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Cooperative light scattering from 
helical-phase-imprinted atomic 
rings
H. H. Jen  1, M.-S. Chang2 & Y.-C. Chen2

We theoretically investigate the light scattering of super- and subradiant states of an atomic ring 
prepared by single excitation with a photon which carries an orbital angular momentum (OAM). For 
excitations with linear polarizations, the helical phase imprinted (HPI) atomic ring presents a discrete C4 
rotational symmetry when number of atoms N = 4n with integers n, while for circular polarizations with 
arbitrary N, the continuous and CN symmetries emerge for the super- and subradiant modes, respectively. 
The HPI superradiant modes predominantly scatter photons in the forward-backward direction, and the 
forward scattering can be further enhanced as atomic rings are stacked along the excitation direction. 
The HPI subradiant modes then preferentially scatter photons in the transversal directions, and when 
rings are stacked concentrically and on a plane, crossover from sub- to superradiance is observed which 
leads to splitting and localization of the far-field scattering patterns in the polar angle. The HPI super- and 
subradiant states are thus detectable through measuring the far-field radiation patterns, which further 
allow quantum storage and detection of a single photon with an OAM.

Controlled strong light-matter interactions in quantum optical systems for efficient generation, storage, and 
manipulation of quantum correlations1 is essential for establishing robust long-distance quantum entanglement 
for quantum communication2–4 and quantum network5. This has also spurred the development of quantum mem-
ory and quantum repeater in recent years6, which stores and relays entanglement. Quantum correlation in an 
atomic system is often arisen through spontaneous emissions, in which the atomic ensemble collectively emits a 
photon following an atomic excitation. This serves an elementary mechanism to entangle the atomic states with 
discrete states of light, such as polarizations7–9. This bipartite entanglement can also be generated in the biphoton 
states in spatial modes, or energy-time10, using means including parametric down conversion from nonlinear 
crystals11,12, cascade emissions in atoms13–16, or correlated light beams from a rare-earth ion-doped crystal17.

To increase the efficiency of light-matter interaction, directional spontaneous emissions are enhanced in opti-
cally thick atomic ensembles18–20 through superradiance21,22, utilizing the resonant and pairwise dipole-dipole 
interactions23,24 among the atoms in the dissipation process. This collective light-matter interaction also results 
in a frequency shift25–33 and is responsible for subradiant radiations34 as an afterglow of superradiance35. In the 
context of quantum memory, subradiant states are candidate systems for storing photons and can be actively pre-
pared in a dense medium36–41, through selective radiance by controlling the density and/or geometry of an array 
of atoms or metamolecules42–44, collective antiresonances from the subradiant arrays in a cavity45, or through 
creating quantum optical analogs of topological states in two-dimensional atomic arrays46. The light scattering 
from the subradiant states is also under active investigations recently20,34, but a systematic and detailed study on 
the subradiant modes, which is essential for efficient assess to those modes, is still lacking.

The rapid development on precisely positioning single atoms utilizing photonic crystal waveguide47, opti-
cal microtraps48,49, or creating an array of artificial atoms in solid-state nanophotonic platforms50 has further 
enabled fabrication of atomic ensembles with arbitrary spatial distributions beyond the diffraction limit of the 
excitation field, thus offers new opportunities to explore super- and subradiant modes, and opens up a new ave-
nue for tailoring and modifying the quantum states of light and matter. In this paper, we propose to prepare the 
phase-imprinted single-photon subradiant states in the stacked ring arrays of atoms, in which light with orbital 
angular momentum (OAM)51–55 interacts with the atoms, and the helical-phase-imprinted (HPI) subradiant 
states can be prepared upon absorption. The HPI subradiant states thus serves as good candidates for storing 
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light quanta with OAM56–58. We investigate the light scattering out of these subradiant states for the cases of a few 
atoms, a single ring, and stacked rings. We also study the effect of uniform and spatially-dependent light polari-
zations on the scattering patterns.

Helical-Phase-Imprinted Subradiant States
When a near-resonant single photon is absorbed by an ensemble of N two-level atoms, a symmetric state is 
formed,
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where |g〉 and |e〉 label the ground and excited states of a two-level atom, and kL is the wave vector of the 
plane-wave excitation field. Here, each of the two-level atoms can be promoted to the excited state with an equal 
probability N−1 and acquires a position-dependent traveling phase ⋅ μeik rL . This symmetric state can be superradi-
ant when the inter-atomic distance is much less than the resonant wavelength λa. Since the complete Hilbert space 
of single excitation involves N possible constructions of the bare states ψ| 〉 | 〉 ≡ | 〉μ μ

−e g N( 1) , then the remaining 
N − 1 nonsymmetric states can be either super- or subradiant, depending on the atomic distributions. To system-
atically study and access those states, we have considered to use a phase-imprinting method37,38,41 on a 
one-dimensional atomic array, which prepares the system into a De Moivre state:
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with m ∈ [1, N], whose orthogonality is guaranteed by De Moivre’s theorem. This phase imprinting method 
dynamically controls the linearly increased atomic phases either by a gradient Zeeman field or a gradient Stark 
field pulse. We note that the form of De Moivre states in equation (2) with rμ → 0 is first constructed in the degen-
erate subspace of a small sample59.

