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Manipulation of visible-light 
polarization with dendritic  
cell-cluster metasurfaces
Zhen-Hua Fang, Huan Chen, Di An, Chun-Rong Luo & Xiao-Peng Zhao

Cross-polarization conversion plays an important role in visible light manipulation. Metasurface 
with asymmetric structure can be used to achieve polarization conversion of linearly polarized light. 
Based on this, we design a quasi-periodic dendritic metasurface model composed of asymmetric 
dendritic cells. The simulation indicates that the asymmetric dendritic structure can vertically rotate 
the polarization direction of the linear polarization wave in visible light. Silver dendritic cell-cluster 
metasurface samples were prepared by the bottom-up electrochemical deposition. It experimentally 
proved that they could realize the cross - polarization conversion in visible light. Cross-polarized 
propagating light is deflected into anomalous refraction channels. Dendritic cell-cluster metasurface 
with asymmetric quasi-periodic structure conveys significance in cross-polarization conversion research 
and features extensive practical application prospect and development potential.

Manipulating light polarization is always desirable in practical applications. Visible light will possibly become the 
main medium of communication and information processing in the next generation1,2. In recent years, research-
ers attempted to manipulate light through various means. Artificial design of different cell structures of metama-
terials allowed them to acquire many characteristics that are nonexistent in nature; such characteristics include 
negative refraction, anomalous Cerenkov radiation, anomalous Doppler effect, perfect lens, super-resolution 
imaging, invisibility cloaking, and electromagnetic-wave polarization rotation3–11. These characteristics attract 
more and more researchers to study metamaterials, particularly those operating at microwave, infrared12,13, and 
visible light14 wavelengths. As two-dimensional metamaterials, metasurfaces preserve characteristics of their 
three-dimensional counterparts in manipulating electromagnetic-wave behavior while reducing challenges in 
fabrication15. Ultrathin metasurfaces can now be easily designed to deflect a propagating light into anomalous 
refraction channels16–23, thereby obeying generalized Snell’s law by imparting phase discontinuities. Metasurface 
thickness is much smaller than operational wavelength, theoretically allowing miniaturization and integration 
of optical components24. Lee et al.25 proposed and fabricated metasurfaces based on coupling of electromagnetic 
modes in plasmonic metasurfaces with quantum-engineered electronic intersubband transitions in semiconduc-
tor heterostructures.

Polarization is an important characteristic of light, and recent efforts were exerted to control light polarization 
through arrays of nanoantennas, plasmonics, and dielectrics26–35. Lin et al.26 reported that dielectric gradient metas-
urface optical elements can also achieve high efficiencies in transmission mode in the visible spectrum. Considerable 
progress was attained in cross-polarization rotation within the frequency range of visible light. Qin et al.24  
revealed that cross-polarization conversion efficiency can be increased to 36.5% by optimizing the proposed 
Hybrid bilayer plasmonic metasurface structure at 815 nm wavelength. It is admirable that the top-down meta-
surfaces behave 99% polarization control efficiency, 99% phase control efficiency and over 90% total energy effi-
ciency in infrared30,31. Other studies on cross-polarization conversion in short-wavelength visible light revealed 
significant development potential. For example, Gansel32 investigated light propagation through a uniaxial pho-
tonic metamaterial comprising three-dimensional gold helices arranged on a two-dimensional square lattice. 
These nanostructures were fabricated using direct laser writing into a positive-tone photoresist followed by elec-
trochemical deposition of gold. However, a majority of the metasurfaces has been published are prepared by 
top-down mechanical etching methods33–35, such as ion beam lithography, photolithography and photoetching. 
The expensive equipment, harsh experimental conditions, complex preparation process and the restricted sample 
size limiting the practical application of the metasurface with nanoscale fine structure in the visible light. For the 
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electrochemical preparation method, equipment and preparation process is simple, low cost and can be easily 
used for large area preparation36,37. The silver dendritic metasurface samples were prepared by this method with a 
unified shape of dendritic structure, and the resonant wavelengths were adjustable in the visible light38.

In the present work, bottom-up electrochemical deposition is used to prepare a dendritic cell-cluster metasur-
face that can achieve effective cross-polarization conversion in transmission mode. The method does not require 
expensive equipment or harsh conditions. Significant cross-polarization conversion is achieved at visible-light 
wavelengths of 550, 570, 590, and 620 nm. Cross-polarized transmitted light is deflected from normal when it 
passes through the dendritic cell-cluster metasurface. These results demonstrate significant improvement in 
visible-light manipulation.

