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MicroRNA-guided prioritization 
of genome-wide association 
signals reveals the importance of 
microRNA-target gene networks 
for complex traits in cattle
Lingzhao Fang   1,3,4,5, Peter Sørensen1, Goutam Sahana   1, Frank Panitz2, Guosheng Su1, 
Shengli Zhang3, Ying Yu3, Bingjie Li1, Li Ma4, George Liu5, Mogens Sandø Lund1 & Bo Thomsen2

MicroRNAs (miRNA) are key modulators of gene expression and so act as putative fine-tuners of 
complex phenotypes. Here, we hypothesized that causal variants of complex traits are enriched in 
miRNAs and miRNA-target networks. First, we conducted a genome-wide association study (GWAS) 
for seven functional and milk production traits using imputed sequence variants (13~15 million) and 
>10,000 animals from three dairy cattle breeds, i.e., Holstein (HOL), Nordic red cattle (RDC) and Jersey 
(JER). Second, we analyzed for enrichments of association signals in miRNAs and their miRNA-target 
networks. Our results demonstrated that genomic regions harboring miRNA genes were significantly 
(P < 0.05) enriched with GWAS signals for milk production traits and mastitis, and that enrichments 
within miRNA-target gene networks were significantly higher than in random gene-sets for the 
majority of traits. Furthermore, most between-trait and across-breed correlations of enrichments with 
miRNA-target networks were significantly greater than with random gene-sets, suggesting pleiotropic 
effects of miRNAs. Intriguingly, genes that were differentially expressed in response to mammary 
gland infections were significantly enriched in the miRNA-target networks associated with mastitis. 
All these findings were consistent across three breeds. Collectively, our observations demonstrate the 
importance of miRNAs and their targets for the expression of complex traits.

Understanding the genetic architecture, i.e., knowledge of causal genomic variants, their allele frequencies and 
effect sizes, underpinning complex phenotypes and diseases is a long ongoing quest in the field of genetics and 
genomics1–3. Complex phenotypes consist of contributions from multiple genomic loci, and accurate and reliable 
prediction of future complex traits and diseases based on genomic information is critical for human personalized 
medicine as well as for breeding of agricultural animal and plant species4–11. In the past decade, genome-wide 
association studies (GWAS) have been a productive way to achieve this goal5. Yet, big challenges remained in 
extending GWAS results to informative biological hypotheses underlying complex traits variation primarily due 
to 1) poor detection of many causal loci/genes with small effects by GWAS with limited sample sizes12,13, and 2) 
masking of true association signals by linkage disequilibrium (LD) between causal loci and neighboring mark-
ers4,14, especially in livestock with high degree of relatedness10,15. Recently, we have shown that the predictive 
ability of the genomic best linear unbiased prediction model increases in accuracy when the model utilizes and 
quantifies the combined contributions of markers in genomic regions associated with the genetic architecture 
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of the underlying trait9,16–18. Also, biological knowledge has been incorporated to improve the understanding of 
GWAS results19–25. For instance, by integrating genome functional annotations with GWAS data, Finucane et al. 
(2015) revealed conserved genomic regions that were strongly enriched with genetic variation of many complex 
traits in human25. Holmans et al. (2009) provided insights into the biology of bipolar disorder through incorpo-
ration of Gene Ontology (GO) annotation into GWAS results23. Fang et al. (2017) revealed novel insights into the 
genetic and biological basis underpinning mastitis by incorporating transcriptome data22.

GWAS signals often map to non-coding regions of the genome, demonstrating that sequence variants in pro-
tein coding genes alone cannot explain most quantitative phenotypes. Indeed, conventional protein coding genes 
constitute only a very small percentage of the genome; yet ~75% of the genome generates RNA transcripts26. 
Thus, most transcripts in eukaryotic cells are non-coding RNA, and much of the regulatory capability and func-
tion of the genome are provided by non-coding RNA transcripts26–28. Among the many classes of non-coding 
RNA species are microRNAs, which act posttranscriptionally to fine-tune protein synthesis. The vertebrate 
genome encodes in the order of several hundred microRNAs comprising both evolutionary conserved and 
species-specific genes. The encoded miRNAs are ~22 nucleotide long RNA molecules that align to sequences in 
target mRNA molecules, leading to either deadenylation and decay of mRNAs or repression of protein transla-
tion29. In more rare cases, miRNAs can also activate and up-regulate gene expression in presence of distinct cofac-
tors and under specific cellular conditions30. A single miRNA can target several different mRNAs, and moreover, 
mRNAs are often controlled by several different miRNAs29. Computational estimates suggest that more than 30% 
of all protein-coding genes in human are regulated by miRNAs31–34. This strongly indicates that miRNAs have 
widespread roles in vivo, and that all genetic networks and pathways are expected to be regulated to some degree 
by miRNAs. Genomic sequence variation can affect miRNAs functions in several ways: Variants can occur in 
sequences that are responsible for driving the expression of miRNA genes; variants can disrupt or create miRNA 
binding sites in target mRNAs; and the miRNAs themselves can exist as variants35. In this study, we aimed to 
investigate the joint effect of genetic variations in miRNA genes and in their targets-networks on complex traits 
of economic importance in dairy cattle.