While this method is simple, practically it, however, demands a large field gradient or long interaction time 
when the atomic array is short and/or the inter-atomic separation is small. Alternatively, by deforming the 
atomic array into a ring, this linearly increasing phase can be easily and exactly imprinted by light with a quan-
tized orbital angular momentum (OAM). Thus, we consider a Laguerre-Gaussian (LG) beam in the paraxial 
approximation60–62,

φ ε
=





















φ ψ
| |

| | − − − + −ˆU r z C
w z

r
w z

L r
w z

e e( , , )
( )

2
( )

2
( )

,
(3)

p
l

l

p
l r w z il ik z i z ik r R z

2

2
[ / ( )] ( ) /[2 ( )]L L

2 2

where ε̂ denotes the polarization, = +w z w z z( ) 1 ( / )R0
2  is Gaussian beam width with the beam waist w0, and 

π λ=z w /R 0
2  is Rayleigh range. We denote the normalization constant as C, and | |Lp

l  is the associated Laguerre 
polynomials with radial mode numbers p. The Guoy phase is ψ = + | | + −z p l z z( ) (2 1)tan ( / )R

1  and the radius of 
curvature is R(z) = z[1 + (zR/z)2]. This paraxial approximation of LG beams is valid when λ π= f w/(2 ) 10 , and 
therefore, the spatially varying Guoy phase and [ −e ik r R z/[2 ( )]L

2
] of the wavefront vanish respectively at z = 0 and 

infinite R(z = 0). Under this circumstance, the HPI states can be prepared with a phase of eilφ along the azimuthal 
direction. In our preparation scheme of various ring structures, we choose excitation photons with LG modes 
with p = 0 and assume they uniformly excite the atoms on absorption, similar to the timed Dicke state prepara-
tion63. We denote LG modes with zero radial index (p = 0) as

φ ε
=











φ
=

| |
− −ˆu r C

w
r

w
e( , ) 2 ,

(4)
p
l

l
r w il

0
0 0

[ / ]0
2

where we have replaced ==
| |L x( ) 1p
l

0  for arbitrary x.
For N atoms sitting on a single ring with a constant separation between their nearest neighbors, the light prop-

agating along the axis of the ring imprints the phase of φ = 2πl(μ − 1)/N on the atoms. A u l
0 photon absorbed by 

the ring array thus forms exactly the state of |Φm = l〉 in equation (2). In Fig. 1, we show two stacked rings for an 
illustration of preparing such helical-phase-imprinted (HPI) states with a u l

0 photon, and the far-field observation 
of these states. For the multiply-stacked rings along ẑ, HPI states in general can be expressed as
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where N = NzNφ for a number of Nz stacked rings, with Nφ atoms in each ring. The atomic position index μ is 
implicitly (μz − 1)Nφ + μφ, which labels the traveling phase by the excitation field on |ψμ〉. The multiply-stacked 
rings allow a larger optical depth and stronger light-matter interactions, and thus increase the absorption effi-
ciency. For the stacked rings along r̂ , forming a concentric structure in a two-dimensional plane, we can substitute 
Nz and μz with Nr and μr respectively in equation (5).

Below we investigate the emission patterns of HPI subradiant states, assuming they are excited and prepared 
genuinely. The efficiency, on the other hand, can be enhanced by using heralded single photon source or post 



www.nature.com/scientificreports/

3ScIentIfIc REPORTS |  (2018) 8:9570  | DOI:10.1038/s41598-018-27888-y

selections. We note that non-perfect technical issues, such as nonparaxial conditions and the nonuniform spatial 
profile of an LG beam for multiply-stacked rings, compromise either the fidelity or efficiency of HPI state prepa-
ration, but can still be optimized by, for instance, using beams with a longer Rayleigh range or equivalently larger 
beam waist and by optimizing the alignment64.

Light Scattering from HPI Subradiant States
In this section, we consider the resonant dipole-dipole interaction present in the dissipation of HPI states. This 
long-range interaction23,24 arises from rescattering photons between atoms in the spontaneous emissions, and 
is the mechanism for superradiance or subradiance when atoms are close to each other. The explicit forms of 
the interaction and the far-field emission patterns of HPI states are derived in Methods respectively. Below we 
investigate the emission patterns for various atomic ring structures. We note that the angular distributions of the 
superradiant states have been recently investigated in linear chains65–68.