Experimental details
COMSOL Multiphysics is based on the finite element method, and it has been widely used in many fields to solve 
the physical phenomenon of the real world by mathematical method. COMSOL Multiphysics is used to simulate 
the transmission of dendritic cell-cluster metasurface in this paper. The material on SiO2 substrate is dendritic Ag, 
whose relative permittivity can be described by the Drude model with a plasma frequency of ωpl = 1.37 × 1016 s−1 
and a collision frequency of ωcol = 8.5 × 1013 s−1. Thicknesses of dendritic structure is 12 nm. We simulated and 
calculated lots of metasurface models which the thickness of the substrate increases from tens of nanometers to 
several micrometers. The simulation results are nearly identical. It can be seen that the thickness of the substrate 
has almost no influence on the optical response behavior of the metasurface, so the substrate thickness of the 
actual sample is applying to a wide range. Periodic boundary conditions were used in the x- and y-axes, and an 
open boundary condition was used in the z-axis. Incident wave in all cases is set as a linearly polarized plane wave 
Ey perpendicularly transmitted to the surface along −z, as shown in Fig. 1. The preparation experiments were 
carried out with an electrochemical workstation. Dendritic Ag layer was grown on indium tin oxide (ITO). The 
constant deposition voltage is 0.9 V. The electrolyte is a mixed solution of AgNO3 (0.1 mg/mL) and polyethylene 
glycol-20000 (PEG-20000, 0.12 g/mL). Metasurface samples responding to different wavelengths of visible light 
are obtained by adjusting deposition time. The resonant wavelength of dendritic metasurface is measured in the 
spectrophotometer. Scanning electron micrograph of the dendritic structure is zoomed in at a magnification of 
2 × 105. The meta-atom in the real metasurface sample is randomly distributed, and the number of the units in 
is 109/cm2. After repeated experiment preparation and transmission spectrum test, when the obvious resonant 
wavelength appears, a large number of units in the sample are quasi-periodic distribution, as shown in Fig. 2a. 
Therefore, periodic boundary conditions can be used in the simulation process.

Optical transmission of the dendritic cell-cluster metasurface is measured using a tunable broadband 
source. Figure 3 shows the schematic of experimental setup. A xenon light coupled with a visible-near-infrared 

Figure 1. Dendritic structure and numerical simulation. (a) Schematic of a linearly polarized plane wave 
perpendicularly passing through the dendritic cell-cluster metasurface. (b) Schematic of three types of dendritic 
cells and their transmitted electric field distribution. (c) Schematic of a dendritic cell-cluster comprising 
three types of dendritic cells. Transmitted electric field of dendritic cell-cluster metasurface; (d) Transmitted 
spectrum of dendritic cell-cluster metasurface.
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monochromator serves as the tunable light source (wavelength range = 300–2000 nm). The tunable light source 
was used in the experiment to ensure that the sample had an anomalous effect on incident light with a wavelength 
consistent with the resonant band when the experimental conditions were determined and that there was no 
anomalous effect in the non-resonant band. The wavelength of incident light varies from 490 nm to 640 nm with 
a step length of 10 nm. The plane wave generated from the monochromator is circularly polarized. Then the light 
from the monochromator passed through a polarizer P1, so the light entering the sample was linearly polarized 
light Ey, which was set in the comsol simulation process. The sample of dendritic cell-cluster metasurface to be 
measured is placed perpendicular to the incident light. The linearly polarized incident light Ey is focused on the 
surface of dendritic cell-cluster metasurface using a planoconvex lens (focal length = 50 mm). Focal spot size is 
approximately 2 mm, probably covering more than 108 individual dendritic elements. Because the weak inter-
action of units can be ignored, the certain anomalous effect will present via automatic contrast selection of the 
statistical effects. Polarizers P2 and P3 behind the sample are used to detect the polarized direction of transmitted 
light, and transmitted light spot is received by a thin semitransparent film. All elements of the experiment are 
placed on a self-balancing optical table, and measurement is performed in an optical darkroom.

Results and Discussion
Theory and experiment have proved that dendritic structure is actually a combination of rod and split ring, nega-
tive ε and negative μ can simultaneously be achieved in microwave or infrared13,36. And with the concept of meta-
surface proposed in Science15, the authors use eight basic elements of the rod and V-shaped to achieve generalized 
Snell’s law. Relevant experiments and theories12,39,40 show that the metamaterial is a weak interaction system, in 
which the interaction between the structural units is weak. And thus the interaction of the rod and V-shaped 
split ring structure in the dendritic metasurface is negligible. The typical method derived from the reference15 
is used to simulate the dendritic metasurface. The obtained electric field distribution has a statistical effect. The 
model of dendritic cell-cluster has discussed in the appendix and our previous paper38. The results show that the 
propagation of light through the dendritic metasurface coincides with the generalized Snell’s law, the interrelation 
between the refraction angle and the incident angle is different from the classical refraction law.