Results
The overall study design is shown in Fig. 1. The quantitative traits in this study were body conformation (BC), 
mastitis, health, fertility and three milk production traits, including fat yield (FY), milk yield (MY) and protein 
yield (PY). Index for general health in dairy cattle describes genetic potential to resist reproductive, metabolic 
and feet-and-leg diseases, and this index is calculated based on data of veterinarians’ treatments in the first three 
lactations (http://www.nordicebv.info). We used imputed sequence variants (13~15 million single-nucleotide 
polymorphism (SNPs)) to ensure the coverage of most genes and miRNAs in the bovine genome (UMD 3.1). We 
performed within breed analyses for Holstein (HOL, n = 5,056), Nordic red (RDC, n = 4,310) and Jersey (JER, 
n = 1,231) cattle, to confirm our findings. Infection-induced transcriptome data were then integrated to validate 
the significant miRNA-target networks detected for mastitis, and to investigate the underlying genetic and bio-
logical basis of our findings.

Single-marker GWAS for seven quantitative traits in three cattle breeds.  The single-marker 
GWAS was performed to identify genomic variants associated with the traits being studied. The −log10P values 
of all tested sequence variants in the seven traits across HOL, RDC and JER are shown in the Manhattan plots, 
Supplementary Fig. S1, S2 and S3, respectively. At a nominal P-value < 3.3 × 10−9 (Bonferroni correction), a 
total of 6, 4, 12, 0, 5, 1 and 2 quantitative trait loci (QTL) were detected for MY, FY, PY, BC, mastitis, health and 
fertility, respectively in HOL, which jointly explained 24.1%, 22.3%, 19.3%, 0%, 9.7%, 8.2% and 5.3% of genomic 
variance in each corresponding trait, respectively. In RDC with the same P-value threshold as in HOL, 6, 6, 6, 
4, 2, 0 and 4 QTLs were detected for MY, FY, PY, BC, mastitis, health and fertility respectively, which jointly 
explained 13.0%, 13.3%, 9.3%, 33.3%, 6.8%, 0% and 8.1% of genomic variance for each trait, respectively. In JER at 
P-value < 3.7 × 10−9, only 2 and 1 QTLs were detected for MY and FY, respectively, accounting for 3.9% and 3.1% 
of genomic variance for each trait, respectively. All the results demonstrated that the detected QTLs explained 

Figure 1.  The overall study design. MY, FY, PY and BC are milk yield, fat yield, protein yield, and body 
conformation, respectively. HOL, RDC, and JER are Holstein, Nordic red, and Jersey cattle.

http://www.nordicebv.info
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only a small fraction of genomic variance in complex traits, particularly in JER with a small sample size. The 
details of QTLs for all seven traits in the three breeds are summarized in Supplementary Table S1.

MiRNA genes are enriched with GWAS signals.  In order to assess whether miRNAs influence the 
traits, we first mapped known miRNA genes in the bovine genome (UMD 3.1). A total of 750 bovine autosome 
miRNA genes expressed in different tissues from miRbase36 (http://www.mirbase.org/ftp.shtml) were observed 
to be distributed with an average of 26 (range: 7 to 77) miRNAs per chromosome (Fig. S4A and B). The average 
lengths of the miRNA precursor sequences were 77 base-pairs (bp) (range: 52 to 148 bp) (Fig. S4C). Since very few 
imputed SNPs were observed within the miRNA precursor regions due to their short lengths (see Supplementary 
Table S2), the analysis included the flanking ±3 kb, ±5 kb, ±0 kb, ±20 kb, ±50 kb sequences of all miRNA genes 
to capture proximal SNPs in the regulatory regions. Details of miRNAs and SNPs involved in the analyses under 
each extension are shown in Supplementary Table S1. Considering all miRNA genes together as a single set of 
markers, the marker-set test was carried out to analyze for enrichment of miRNA genes with association signals 
for each trait in all breeds. Analysis using the miRNA ±5 kb extended regions, significant (P < 0.05) enrichments 
were observed for most traits in the three breeds, especially for three milk production traits and mastitis (Fig. 2A), 
and the enrichments (i.e., −log10P values, marker-set test) were correlated between breeds (Fig. 2B–D). Of note, 
after removing all the four miRNAs (i.e., bta-miR-2309, bta-miR-1839, bta-miR-2308, and bta-miR-193a-2) that 
were in close proximity to the well-known milk/fat gene, DGAT1, on Bos taurus chromosome 14 (BTA 14)37, sim-
ilar enrichments were still observed for the three production traits across the three breeds, particularly in RDC 
and JER (see Supplementary Table S3). In addition, similar enrichments were observed with other extensions for 
all seven traits in three breeds due to the extensive LD in bovine genome15 (see Supplementary Fig. S5). These 
results suggested that the phenotypic variations in the traits may be associated with the miRNA genes.