Two-atom case. We first analyze the case of two atoms sitting on a ring with a radius r and excited by single 
photon carrying an OAM, lħ. Define the far-field scattering intensity θ φΩ ≡ 〈

→ →
〉

⁎
E t E t I tR R( , ) ( , ) ( , ) / ( )l l 0 , we use 

equation (17) in Methods for two atoms on the x-axis with an x̂ polarized excitation, and we obtain

θ φ θ φ θ φ πΩ = − + | | +r lk( , ) (1 sin cos )[2 2 cos(2 sin cos )], (6)l L
2 2

which corresponds to the case shown in Fig. 2(a), where two atoms are aligned parallel to the polarization of the 
excitation field. For the case where two atoms are aligned perpendicular to the polarization which is shown in 
Fig. 2(b), the factor in equation (6), θ φ−1 sin cos2 2 , is replaced by θ φsin sin2 2 . Note that |kR| = |kL|, and different light 
polarizations result in different coupling strengths in equations (11) and (12) of Methods, and thus I0(t), due to differ-
ent eigenvalues λm (see Methods). When r → 0, Ωl(θ, φ) ∝ [1 + (−1)l], which indicates that the excitation beam with 
odd OAM is not scattered at all in this extreme limit. According to equation (5), this specific HPI state is given as
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which is a superradiant (subradiant) state for even (odd) l. The superradiant intensity for single photon scattering 
in the forward direction has a maximal Ωl(θ = 0) = 2 which is proportional to N2/2, as that in the half-excited 
spin models21. For single spin excitation in the N spin-1/2 model, the photon emission intensity is proportional 

Figure 1. Schematic helical-phase-imprinted state preparation and far-field detection. (a) A single-photon 
source with orbital angular momentum (OAM) is absorbed by the atoms sitting on the stacked rings along ẑ 
(two ring arrays are shown here for illustration). The atomic system is then prepared into one of the super- or 
subradiant states, depending on OAM of light. In the process of spontaneous decay, the resonant dipole-dipole 
interaction Mμν couples μth and νth atoms on the stacked rings, and scatters the light collectively depending on 
the ring geometry of radius r, φ, and inter-ring distance dz. (b) Typical light intensity (normalized) with OAM of 
Laguerre-Gaussian modes φu r( , )l

0  and associated helical phases eilφ, for some beam waist radius w. (c) A far-
field observer at 

→
R  sees the scattered light from a dipole →p  at →αr  in 4π solid angle of mode k̂ characterized by θ′ 

and φ′.
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to (lm + m)(lm − m + 1) = N in the Dicke’s eigenstates with a total quantized angular momentum lmħ = Nħ/2 and 
magnetization m ≡ (N↑ − N↓)/2 = 1 − N/221.

In Fig. 2, we show the eigenvalues and far-field property Ωl(θ, φ) for two atoms separating by 2r. The eigenval-
ues can be solved analytically from the coupling matrix M̂ introduced in Methods, which are
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where Γ is the natural decay rate (linewidth) of the excited-ground transition, and ξ = 2|kL|r. The rescaled real 
part of the eigenvalues in Fig. 2, which are decay constants, approach 2 and 0 as r → 0, representing the super- and 
subradiant modes of the radiation. For larger r, the eigenvalues asymptotically converge to 1, corresponding to the 
regime of non-interacting (independent) emitters. Specific far-field property is chosen at ξ = 0.3π, which shows a 
forward-backward scattering along the excitation propagation direction, ẑ , and a transverse scattering for the 
super- (l = 2) and subradiant (l = 1) modes, respectively. Note that the x̂ and ŷ polarized excitations correspond 
to the head-to-tail and parallel polarization configurations, respectively, and the former (latter) suppresses light 
scattering in the x̂ (ŷ) direction, which can be seen from equation (6) that the scattered light vanishes at θ = π/2 
and φ = 0 (π/2). The head-to-tail polarizations also allow strong scattering in the superradiant mode in the direc-
tion transverse to the polarization orientation. On the contrary, with the parallel polarizations, the collective 
scattering rate along the x̂ axis is suppressed to ~0.35 times the maximum scattering rate. This reflects the destruc-
tive interference of parallel polarized (virtual) photons from two atoms, which diminishes as r → 0, where Ωl(θ, 
φ) of these two polarization configurations restores the rotational symmetry of the superradiance case in Fig. 2(a), 
by taking φ → φ + π/2.

The subradiant modes, on the contrary, preserve the scattering patterns in Fig. 2 at r/λ  0.35 and 0.25 for 
head-to-tail and parallel polarizations respectively. This range of r can be estimated by θ φ π| | ≈rk2 sin cos /2L  in 
equation (6), which indicates the phase slip of half of lπ (l = 1 for the subradiant mode). The angles can be chosen 
as θ = π/4 (π/2) and φ = 0 at the maximal scattering of the head-to-tail (parallel) polarizations in the small r limit. 
This estimation also reflects on the qualitative changes of the eigenvalues in Fig. 2, which start to oscillate around 
λ1,2 = −Γ/2. As r increases and passes the estimated range of 0.35λ or 0.25λ, a scattering transverse to forward/
backward direction also appears in the superradiant modes, and the directionality of them disappears. In the 
range of  λr2 , the clear phenomena of super- and subradiance disappear.

Single ring. For the geometry of N atoms sitting on a single ring with equal arc lengths, it is equivalent to an 
N-sided regular polygon. When N 1, the far-field scattering pattern from atoms forming a regular polygon 
approaches that of a ring. Before we investigate the scattering of the many-body subradiant states in a single ring 
with a large N, we first study the case of three and four atoms, which form regular triangle and square 
respectively.