Figure 1a shows the samples horizontally placed in the XY plane. Periodic boundary conditions are used in x 
and y directions, and an open boundary condition is used in the z-direction. Figure 1b shows detailed structures 
of the three types of dendritic metasurfaces and electric field in the x-direction of the transmitted wave. The three 
types of dendritic cells are asymmetric. The dotted arrows indicate the direction of the transmitted wave. For 

Figure 2. Dendritic metasurface sample characterization analysis. (a) SEM photograph of partial silver 
dendritic cell-cluster metasurface. The scale label is 500 nm. (b) The transmission spectrum of four dendritic 
cell-cluster metasurface samples.

Figure 3. Experimental setup used to measure transmitted light through the metasurface.
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more detailed geometric parameters of dendritic structure please refer the appendix. Wavelengths of light for 
the three types of dendritic structures are 577, 576, and 566 nm, respectively. The length of units is l1 = 641 nm, 
l2 = 635 nm, l3 = 620 nm. A linearly polarized transmitted plane wave Ex is obtained and deflected into the anom-
alous refraction channel. The refraction angles are 64.5°, 63.7° and 63.8°, respectively. The wavelengths of incident 
light and the refraction angles of the three types dendritic structure are depending on the size, morphology and 
structure density of the dendritic units. For simulation of the actual sample structure, the three types of dendritic 
structures are randomly arranged to form a dendritic cell-cluster, and the cluster contains three of each type of 
dendritic structure (Fig. 1c). The side length of the structural element has an important influence on the resonant 
wavelength of the sample. The length of different types of dendritic cells are set as l = 641 nm in the dendritic cell 
cluster which resulting in an operating wavelength of 590 nm. Refer to the real sample, the size, fine structure and 
distribution density of the dendritic cell are non-uniform in addition to the unified shape of dendritic structure. 
Figure 1d displays the transmitted electric field of the dendritic cell-cluster metasurface. A cross-polarized trans-
mitted plane wave Ex is also obtained, and the refraction angle is 62.5°. After determining the morphology, size, 
and distribution of the dendritic structure, the anomalous refraction angle is determined. From the above results, 
it can be seen that the refraction angle can be controlled by changing the topography, size and distribution density 
of the dendritic structure. The distribution density of the dendritic units determines the angle of the anomalous 
refraction. When the three types of dendritic structures were combined, the length of different types of dendritic 
cells are set as unified value l = 641 nm in the dendritic cell cluster, l = l1 = 641 nm, l > l2 > l3, the refraction angle 
became smaller along with the density of the dendritic units decreased. The operation wavelength of the dendritic 
cell cluster measures 590 nm. More resonant wavelength can also be realized by adjusting the model size and so 
on. Simulation results suggest that dendritic cell-cluster metasurface can manipulate light by cross-polarized 
conversion and negative refraction.

The dendritic cell-cluster metasurface sample consists of three layers: a bottom layer, which is a substrate made 
of indium tin oxide (ITO) conductive glass; an interface layer, which is composed of evenly distributed individual 
2D silver dendritic cells (Fig. 2a), the structure of dendritic metasurface is asymmetric; and a top layer, which is 
an oxidation-resistant coating formed by Polyvinyl Alcohol (PVA). ITO conductive layer is part of the substrate, 
PVA is the oxidation protection layer. Both the calibration element and PVA has a negligible impact on the den-
dritic metasurface. So they are not including in simulation to simplify the calculation model under the premise 
of a truthful simulation of the dendritic metasurface. Scanning electron micrograph of the dendritic structure is 
shown in Fig. 2a. A single dendritic unit features a diameter measuring 200–300 nm, and all units are uniformly 
distributed onto the substrate surface. Several units with diverse sizes and branches are coupled with one another 
that form clusters on the dendritic metasurface. For convenience of experimental measurement, overall dimen-
sions of the dendritic cell-cluster metasurface measure 1 × 1.3 cm2. SEM test results at different locations on the 
sample surface indicate that the dendritic units have the same appearance at all locations, and the transmission 
spectra at the corresponding points are basically the same. The reproducibility of the dendritic structure in the 
entire sample surface is very good. In addition, the samples that were prepared repeatedly also showed that the 
preparation process of the dendritic metasurface is stable and can be repeatedly prepared. Transmitted spectra of 
the four types of dendritic cell-cluster metasurfaces (s1, s2, s3, and s4) with different resonance wavelength are 
shown in Fig. 2b. In addition to intrinsic transmission peak for silver at 400 nm, high transmission peaks are also 
found in wavelength ranges of 510–530 (s1), 530–555 (s2), 555–580 (s3), and 600–630 nm (s4). The transmitted 
light of the sample is the main part, and the proportion of reflected light is small, which was not considered in 
this experiment. Samples operating in different visible wavelength are obtained by properly increasing deposition 
time.