MiRNA-target networks provide new insights into the genetic architecture of complex traits.  
The targets of trait-associated miRNAs are likely to be enriched for GWAS signals. To test this, we employed the 
miRmap software to in silico predict targets of all miRNAs38 (http://mirmap.ezlab.org/). Computational target 
prediction remains a challenge as they predicted targets only rely on the physical properties of miRNA regula-
tion (e.g., evolutionary conservation and secondary structures of 3′ UTRs), hence only the top 25% of predicted 
targets were analyzed in the downstream analysis, including 11,455 out of 24,616 bovine genes (UMD 3.1, http://
www.ensembl.org/Bos_taurus/Info/Index). The average number of targets of miRNAs was 434 (range: 7 to 4,325) 
(Fig. 3A). To test for enrichment of GWAS signals, all targets of a single miRNA were considered as a miRNA 
target-network (i.e., as one marker set) and only SNPs located in the open reading frame (ORF) of targets were 
included. Furthermore, for comparison, 1,000 random target networks were generated for each miRNA, and 769 
GO terms together with 916 Reactome terms were also analyzed (see Methods).

Compared to the random-target networks, the enrichments with miRNA-target networks were significantly 
(P < 0.05, Wilcoxon-test) higher for all seven traits across three breeds, except for health and fertility in HOL 

Figure 2.  The enrichments (i.e., −log10P) of association signals in miRNA genes with ±5 kb extension for 
seven traits across three breeds. (A) is the enrichments for seven traits among three breeds; the red dotted line 
corresponds to P = 0.05. (B–D) are correlations of enrichments for all seven traits in Holstein (HOL) vs. Jersey 
(JER), Nordic red cattle (RDC) vs. JER, and HOL vs. RDC, respectively. MY, FY, PY and BC are milk yield, fat 
yield, protein yield, and body conformation, respectively. −log10P is determined by marker-set test.

http://www.mirbase.org/ftp.shtml
http://mirmap.ezlab.org/
http://www.ensembl.org/Bos_taurus/Info/Index
http://www.ensembl.org/Bos_taurus/Info/Index
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(Fig. 3B–D). This was in agreement with the finding that fertility and health in HOL had the lowest enrichments 
with miRNA genes themselves as shown in Fig. 3A. Furthermore, the enrichments of fertility and health in both 
RDC and JER were significantly higher than in HOL, and the enrichment of BC in HOL was significantly higher 
than in RDC and JER, which were also in line with that the observations on the miRNA genes.

Correlations between traits.  The enrichments with miRNA-target networks were highly significantly 
(P < 0.001) correlated between traits in HOL, and the highest correlations were observed among milk produc-
tion traits (see Supplementary Fig. S6). Similar patterns were also observed in both RDC and JER, except for 
health and fertility in JER which might be due to their low statistical power (i.e., the combined influence of the 
small sample size and the small effect size) in GWAS (see Supplementary Figs S7 and S8). Assuming each cor-
relation coefficient approximately follows a normal distribution, which was determined by 1,000 random-target 
networks (see Methods), a majority of between-traits correlations with miRNA-target networks were significantly 
(P < 0.05) greater than the random correlation coefficients, demonstrating that the genetic architecture of mul-
tiple complex traits shared certain similarities in the underlying miRNA-target networks. Only the significant 
between-traits correlations in HOL, RDC and JER are shown in Fig. 4A–C, respectively. The correlations among 
milk production traits were significant across three breeds. The correlations between BC with all three milk pro-
duction traits were significant in HOL, and the correlations between health with other six traits (expect for BC) 
were significant in RDC. Of special note, mastitis was significantly correlated with the remaining six traits across 
all three breeds, except for mastitis vs. BC in RDC, and mastitis vs. health in JER. Additionally, the between-trait 
correlations with miRNA-target networks were typically higher than those with GO and Reactome terms, and 
the patterns were consistent across the three breeds (Fig. 4D–F). All the findings here provided genomic evidence 
that miRNAs may influence many complex phenotypes through regulation of their targets, and further suggests 
pleiotropic effects of miRNAs.

Figure 3.  Number of targets of miRNAs and the enrichments with miRNA-target networks for seven traits 
across three breeds. (A) Shows the number of target genes in each miRNA, and each blue point is a single 
miRNA. (B–D) are the difference in enrichments (i.e., −log10P) between the miRNA-target networks (miRNA-
target) and random-target networks (Random-set) for seven traits in Holstein (HOL), Nordic red cattle (RDC), 
and Jersey (JER), respectively. Random-set is the random target-networks of miRNAs (replicates = 1000). 
−log10P is calculated using marker-set test. MY, FY, PY and BC are milk yield, fat yield, protein yield, and body 
conformation, respectively. The red dotted line corresponds to P = 0.05, and the blue line corresponds to P = 0.5.
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Correlations between breeds.  The correlations between breeds of enrichments with miRNA-target net-
works for the same trait were calculated. As shown in Table 1, a majority of between-breed correlations were 
significantly greater than the random correlation coefficients (P < 0.05). Furthermore, the between-breed 
correlations with miRNA-target networks tended to be higher than those with GO and Reactome terms (see 
Supplementary Fig. S9). These results indicated that the miRNA-target networks associated with complex traits 
shared certain similarities across breeds.