In Fig. 3(a,b), we show the far-field scattering of the HPI states, Ωl(θ, φ)’s with l = 1–3, for three atoms which are 
in a regular-triangle configuration and are excited by x̂ and ŷ polarized light, respectively. As expected, the super-
radiant modes for both polarizations, corresponding to l = 3, show directional forward-backward scatterings along 
ẑ . In contrast, for the subradiant modes with l = 1 and 2, the forward-backward scatterings are suppressed, and 

Figure 2. Eigenvalues and far-field property Ωl(θ, φ) for two atoms sitting on the x̂ axis. We show the real part 
of the rescaled eigenvalues, −λ1,2/(Γ/2), in the case of two atoms separating by 2r, for the eigenstates of l = 1 (red 
dashed line, subradiant) and 2 (blue solid line, superradiant) with (a) x̂ and (b) ŷ polarized light excitations Ê. 
Specific three-dimensional plots of Ωl(θ, φ) at r/λ = 0.15 for the super- and subradiant states are illustrated 
respectively in the upper and lower parts of the graphs. Empty and filled circles indicate the ground and excited 
atoms, one of the bare states |ψμ〉. The fitted exponential decay rates (in units of Γ/2) for super- and subradiant 
states are Γf = (a) 1.5 and 0.51, (b) 1.1 and 0.9, respectively.
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light is preferentially emitted into directions perpendicular to both k vector and the polarization of the incoming 
photon, which makes the x̂ − ẑ and ŷ − ẑ planes the nodal planes of Ωl’s for x̂ and ŷ excitations, respectively.

In Fig. 3(c), we study the case with four atoms forming a square. The l = 2 subradiant mode, possessing the 
lowest decay rate, is more directional than the modes with l = 1 and 3 which have the same Ωl(θ, φ). Furthermore, 
in this specific structure, two perpendicularly excited polarizations result in the same pattern of the far-field 
scattering which preserves the C4 rotational symmetry in φ. This C4 symmetry also applies to all the number of 
atoms N = 4n with integers n. We note that the far-field scatterings of the l = 1 and 3 modes are the same due to 
the symmetry of l → −l, which will be further explained in Methods.

For many atoms on a single ring, we use N = 20 as an example and show the calculation results in Fig. 4. In 
this configuration, C4 rotational symmetry sustains, and therefore, Ωl(θ, φ) are the same for two linear polariza-
tions. Figure 4(a) shows the calculated eigenmodes, with 14 subradiant and 6 superradiant modes, as the 14th 
mode is just below the line of λm = −Γ/2. The lowest subradiant eigenmode is 10−4 times the natural decay rate 
for r/λ = 0.5, which can be further reduced as r decreases. We selectively plot several representative HPI states 
in Fig. 4(b), in which each only occupies a few eigenmodes with significant weightings. It is seen that HPI states 
with l = 1 and 2 are superradiant, while that with l = 5, 9, and 10 are subradiant. In Fig. 4(c), the Ωl(θ, φ) is plotted 
accordingly for the selected modes in 4(b). Except for the symmetric superradiant state of l = N, which has a clear 

Figure 3. The far-field Ωl(θ, φ) for three and four atoms sitting on a single ring. The atoms in top view form an 
(a) x̂ and (b) ŷ polarized triangular, and (c) x̂ polarized square structures with the modes of l = 1 − N 
respectively, where we choose r/λ = 0.2. Subradiant modes (l = 1 to N − 1) and superradiant modes (l = N) show 
directional transversal and forward-backward scatterings respectively. Note that Ωl(θ, φ) of ŷ polarized square 
preserves the C4 rotational symmetry to the case of (c), and the viewing angles are the same as Fig. 2. Again 
empty and filled circles represent the ground and excited atoms, which displays one of the bare states |ψμ〉. The 
fitted exponential decay rates for three- and four-atom rings (in units of Γ/2) are, Γf = (a) 0.72, 0.72, 1.9, (b) 0.7, 
0.7, 1.9, (c) 0.75, 0.13, 0.75, and 2.51 respectively.

Figure 4. The decay rates, normalized weightings, and Ωl(θ, φ) of a single ring with N = 20 and r/λ = 0.5. (a) 
The spontaneous decay rates shown in ascending order and logarithmic scale, which are derived from the real 
part of the eigenvalues λm. (b) The normalized weightings on the eigenmodes for l = 1, 2, 5, 9, and 10 (○, □, 
+, ×, and ◊ respectively), and (c) the corresponding Ωl(θ, φ) (left to right), in the same viewing angle of Fig. 2. 
The fitted exponential decay rates for l = 1, 2, 5, 9, and 10 (in units of Γ/2), Γf = 5.43, 4.77, 0.024, 1.3 × 10−3, and 
5 × 10−4, respectively.
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forward-backward scattering similar to the previous cases of few atoms, the other superradiant modes, e.g., with 
l = 1 and 2, also show an oblique and transverse scatterings respectively. As l increases toward the most subradi-
ant modes (l = 10), a clear side scattering at the right angles emerges, and this most subradiant HPI state further 
breaks Ωl(θ, φ) into 10 concentric and flat lobes, each with a good directionality.