Wavelength of incident light is increased from 490 nm to 640 nm with uniform speed. All transmitted light 
phenomena are observed and recorded in real time with a charge-coupled device camera(CCD). At the experi-
mental design stage, we used electro-optical sensor and CCD to make comparisons. We found that the two results 
are basically the same. The electro-optical sensor is convenient to measure in fixed position and orientation. 
However, in this experiment, the positional deviation and orientation of the photodetector are more difficult to 
accurately control, which has a greater impact on the experimental results. The CCD is used to measure transmit-
ted light, which can capture all useful information for analysis and calculation. Therefore, we finally adopted the 
CCD measurement. Consequently, an obtained video shows the transmitted light passing through the dendritic 
cell-cluster metasurface with varied incident wavelengths. As shown in the obtained video of s4 (Visualization 1), 
two optical spots are observed on the thin semitransparent film when wavelength of incident light is within the 
range of resonant wavelength (600–630 nm). The spot with high brightness at the center of the thin film reveals 
that the normal transmitted light is perpendicular to sample interface; the one with low brightness represents 
anomalous transmitted light. The dendritic structure is asymmetric. As shown in the simulation results, the direc-
tion of the anomalous refraction is on the right side, and only one light spot is observed on the right side of the 
central maximum. Polarization analyzers P2 and P3 are used to measure polarization angles of normal and anom-
alous transmitted lights. Results show that polarization angle of normal transmitted light is the same as that of 
incident light. Polarization direction of anomalous transmitted light is perpendicular to the incident light, that is, 
normal transmitted light is co-polarized, and anomalous transmitted light is cross-polarized. These two optical 
spots reveal that the dendritic cell-cluster metasurface can deflect propagating light into anomalous refraction 
channels. Incident light is linearly polarized, and the dendritic structure operates in the direction of polarized 
incident light. Thus, only one cross-polarized spot emerges. At non-resonant wavelengths (490–590 nm), only a 
single light spot is observed at the center of the white plate. Measurement result of polarization analyzer reveals 
that the transmitted light is a co-polarized light at this wavelength.

Transmitted spectral curve of the dendritic cell-cluster metasurface in Fig. 2 shows that in addition to normal 
co-polarized transmitted light, a cross-polarized transmitted light is obtained when wavelength of incident light is 
within resonant wavelength of the sample. When wavelength of incident light and resonant wavelength of samples 
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are inconsistent, transmitted light is co-polarized along the original propagation path. Responses of the four 
samples are measured to illustrate the connection between resonant wavelength of dendritic cell-cluster metas-
urface and operating wavelength of cross-polarization conversion. Results are shown in Fig. 4. Cross-polarized 
transmitted light of sample s1, which operates at 550 nm wavelength, is obtained (Fig. 4a). Response wave-
length of measured sample approximates 520 nm (Fig. 2b). Cross-polarized transmitted lights of samples s2, 
s3, and s4 are shown in Fig. 4b,c,d, respectively. Images of transmitted light spots are imported to MATLAB, 
and image-processing function of MATLAB is used. Intensities of co- and cross-polarized transmitted lights are 
obtained with 3D distribution figures (inset of Fig. 4e). Conversion efficiency is defined as the ratio of the power 
converted into anomalous component over the power of overall transmittance. Conversion efficiency of s4 is 8.7% 
at resonant wavelengths and 2% at non-resonant wavelengths. It is noted that Qin et al.20 proposed the periodical 
V-shaped metasurface operating in near-infrared provides about 36.5% conversion efficiency. Conversion effi-
ciencies of s1, s2, and s3 equal 11.39%, 15.7%, and 17.9%, respectively. Obviously, the efficiency of s4 is the lowest, 
which means that its experimental phenomenon is the weakest. We chose the measurement of s4 to show that 
the measurement process is most universal. Figure 4e presents conversion efficiency as a function of wavelength. 
Cross-polarized transmitted light yields lower intensity than co-polarized light. Cross-polarized light intensity of 
sample s3 is the highest among all measured samples (Fig. 4c); sample s3 also presents the highest transmission 
coefficient (Fig. 2b). In summary, resonant wavelength of dendritic cell-cluster metasurface is consistent with 
operating wavelength of cross-polarization conversion using the dendritic cell-cluster metasurface. Response 
wavelength of the dendritic cell-cluster metasurface is controlled during preparation. Cross-polarized transmit-
ted light operating at different wavelengths is obtained using the response of dendritic cell-cluster metasurface at 
the corresponding wavelength.