Significant miRNA target-networks.  When a miRNA target-network had P-values < 0.05 (based on 
marker-set test) across all three breeds for a trait (P < 0.053 = 1.25e-04), this miRNA target-network was consid-
ered significant, suggesting that this miRNA and its target genes may participate in biological processes pertinent 
to this particular trait. A total of 55 significant miRNA-target networks were detected for seven traits and twelve 
miRNAs were involved in several traits (Fig. 5). The enriched (FDR < 0.1) KEGG pathways for the targets of these 
significant miRNAs are shown in Fig. 6. Thus, six miRNAs were shared by FY and MY, including bta-miR-188, 
bta-miR-2389, bta-miR-331, bta-miR-6526, bta-miR-670 and bta-miR-873, the targets of which were mainly 
engaged in MAPK signaling pathway, Ras signaling pathway, inositol phosphate and glycerophospholipid metab-
olism. Three miRNAs, bta-miR-10a/b and bta-miR-6525, were shared by MY and mastitis, and bta-miR-2366 was 
shared by FY and mastitis, the targets of which were engaged in MAPK signaling pathway, AMPK signaling path-
way, Ras signaling pathway, salmonella infection, and fructose and mannose metabolism. Also, bta-miR-2306, 
was shared by MY, PY and fertility. Our results were in line with previous studies on miRNA transcriptomes in the 

Figure 4.  The correlations for enrichments with miRNA-targets networks between traits in Holstein (HOL), 
Nordic red cattle (RDC) and Jersey (JER). (A–C) are the singificant (P < 0.05) between-trait correlations in 
HOL, RDC, and JER, respectively. The significant level was computed by assumping the correlation follows 
a normal distribution that was determined by random-target networks (replicates = 1,000). (D–F) are the 
difference in between-trait correlations among miRNA-target networks, Gene Ontology (GO) and Reactome 
terms for HOL, RDC, and JER, respectively.

FY MY PY BC Mastitis Health Fertility

HOL vs. RDC 0.45* 0.41*** 0.38*** 0.11*** 0.23** 0.11 0.08

HOL vs. JER 0.11 0.22* 0.02 0.39*** 0.17* 0.04 0.08˙

RDC vs. JER 0.12** 0.23*** 0.15*** 0.07˙ 0.02 0.24*** 0.11˙

Table 1.  Between-breeds correlations based on enrichments with miRNA-target networks. Note: FY, MY, PY 
and BC are fat yield, milk yield, protein yield and body conformation, respectively. The significant levels of 
correlations were determined acorrding to the 1000 correlations calculated using random-target networks, 
assuming the correlation approximately follows a normal distribution. ***is P < 0.001 **is P < 0.01 *is P < 0.05, 
and ˙is P < 0.1.
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mammary gland during lactating and infection39–42, suggesting it might be a promising way to detect candidate 
miRNAs for a trait through investigation of the enrichments of their targets for GWAS signals.

Integrative analyses of infection-induced transcriptomes provide novel insights into the 
genetic and biological basis underlying mastitis.  We detected eighteen miRNA-target networks that 
were associated with mastitis (Fig. 5). To provide new insight and to further improve prioritization of GWAS 
signals for mastitis, we integrated these associations with liver and mammary gland transcriptome data from 
two intra-mammary infection experiments performed in HOL cows. Differentially expressed genes (DEGs, 
FDR < 0.05) in the mastitis-related transcriptomes were identified at different time-points post infeciton relative 
to control groups (Fig. 7, see Methods). Enrichment analysis showed that the mastitis-associated miRNA-target 
networks were significantly enriched (P < 0.05, hypergeometric test) with DEGs detected in most of the condi-
tions (Fig. 7A), supporting that these miRNAs could be involved in the response to mastitis. The top enriched 
miRNA in each condition is indicated in Fig. 7A. Targets of mastitis miRNAs that were observed differentially 
expressed in at least two infection conditions were considered as differentially expressed targets (DETs). The 
heat-map of log2 (fold change, FC) of DETs across all experimental conditions are shown in Fig. 7B. The num-
bers of DETs were 2,381 unique genes and the average number of DETs per miRNAs was 326 (range: 61 to 530). 
The results showed consistently across all three breeds that the mastitis GWAS signals were significantly more 
enriched in DETs than in non-DETs (P < 0.05, t-test) (Fig. 7C–E).