We note that Ωl(θ, φ) = Ω−l(θ, φ) = ΩN−l(θ, φ) for even number of the atoms, which is also true for odd num-
ber of atoms at r = 0. For small r, Ωl(θ, φ) of can be approximately reduced to the sum of imprinted helical phases 

π β α−φ φ φei l N2 ( )/ . This gives in general a sum of cosine functions without the detail spatial phases from the atomic 
distributions of rαβ; therefore, Ωl(θ, φ) is the same for lth and (N − l)th HPI states. For a finite r, only even number 
of the atoms N sustains the symmetry of l → −l in Ωl(θ, φ). This can be seen from the pairwise and spatial phase 
contributions of kR · rαβ, and we explain in more details in Methods.

Stacked rings. Atomic rings can be put into stacked configurations to further enhance the cooperative 
effects. In the following, we investigate ẑ- and planer concentric-stacking (referred as r̂-stacking here), in which 
the assemblies are integrated along either the axial or the radial directions, respectively. Figure 5(a) shows sche-
matically two and three ẑ-stacking rings, in which the inter-ring distance is characterized by the parameter dz. For 
the HPI superradiant mode with l = 1, as in Fig. 5(b), the forward scattering is enhanced as number of rings 
increases, which breaks the symmetry of forward-backward scattering in Fig. 4(c). For the subradiant mode in 
Fig. 5(c,d), an oblique scattering toward the forward direction is enhanced as more atoms are integrated along the 
ẑ  direction. As we stack up more rings, the transverse scattering at θ = π/2 in Fig. 4(c) can reappear as well. 
Therefore, the far-field scattering pattern can be greatly tuned by varying r, dz (λ), and the number of the stacked 
rings, which controls the intra- and inter-ring phase interferences.

In Fig. 6, we study the HPI states of s r̂-stacking rings with l = 1 (superradiant), l = 5 (sub- and superradiant 
for s < 3), and l = 9 (subradiant for s < 3; sub- and superradiant for 4 < s < 6). In this configuration, the inter-ring 
distance is characterized by dr. Compared to the super- and subradiant modes in a single ring shown in Fig. 4(c), 
we find narrowing effects on Ωl(θ, φ) for both θ and φ directions. For the l = 1 mode shown in Fig. 6(b), as the 
number of rings s is increased, far-field radiation is elongated toward forward and backward directions with nar-
rower distributions in θ for each lobe. For l = 5 mode which is shown in Fig. 6(b), with the core-ring radius 
rc = 0.5λ, inter-ring distance dr = rc, and the number of rings s = 3, Ωl(θ, φ) splits into two lobes, bending toward 
forward and backward directions, similar to that in Fig. 6(a). This drastic change of scattering directions also 
accompanies with a crossover from sub- to superradiance. For the subradiant modes with l = 9 in Fig. 6(c), we 
also see localization of scattering in φ direction as s increases to 3, with the number of narrow lobes equal to 
Nφ = 20. For s = 4 in Fig. 6(c), we see a noticeable broadening in θ direction, which again exhibits a crossover from 
the sub- to the superradiance. The mode at s = 6 becomes strong superradiant, but in contrast to the case of l = Nφ 
(equivalent to l = 0) which exhibits simply forward and backward scattering along ẑ, it further breaks the contin-
uous symmetry in the φ direction and lead to 20 narrow superradiant lobes. Similar behaviors are seen in super-
radiant modes with l = 8. We note that the equivalence of maximum number of narrowed superradiant lobes and 
the number of atoms on each ring for a large l ≤ Nφ/2 (l = 8, 9, 10) is also a signature of the HPI states of r̂-stacking 
rings. In contrast, for the ẑ-stacking rings, this feature only appears in the case with l = Nφ/2, as shown in Figs 4(c) 
and 5(c).

Circular polarization. For the HPI states excited with circular polarization, [ ±ˆ ˆx iy( )/ 2], we expect more 
symmetric scattering patterns than with linear polarizations, and this is indeed the case as seen in Fig. 7. In this 
figure, we display the Ωl’s of the HPI subradiant states with l = 1 and 2 for few-atom cases, and that for many 
atoms with parameters adopted in a single ring structure in Fig. 4. For any uniform polarizations in general, 

⋅ˆ ˆR p( )2 in equation (17) can be replaced by | ⋅ |ˆ ˆR p 2, and as such, the handedness of the circular polarization does 
not matter to Ωl(θ, φ). For the two-atom case, the scattering property can be derived by substituting the prefactor 

