax}j i k i .
	(4)	 Randomly select a ternary ordered pair (i, j, k) from P, insert feature vj to Li, and delete vk from Li. Then 

return to step (1) until = = =o o o1 2 120.
	(5)	 Repeat (2), (3) and (4) on ={R }i i 1

t  and R.
	(6)	 ∪ ∪= = iS L S R , 1, 2, , tii i 0 .

	 2.	 Construct t classifier {C }i i
t from the corresponding t random subspaces.

	 3.	 Combine classifiers {C }i i
t by majority vote rule.

There are two parameters to be determined for the semi-random subspace method, i.e., the number of sub-
spaces t, and dimension of subspaces r.

Since D1 was smaller than other subsets, the training time on D1 was shorter than on other subsets. Therefore 
we conducted a series of experiments on D1 to determine t and r. We fixed t = 12, because it requires t*d to be 
divided by 120, it is easy to set d or r. Experimental results on the CB513 dataset showed that with increasing r the 
Q3 accuracy increased, but when r > 160, the Q3 accuracy increased slowly(Fig. 2) and the training time must be 
much longer. So we determine r = 160 as the dimension of subspaces in our experiment.

Input features.  The PSSM of a protein sequence represents homolog information affiliated with its aligned 
sequences. We used the PSI-BLAST program to generate the PSSM data. PSI-BLAST used BLOSUM62 evolu-
tionary matrix to search a reduced version of the NCBI’s non-redundant (NR) database filtered at 90% sequence 
similarity, in order to find the variability of the residue within a multiple sequence alignment. PSI-BLAST param-
eters was set with threshold h = 0.001 and j = 3 iterations. The resulting PSSMs were a 20 × L matrix, where L is 
the protein length and 20 is the number of amino acid types.

A sliding window of consecutive amino acids was used to obtain residue sequence information and predict 
the secondary structure of the central residue. Each residue was encoded by a vector of dimension 20 × w, where 
w is the sliding window size and is an odd number. The window was shifted from residue to residue through the 
protein chain. In this paper, the sliding window length w was set to 13. To use the first and last six amino acids, 

Figure 2.  Relationship between Q3 accuracy and dimension of subspace.



www.nature.com/scientificreports/

9SCIenTIfIC REPOrTS |  (2018) 8:9856  | DOI:10.1038/s41598-018-28084-8

we inserted six zeros before and behind each protein sequence. Therefore each protein sequence was represented 
by a 260 × L matrix, and the ith column vector represented the protein features associated with the ith residue.

Secondary structure assignment was done with the DSSP. DSSP program defines eight states for secondary 
structure (H, E, B, T, S, L, G, and I) that are reduced to three states (H, E, and C) by different predictive methods. 
We used the following reductions: H, G and I to helix (H); E and B to beta strands (E); all the rest to coil (C).

Availability.  http://210.44.144.20:82/protein_PSRSM/default.aspx.
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