Next, the DETs of these miRNAs were separated into up- and down- regulated transcripts based on their 
log2FC > 0 (up) or <0 (down) across all infection conditions. In total, 1,002 unique up-regulated DETs were 
detected with an average of 142 (range: 31 to 231) for each miRNA, and 1,111 down-regulated DETs were detected 

Figure 5.  Significant miRNA-target networks for seven traits in three breeds. FY, MY, PY and BC are fat yield, 
milk yield, protein yield and body conformation, respectively. A miRNA target-network with P values < 0.05 
across three breeds for the same trait was considered as significant for this particular trait. P is the mean of  
P values (based on marker-set test) of a significant miRNA-target network in three breeds. T_size is the number 
of targets in a miRNA target-network.
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with an average of 146 (range: 24 to 255) for each miRNA. The mastitis GWAS signals were significantly more 
enriched in up-regulated DETs of miRNAs than in down-regulated DETs across all three breeds (Fig. 7F–H). In 
agreement, the functional enrichment analyses based on KEGG pathways demonstrated that the up-regulated 
DETs of these mastitis miRNAs were mainly engaged in the innate immune system, infection defense and inflam-
matory response (Fig. 8).

Bta-miR-10a/b and bta-miR-6525 are associated with MY and mastitis.  Three miRNA target 
networks, bta-miR-10a, bta-miR-10b and bta-miR-6525, were enriched for GWAS signals for both MY and 
mastitis. Integration with mastitis-related transcriptome data showed that transcripts that are up-regulated 
for all three miRNAs (Fig. 9A) were significantly more enriched with association signals for mastitis than for 
MY across the three breeds (Fig. 10C–E), while the down-regulated DETs (Fig. 9B) tended to be more asso-
ciated with MY than with mastitis across all breeds (Fig. 9F–H). Consistently, functional analyses of up- and 
down-regulated DETs demonstrated that the up-regulated DETs of the three miRNAs were mainly engaged in 
inflammation and immune responses such as TNF signaling pathway and Epstein-Barr virus infection, while 
their down-regulated DETs were mainly engaged in amino acid metabolism, such as steroid biosynthesis and 
valine, leucine and isoleucine degradation (Fig. 10). These results were in agreement with previous reports show-
ing involvement of bta-miR-10a and bta-miR-10b not only in innate immune responses but also in lipid and 
cholesterol metabolism43–49.

Discussion
Knowledge-guided genotype-phenotype mapping and genomic prediction.  Identifying and uti-
lizing causal links between genotypes and quantitative phenotypes and diseases is a major goal in animal breeding 
as well as in clinical personalized medicine. Multiple statistical models have been used for genotype-phenotype 
mapping, and the performance of the models depends critically on the genetic architecture underlying complex 
traits. Single-marker regression models are suitable for detection of genomic variants with large effects but not 
for identifying variants with small effects50, and therefore typically accounts for only a fraction of the total genetic 
variance. Knowledge-guided gene-mapping approaches such as marker-set test based on single-marker statistics 
or genomic feature prediction models such as GFBLUP9 and BayesRC51 can contribute to the discovery of the 
so-called “missing heritability” in the standard GWAS. The sum-based marker-set test method applied in this 
study has been demonstrated to have higher power or at least equal to most commonly used marker-set test meth-
ods, particularly for the highly polygenic traits16,18. Provided the genomic features are enriched for causal vari-
ants, incorporating this type of biological information into the genomic prediction model can also improve the 
prediction accuracy9,17,18. Thus, previous studies demonstrated a positive correlation between association signal 
enrichment and the predictive ability of GFBLUP model that allowed us to differentially weight SNPs associated 
with that particular genomic feature11,18. In fact, any biological information that can be linked to specific genomic 
regions containing, or in LD with, SNPs, can be used to construct the genomic features. Important sources for 
defining trait-relevant features include the genome, epigenome, transcriptome, proteome and metabolome levels, 
or functional networks such as KEGG pathways, gene ontology terms and protein-protein interaction complexes. 
Information from several resources may be utilized simultaneously to capture the dynamic aspects of genome 
function. Clearly with the increasing availability of large-scale GWAS results and more comprehensive genome 
annotation, the marker-set test and the genomic feature based prediction models will be increasingly useful in 

Figure 6.  Enriched (p.adjust < 0.1) KEGG pathways for all significant miRNA-target networks. p.adjust is the 
corrected P-value using FDR methods. Values in the brackets are the number of targets that can be annotated 
in KEGG databases in the corresponding miRNAs, and GeneRatio is the proportion of enriched targets in a 
pathway over all the targets that were annotated in KEGG (values in the brackets).
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Figure 7.  Integrative analyses of infection-relevant transcriptome data with significant mastitis miRNA 
target-networks. (A) The enrichments for targets in mastitis miRNA target-networks with differently expressed 
genes (DEGs) that are detected in different infection conditions. Each point is a miRNA target-network. The 
significance (−log10P) is determined using hypergeometric test. The red line corresponds to P = 0.05. The red 
square, star and circle represent bta-miR-6525, bta-miR-10b and bta-miR-10a, respectively, which are shared 
between mastitis and milk yield. LL3, LL6, LL9, LL12 and LL48 represent the comparisons of 3, 6, 9, 12 and 
48 h post intra-mammary infection with LPS to the control time-point (−22h), respectively in liver. LE12 
and LE24 represent the comparisons of 12 and 24 h post intra-mammary infection with E. coli to the control 
time-point (−144h), respectively in liver. ME24 represents the comparison of the infected udder quarters to 
the control ones at 24 h post intra-mammary infection with E. coli. (B) The heatmap of log2(fold-change, FC) 
of differentially expressed target (DETs) of mastitis-associated miRNAs. (C–E) Represent the difference in 
the enrichments of association signals of mastitis between DETs and non-DE targets (N_DETs) of mastitis-
associated miRNAs for HOL, RDC and JER, respectively. (F–H) Represent the difference in the enrichments 
of association signals of mastitis between up- (UP) and down- (DOWN) regulated DETs of mastitis-associated 
miRNAs for HOL, RDC and JER, respectively.