Figure 5. Schematics of ẑ-stacked ring arrays and their far-field properties Ωl(θ, φ), with r/λ = 0.5. For the 
stacked ring arrays with Nφ = 20 in (a), Ωl(θ, φ)’s of the HPI states of two and three ẑ-stacked rings with 
dz/λ = 0.35 are illustrated for (b) l = 1 (superradiant), (c) l = 9 (subradiant), (d) l = 10 (subradiant), which 
exhibit enhancement on the forward scattering as the number of rings increases. The viewing angles are the 
same as Fig. 2.
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of equation (6), θ φsin cos2 2 , by θsin /22 . Similar to the case with linear polarizations in Fig. 2, scattering is sup-
pressed on the ŷ − ẑ plane but maximized on the x̂ − ẑ plane, which can be identified in Fig. 7(a). This is exactly 
the sum of the far-field scattering of HPI state for two linear-polarizations with l =  = 1 in Fig. 2. For three and 
four atoms, Ωl(θ, φ) of the subradiant modes peak at discrete azimuthal angles φ = φs + 2π/N, preserving the CN 
rotational symmetry for φ, where φs is the offset of the angle, depending on which subradiant mode we consider 
in Fig. 7(b,c).

For a single ring with N = 20 atoms, the HPI states go from super- to sub-radiant modes as l is increased, in 
which scattering in the forward/backward directions diminishes while the scattering in the transverse direction 
grows. For subradiant modes with l = 9 and 10, Ωl(θ, φ) breaks into 20 radiation lobes with narrow distribution in 
φ. In contrast to the similar effect seen in Figs 4, 5 and 6, circular polarization gives higher azimuthal rotational 
symmetry. This rotational CN symmetry also applies to the cases of ẑ- and r̂-stacking rings in Fig. 5. In the r̂
-stacking configurations, narrowing effects in θ and φ also appear, similar to that in Fig. 6(c).

We note that in general, elliptically polarized light represents all possible uniform polarizations of field excita-
tions, and therefore, linear and circular polarizations are the special cases of elliptical ones. In terms of a 

Figure 6. Schematics and the far-field scattering Ωl(θ, φ) for s r̂-stacked rings. (a) Schematic of r̂-stacked rings 
with the Same Nφ as that in Fig. 5 in each ring, with equal inter-ring distance dr. The Ωl(θ, φ)’s of the HPI states 
of two (upper) and three (lower) r̂-stacked rings are illustrated for (a) l = 1 (superradiant), (b) l = 5 (sub- and 
superradiant for two and three rings respectively), and cross-sectional plots for (c) l = 9 (subradiant) excitations. 
The scattering intensity shows narrowing (localization) in polar angle θ for l = 1 modes while in both θ and φ for 
modes with l = 9 as number of rings increases. The splitting and further narrowing in θ for the states with l = 9, 
as seen in (c) for s from 1 to 6, indicating a crossover from the sub- to the superradiant modes. This crossover 
also appears in (b). The fitted exponential decay rates for s = 1–6 (in units of Γ/2), Γf = 1.3 × 10−3, 7.7 × 10−3, 
0.019, 1.4, 1.35, and 1.36, respectively.

Figure 7. Far-field scattering from circularly polarized excitations. The Ωl’s of the HPI subradiant states are 
shown for (a) two-atom (l = 1), (b) three-atom (l = 1 and 2), and (c) four-atom cases (l = 1 and 2), at r/λ = 0.2. 
(d) The far-field scatterings of a single ring (same N and r for Fig. 4) with a circularly polarized excitation with 
l = 1, 2, 5, 9, and 10 are illustrated horizontally. The fitted exponential decay rates (in units of Γ/2), Γf = (a) 0.7, 
(b) 0.57 for both modes, (c) 0.7, 0.11, (d) 4, 3.3, 0.018, 7 × 10−8, and 3.5 × 10−9, respectively.
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normalized Jones vector, an elliptical polarization can be expressed as ( θ θ+ θˆ ˆx e ycos sina a
i e ) where θa and θe are 

two angles to characterize the strengths and phases of the polarizations in x̂ − ŷ plane. The vector of elliptical 
polarization traverses a rotated ellipse with an orientation angle α from the x̂-axis determined by 
tan α = tan θa cos θe. Therefore, (θe = 0) and (θe = ±π/2, θa = π/4) correspond to linear and circular polarizations 
respectively. For other angles, elliptical polarizations should generate the emission patterns with unequal super-
positions of x̂- and ŷ-polarized cases. Here and in the previous section, we show the results of circular and linear 
polarizations only, which should be sufficient and representative.

Radial and azimuthal polarizations. Finally we study the scattering properties from the radially and 
azimuthally polarized excitations64, which allows us to further manipulate the local orientations of the atomic 
dipoles. The resonant dipole-dipole interactions in equations (11) and (12) can be straightforwardly generalized 
by replacing the term [1 − ⋅ μνˆ r̂p( )2] with [ ⋅β αˆ ˆ⁎p p( ) − ⋅β αβˆ ˆ⁎ rp( ) ⋅α αβˆ r̂p( )] and correspondingly the term 
[1 − ⋅ μνˆ r̂p3( )2] with [ ⋅β αˆ ˆ⁎p p( ) − ⋅β αβˆ ˆ⁎ rp3( ) ⋅α αβˆ r̂p( )]. Similarly, the far-field Ωl of equation (17) can also be 
generalized by replacing [1 − ⋅ˆ ˆR p( )2] with [ ⋅β αˆ ˆ⁎p p( ) − ⋅βˆ ˆ⁎p R( ) ⋅αˆ ˆp R( )] and summing over indices α and β.