Conclusions and Prospects
In this study, simulation and experimental results show that incident light is perpendicular to the dendritic 
metasurface. When wavelength of incident light coincides with the resonant band of the sample, cross-polarized 
transmitted light tilts out. Reference24 showed that metasurface should conform to generalized Snell’s law and 
present a phase jump in the corresponding band. The dendritic metasurface is an effective visible-light metasur-
face which been indicated in reference36. Thus, dendritic cell-cluster metasurface can realize tilted propagation 
of cross-polarized light in relation to the main polarized light. Refraction angle of the co-polarized transmitted 
light is 0°, whereas that of the cross-polarized transmitted light approximates 60°. A certain deviation exists 
between experimental and simulation results mainly because the dendritic cell-cluster metasurface sample pre-
pared by electrochemical deposition does not completely agree with the model in simulation. Simulated and 
experimental results reveal that the dendritic cell-cluster metasurface achieves cross-polarization conversion of 
linearly polarized incident light in the resonant frequency of the sample. As expected, conversion efficiency of 
cross-polarization is enhanced by improved experimental design and preparation technique.

In conclusion, we proposed a dendritic cell-cluster metasurface with asymmetric quasi-periodic structure, and 
cross-polarization conversion is achieved at the visible light in transmission mode. Silver dendritic cell-cluster 
metasurface is prepared by electrochemical deposition based on the bottom-up concept. Numerical simulation 
and experiments confirm that when the wavelength of incident light coincides with sample resonant wavelength, 
co- and cross-polarization transmissions are obtained. When the linearly polarized incident light perpendicu-
larly passes through the silver dendritic cell-cluster metasurface, co-polarization light is perpendicular to the 
interface, and a tilted cross-polarization is emitted. The highest conversion efficiencies up to 17.9% in 590 nm. 

Figure 4. Experimental results of co- and cross-polarization transmission of (a) s1 at 550 nm, (b) s2 at 570 nm, 
(c) s3 at 590 nm, and (d) s4 at 620 nm (Visualization 1). (e) The conversion efficiency of s4 as a function of 
wavelength.
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Further improvements in preparation of dendritic cell-cluster metasurfaces may enhance conversion efficiency 
and increase potential applications of this novel metasurface in light manipulation.

Appendix. In this appendix, we give a detailed description of the dendritic structure geometrical parameters 
in simulation (Fig. 1b). The three types of dendritic structure are three branches, four branches and five branches, 
which is composed of narrow and broad rods. The rod thickness is 12 nm. Grading outwardly from the center 
of the structure. The first type of dendritic structure which marked in red dashed box consists of three main 
branches, with three levels from the center point outward. The length of the rod Δl1 = 105.97 nm. The width of 
the narrow and the broad rod is wn = 13.5 nm, wb = 26.9 nm. The angles between the branches in every level are 
same, which is ∠1 = 120°, ∠2 = 60° and ∠3 = 48°. The second type of dendritic structure which marked in green 
dashed box consists of four main branches, with two levels from the center point outward. The length of the rod 
Δl2 = 122.7 nm. The width of the narrow and the broad rod is wn = 15.6 nm, wb = 31.1 nm. The angles between 
the branches in first level are ∠1 = 120°, ∠2 = 60° and ∠3 = ∠4 = 90°, and angles in second level is ∠5 = 36°. The 
third type of dendritic structure which marked in blue dashed box consists of five main branches, with two levels 
from the center point outward. The length of the rod Δl3 = 120 nm. The width of the narrow and the broad rod 
is wn = 15.2 nm, wb = 30.5 nm. The angles between the branches in the first level are ∠1 = ∠2 = 90° and ∠3 = 58°, 
∠4 = 72°, and angles in the second level is ∠6 = 36°.
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