Figure 8.  Functional enrichment analysis of up-regulated differentially expressed targets (DETs) of significant 
mastitis miRNAs. p.adjust is the corrected P-value using FDR methods. Values in the brackets are the number of 
up-regulated DETs that can be annotated in KEGG databases for the corresponding miRNAs, and GeneRatio is 
the proportion of enriched up-regulated DETs in a pathway over all the up-regulated DETs that were annotated 
in KEGG (values in the brackets).
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the near future for identifying associations between a trait and a genomic feature and for improving genomic 
prediction of complex phenotypes.

MicroRNAs and their target networks contribute to genetic variations in complex traits.  
MicroRNAs are functional noncoding RNAs that modulate translation and decay of mRNA transcripts, thereby 
playing major roles as regulators of gene expression in a wide range of biological processes. Here we interrogated 
data from genome-wide association studies for evidence of overrepresentation of miRNA genes and their target 
genes. Our analysis revealed significant enrichment of GWAS signals in proximity to miRNA genes for complex 
traits in all three dairy cattle breeds. Overall, 55 significant miRNA-target networks were detected for the seven 
traits, out of which 12 were shared among multiple traits, indicating pleiotropic effects of miRNAs (Fig. 5). Our 
observations agree well with a number of other studies that addressed the roles of miRNAs in mammary gland 
development and lactation. Thus, a recent analysis of miRNA expression in milk during the entire lactation cycle 

Figure 9.  Up- and down-regulated differentially expressed targets (DETs) of bta-miR-10a/b and bta-miR-6525. 
(A,B) are overlaps of up-/down- regulated DETs of bta-miR-10a/b and bta-miR-6525 respectively. (C–E) Are 
the difference in their up-regulated DETs in enrichments (−log10P) of association signals between mastitis and 
milk yield (MY) for HOL, RDC and JER, respectively, while (F–H) are the difference in the down-regulated 
DETs in enrichments of association signals between mastitis and MY for HOL, RDC, and JER, respectively. The 
red square, star and circle represent bta-miR-6525, bta-miR-10b and bta-miR-10a, respectively.

Figure 10.  Functional enrichment analyses of up-/down-regulated differentially expressed targets (DETs) of 
bta-miR-10a/b and bta-miR-6525. p.adjust is the corrected P-value using FDR methods. Values in the brackets 
are the number of DETs that can be annotated in KEGG databases, and GeneRatio is the proportion of enriched 
DETs in a pathway over all DETs that were annotated in KEGG (values in the brackets). UP_10a, UP_10b and 
UP_6525 correspond to up-regulated DETs of bta-miR-10a, bta-miR-10b, bta-miR-6525, respectively, while 
DOWN_10a, DOWN_10b and DOWN_6525 correspond to down-regulated DETs of bta-miR-10a, bta-miR-
10b, bta-miR-6525, respectively.



www.nature.com/scientificreports/

1 0SCIENtIfIC ReporTS |  (2018) 8:9345  | DOI:10.1038/s41598-018-27729-y

detected a total 475 known and 348 novel miRNAs. Comparison between different cycle stages revealed 344, 366, 
and 209 differentially up- and down-regulated expression of miRNAs between lactogenesis and galactopoiesis, 
involution and galactopoiesis, and involution and lactogenesis, respectively52. Likewise, expression profiling of 
lactating versus non-lactating stages of mammary glands identified a total of 900 known and candidate microR-
NAs of which more than 60% were shared between the two periods53. The high diversity and abundance, as well 
as the differentially regulated expression patterns of miRNAs in mammary gland tissue clearly underscores that 
synthesis and secretion of milk as well as switches between lactation stage involves a high level of posttranscrip-
tional regulation of gene expression by miRNAs.