The polarizations for the radially and azimuthally excited atoms can be denoted as αp̂  = êr  and φ̂e  which are 
[ φ α x̂cos ( )  + φ α ŷsin ( ) ] and [− φ α x̂sin ( )  + φ α ŷcos ( ) ] in Cartesian coordinates, respectively. The polarization 
rotates with an angle φ(α) = 2παφ/Nφ which will imprint on the atoms in addition to the OAM phase. Unlike the 
circular polarizations which have definite spin angular momentum (±1ħ) in a photon, the radial and azimuthal 
polarizations can only relate to the circular ones by ± φˆ ˆe ier  = ± φˆ ˆx iy e( ) i . This indicates that an equal superpo-
sition with ±π/2 phase shift between the radial and azimuthal polarizations of light is the same as the left 
(right)-handed circular polarization with one quanta shift ( 1 ) of OAM. In Fig. 8, we demonstrate the far-field 
scattering patterns from radially and azimuthally polarized excitations. Both l = 1 HPI states exhibit the superra-
diant (l = Nφ or equivalently l = 0) scattering patterns with a signature of strong scattering into the forward and 
backward directions. As l increases, we find that the transverse far-field scattering patterns are enhanced while 
forward/backward directions are suppressed, similar to Fig. 7(d). When l ≈ Nφ/2, the corresponding HPI state is 
the most subradiant state, and Ωl splits into Nφ thin slab-like radiation lobes. In this case, we find that all of the 
patterns from circularly, radially, or azimuthally polarized excitations approach to each other. This is due to both 
the symmetry of l → −l in Ωl(θ, φ) and the discrete rotational symmetry CN are satisfied. Similarly, the stacked 
rings along ẑ or r̂  respectively enhances the forward scattering and the narrowing effect as in Fig. 5 with again an 
additional CN symmetry.

Discussion and Conclusion
In this paper, the requirement for preparing a photon carrying an OAM is relatively easy to fulfill, and a recent 
experiment showed that an OAM beam with as high as 10,000ħ can be generated69, thus suggests that our scheme 
is pragmatic with a scalability up to thousands of atoms. The requirement of reaching strong coupling, viz. the 
inter-atomic separation  λ.d 0 5 , is more stringent but can also be reached. For real atoms, it requires the atomic 
density comparable to that of an atomic Bose-Einstein condensate (BEC). As such, one can achieve by loading a 
BEC into a ring trap with a relatively tight radial confinement. On the other hand, it may be even more practical 
and promising to construct a strong-interacting ring with artificial atoms in solids70,71, given the high controlla-
bility of the atomic positions nowadays. It is of the reach of current technology to fabricate and construct a ring 
with μm-sized superconducting devices driven by a microwave field of wavelength λ > 500 μm or diamond color 
centers doped with 40-nm precision and driven by a near-infrared light at λ = 750 nm50. Both systems allow 
strong resonant dipole-dipole interactions as r/λ~0.05. For thermal atomic system28,72,73, we can add position 

Figure 8. Far-field scattering from radially and azimuthally polarized excitations. The Ωl’s of the HPI super- 
and subradiant states are plotted for a single ring with the same N and r of Fig. 4, which are excited by (a) 
radial and (b) azimuthal polarizations. The modes of l = 1, 2, 5, 9, and 10 are illustrated from left to right. The 
corresponding fitted decay rates for these modes (in units of Γ/2), Γf = (a) 2.3, 3.5, 0.098, 1.2 × 10−6, 7.4 × 10−8, 
(b) 3.9, 1.6, 0.074, 1.1 × 10−6, 6.9 × 10−8, respectively.
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fluctuations in our theory to simulate the effect of thermal fluctuations. We expect that the scattering patterns will 
be smoothed out and the fluctuation will suppress the lifetime43 of the HPI subradiant states.

The scattered patterns Ωl(θ, φ)’s not only provide useful information for light collections but offers far-field 
scattering fingerprints that can be traced back to the atomic spatial distributions, as well as the polarizations, thus 
offers one to study light-matter interactions in greater details. For practical applications in quantum memory, as 
the far-field radiation patterns of the super- and sub-radiant HPI states are very different, one can efficiently col-
lect the transversally scattered light from the subradiant states using a parabolic mirror with the forward and 
backward scattering blocked. While we have discussed stacking rings along the ẑ  and r̂  directions in this study, 
there are many other interesting geometries which can be studied, such as atoms arranged in a cylindrical shell 
with a chirality or even in a torus-like shape, making our scheme a versatile platform for engineering the proper-
ties of the HPI many-body states and their emission patterns for quantum optical applications.

Finally, storing and manipulating quantum information using a light with a large OAM in principle allows 
massive entanglement, which is potentially useful in implementing high-dimensional quantum gates for quantum 
computation74, as well as handling hyper-entangled photons which simultaneously entangle OAM and such as the 
polarization (spin) degrees of freedom, for higher information capacity75.

Methods
Lindblad form of dissipation with resonant dipole-dipole interactions. The theoretical analysis for 
the fluorescence and light scattering is based on the Lindblad forms of the spontaneous emissions. The general 
spontaneous emission process involves the long-range dipole-dipole interaction23,24. This pairwise interaction 
originates from the rescattering events in the common quantized light field. For an arbitrary quantum operator Q̂, 
the Heisenberg equation in a Lindblad form gives

∑ ∑ σ σ= − +
μ νν

μν μ ν
≠ =

+ −ˆ ˆ ˆ ˆ ˆdQ
dt

i G Q Q[ , ] [ ],
(9)

N N

s
1

where for the spontaneous emission,

∑ σ σ σ σ σ σ= − + − .
μ ν

μν
μ ν μ ν μ ν

=

+ − + − + −ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )Q
F

Q Q Q[ ]
2

2
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s
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, 1


The dipole operator is σμ
−ˆ  (σμ

+ˆ ) where σμ
−ˆ  ≡ | 〉 〈 |μg e  and σμ

−ˆ  ≡ σμ
+ˆ †( ) . The pairwise frequency shift Gμν and decay 

rate Fμν are24
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where Γ is the single-particle natural decay rate of the excited state, ξ = |kL|rμν, and the interparticle distance 
rμν = |rμ − rν|. The above expressions are valid for uniformly polarized excitations of the dipole orientations p.

The time evolutions of the HPI states can be determined by the eigenvalues and eigenvectors of the coupling 
matrix M̂ with δ= − +μν μν μν μ ν≠

− ⋅ −μ νM F i G e( 2 ) /2ik r r( )L  in the bare state bases |ψμ〉. Denote the eigenvalues and 
eigenvectors as λm and Û respectively, the time evolution of the HPI state |Ψ(t)〉 = hl(t)|Φl〉HPI reads37,38,41
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z

where the atomic position index ν is implicitly (νz − 1)Nφ + νφ, which is the same as μ. The eigen-spectrum of λm 
involves both super- and subradiant decay rates along with the associated frequency shifts, and |vm(l)|2 is essen-
tially the fidelity of |Φl〉HPI to the mth eigenstate, while |vm(l)wm(l)|2 gives a measure of how much λm contributes 
to the HPI state dynamics.

Far-field scattering.  The far-field scattering properties provide measurable information for characterizing 
the HPI states and the atomic system. Similar ring lattice has been used to prepare Rydberg states76 which show 
collective effects in the photon emissions. Here we use the general expression of the far-field scattering from the 
two-level atoms in Heisenberg picture24,
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where ωeg is the energy difference, R = |R|, rαβ = rα − rβ, and the orientation of the dipole moment →p  is deter-
mined by the polarization of the excitation. The far-field derivation assumes that the observation point is far 
compared to the size of the atomic ring, such that ω | − |α cR r / 1eg . This also suggests that the radiation mode 
k ≈ kR//Rα [=(R − rα)] in Fig. 1 in the main paper, which indicates of the retarded phase ≈− − ⋅α αe eik R R ik r( )R R . 
Similar and more general expression can also be derived for a four-level atomic system77 (three Zeeman levels in 
the J = 1 excited state, as in strontium atoms), which takes equation (16) in a tensor form of dipole transitions.

Set the time t = t′ in equation (16), we can calculate the radiation field intensity in terms of the dipole opera-
tors in Schrödinger picture, that is, σ σΨ | |Ψα β

+ −ˆ ˆt t( ) ( ) . Therefore, by substituting the HPI states |Ψ(t)〉 = hl(t)|Φl〉HPI, 
we obtain the radiation field intensity,
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where I0(t) = ⁎I h t h t( ) ( )n l l  is the time-evolving fluorescence intensity with ω πε≡ |→|I p c R( ) /(4 )n eg
2

0
2 2, and again 

α(β) has an implicit dependence of αφ(βφ). Equation (17) characterizes the far-field scattering property from the 
HPI states prepared by an excitation field of lth OAM, which involves the interplay of the atomic distributions rαβ 
and the imprinted phases π φei l N2 / .

Mode symmetry. The mode symmetry of Ωl(θ, φ) = Ω−l(θ, φ) = ΩN−l(θ, φ) for even number of the atoms can 
be explained in a polygon geometry with the pairwise and spatial phase contributions of kR · rαβ. These include a 
combination of C N

2  cosine functions with N nearest-neighbor components (β = α + 1) and with N(N − 3)/2 diag-
onals in the geometry of N-polygon. The nearest-neighbor components pair up and interchange with l and −l. For 
the diagonals, they can be further grouped into (N/2 − 2) different lengths (next nearest-neighbor, next next 
nearest-neighbor, etc.) with N components respectively, and the diagonal with the maximal length (2r) with N/2 
components. Again the N components in the respective groups can be interchanged with l and −l. The N/2 com-
ponents in the maximal diagonal go back to themselves as l → −l. This is due to the form of π + ⋅ αβl k rcos( )R  
which is the same as π− + ⋅ αβl k rcos( )R  with a phase difference of 2lπ.
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