Eighteen miRNA-target networks were associated with mastitis many of which have previously been observed 
in connection with mammary gland infections. Thus, Streptococcus agalactiae-induced mastitis of bovine 
mammary glands resulted in altered expression of thirty five miRNAs including a bta-miR-30 family member, 
bta-miR-135a, and bta-miR-2284 family members41. Challenge of bovine MAC-T mammary epithelial cells with 
pathogenic Staphylococcus aureus or Escherichia coli led to differential expression of seventeen miRNA genes 
among which were bta-miR-30b-5p and bta-miR-30c39. A total of 77 miRNAs that included bta-miR-2422, 
bta-miR-135a, a bta-miR-2285 member, and several bta-miR-2284 family members showed expression dif-
ferences in Staphylococcus aureus infected mammary glands compared to control groups42. Furthermore, 
miRNA expression profiles of milk exosomes from cows prior and after infection of the mammary gland with 
Staphylococcus aureus showed significant changes in fourteen known genes including bta-miR-10a40. Also 
bta-miR-222 expression was significantly upregulated in mastitis-affected cows54. Co-expression network and 
pathway analysis revealed significant correlations between milk somatic cell count (SCC), an indicator trait for 
mastitis, and bta-miR-10a, bta-miR-2448, bta-miR-2284 family members and bta-miR-2285 family members55. 
Also in other species several of these eighteen miRNAs have been linked to mastitis and immune protection. In 
porcine mammary epithelial cells, coliform mastitis induced differential expression of miR-10a/10b and miR-
30b/c/f56. Moreover, miR-221 was differentially expressed in colostrum and peak lactation periods in the caprine 
mammary gland57.

Finally we defined genomic features for mastitis by integrating both transcriptome and miRNA-target net-
works with GWAS data. The results showed consistently across all three breeds that the mastitis associated GWAS 
signals were significantly more enriched in DETs than in non-DETs. Additionally, partitioning of DETs showed 
that up-regulated targets had higher enrichment compared to down-regulated targets. Furthermore, three 
miRNA-target networks showed enrichment for GWAS signals for both MY and mastitis. Intriguingly, when inte-
grated with the mastitis-related transcriptome data, the analysis revealed that up-regulated transcripts belonging 
the network targets of all three miRNAs were significantly more enriched with association signals for mastitis 
than for MY across the three breeds; and vice versa, the down-regulated transcripts were more associated with 
MY than with mastitis. High milk yield is often associated with risk of mastitis58. Our work showed a genetic link 
between the two traits mediated by miRNA-target networks, which may in part help understanding the unfavora-
ble correlation between mastitis and MY.

Conclusion
In conclusion, the marker-set test of joint effects of SNPs linked to miRNAs enabled us to discover contributions 
from miRNAs as well as of their target networks to multiple complex traits in three cattle breeds. Overall, this 
work underscores that the use of biological priors such as genomic features defined by miRNAs and their tar-
gets enhances our insight into the genetic architecture underlying phenotypic diversity. With the rapid progress 
in the field of annotation of functional elements in livestock genomes, the genomic feature based analysis like 
marker-set test or GFBLUP will be increasingly useful for discovering small effect loci or for increasing the accu-
racy and reliability of prediction of consequences of genomic selection in animal and plant breeding.

Materials and Methods
Infection-induced transcriptome data.  All experimental procedures involving animals have been 
approved by the Danish Animal Experiments Inspectorate and complied with Danish Ministry of Justice Laws 
concerning animal experimentation and care of experimental animals. All the experiments were performed in 
strict accordance with guidelines and regulations established by these committees. Members from these commit-
tees carried out inspections during the entire animal infection experiments.

All the transcriptome data used in this study came from two intra-mammary infection studies involving three 
and six healthy HOL animals, respectively at the very early stage of their first lactation. The details of the involved 
animals and the sample collection procedures were previously described by Jiang et al.59 and Jorgensen et al.60. 
Briefly, in the first study liver biopsies were sampled at −22, 3, 6, 9, 12, and 48 h relative to LPS intra-mammary 
treatment in all three studied animals (i.e., each group with three biological replicates). In the second study liver 
biopsies were collected from the six animals at −144, 12 and 24 h post intra-mammary infection with E. coli, and 
the mammary gland samples of the infected and control udder quarters were collected from the same animals at 
24 h post infection (i.e., each group with six biological replicates). Finally, a total of 48 samples were applied with 
RNA sequencing using a 100 bp pair-end approach with llumina HiSeq 2000 by AROS Applied Biotechnology 
(Aarhus, Denmark). Time was considered as the only effect in the statistical model for analyzing liver samples 
data, while infection status was included in the model for mammary gland samples. The details of RNA-seq data 
analyses were previously described by Fang et al.22. FDR method was employed to control multiple testing, and 
genes with FDR < 0.05 were considered as DEGs.

Phenotypes and imputed sequence genotypes.  The phenotypes currently analysed were de-regressed 
proofs (DRPs) of seven complex traits of economic importance in cattle, including three milk production traits 
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(i.e., MY, FY and PY), BC, mastitis, health and fertility. These DRPs were obtained from a routine genetic evalu-
ation by Nordic Cattle Genetic Evaluation (http://www.nordicebv.info/) and were available for 5,056 HOL, 4,310 
RDC and 1,231 JER bulls. All known systematic effects have been corrected.

The whole genome sequence genotypes of these animals were obtained from the imputation of 50 K and High 
Density (HD) genotypes. The imputation was conducted using a two-step strategy as recommended by Brøndum 
et al.61, and the details has been previously described by Wu et al.62. Briefly, in the first step a 50 K was imputed 
into a HD genotype for each individual using IMPUTE2 v2.3.163 based on 3,383 reference animals (including 
1,222 HOL, 1,326 RDC and 835 JER) that had been genotyped by Illumina BovineHD chips (Illumina, Inc., 
San Diego, CA). In the next step the imputed HD genotypes were imputed to the whole genome sequence level 
using Minimac264 based on the reference population of 1,228 animals from both Run4 of the 1,000 Bull Genomes 
Project65 and in-house whole genome sequence data62. In total, 22,751,039 biallelic variants were obtained 
after the imputation. The imputed sequence genotypes were then filtered to keep markers with deviation from 
Hardy-Weinberg proportions (HWP) > 10−6 and minor allele frequency (MAF) > 0.01. After the data editing, 
15,355,382, 15,243,827 and 13,403,916 SNPs remained for the following analyses in HOL, RDC and JER, respec-
tively with an average imputation accuracy of larger than 0.90. The imputation accuracy of a SNP increased with 
the increase of its MAF, and the details of the imputation accuracy were described by Wu et al. and Iso-Touru  
et al.62,66.

Single-marker GWAS using imputed sequence data.  The single-marker GWAS for the imputed 
sequence genotypes was conducted using a two-step variance component-based method that was implemented in 
EMMAX67. The EMMAX was developed to take account for genetic relatedness and population structure as well 
as to improve the computational speed. In the first step, the polygenic and residual variances were estimated by

µ= + +y a e1 Z , (1)

where y is a vector of the phenotype (i.e., DRP); µ is the overall mean; a is a vector of random polygenic effects, 
where a ~ N(0, σG a

2), and G is the genomic relationship matrix built using HD genotypes through excluding the 
chromosome containing the candidate SNP to control double fitting68, and σa

2 is the additive genetic variance; e is 
the vector of random residuals, where e ~ N(0, σI e

2), and I is the identity matrix, and σe
2 is the residual variance. 1 

is a vector of ones. Z is a design matrix relating phenotypes to polygenic effects. In the second step, the individual 
association signal was assessed by a linear regression model

μ η= + +y xb1 , (2)

where y, μ and 1 are the same as described above, x is a vector of genotype dosages (range: from 0 to 2), b is the 
allele substitution effect, and η is a vector of random residual deviates with (co)variance structure σG a

2+ σI e
2. The 

genome-wide significance thresholds corresponding to an error rate of 0.05 (Bonferroni correction) were set at 
3.3 × 10−9, 3.3 × 10−9, 3.7 × 10−9 for HOL, RDC and JER, respectively. Manhattan plots were generated using 
qqman v.0.1.2 implemented in the R package69.

Regions showing association signal could be very large due to high LD structure owing to small effective pop-
ulation sizes in dairy cattle breeds. Therefore, we demarcated a region around the top SNP, which most likely 
harbours the causal mutation. A QTL region boundaries were defined through extending the position of the top 
SNP up- and down- stream to include SNPs with −log10(P-values) higher than −log10(P-value) minus three of 
the top SNP70. The proportion of genomic variance explained by the top SNP within a QTL was calculated as 

σpqb2 / a
2 2, where p and q were allele frequencies, b was the allele substitution effect, and σa

2 was the additive 
genomic variance.

Marker sets defined from GO and Reactome databases.  Genes grouped into a specific GO or 
Reactome term were considered to be a single marker set (i.e., genomic feature). The Bioconductor package 
“org.Bt.eg.db” v. 3.3.0 (https://bioconductor.org/packages/release/data/annotation/html/org.Bt.eg.db.html) and 
“reactome.db” v 3.3.0 (https://bioconductor.org/packages/release/data/annotation/html/reactome.db.html) were 
used to link genes to the GO and Reactome terms, respectively. Here, we focused on the GO and Reactome terms 
consisting of at least 10 directly evidenced genes. In GO terms, only biological processes terms were considered. 
The imputed sequence variants were mapped to the bovine reference genome (UMD3.1). A SNP was assigned 
to a gene if its chromosome position was between the start and end positions of the gene (i.e., within the open 
reading frames, ORF).

Marker-set test.  Since the genomic variance of the studied complex traits has been typically considered to be 
controlled by many loci of small to moderate effects, the following sum-based summary statistics for a genomic 
feature was chosen, and it has been demonstrated to have higher power or at least equal to most commonly used 
marker-set test methods, particularly for the highly polygenic traits16,18,21.

∑=
=

T t ,
(3)sum

i

m

1

2
f

In which mf is the number of SNPs in a genomic feature, and t2 is the square of t that was calculated as the SNP 
effect (b) divided by its standard error. It should be noticed that the LD patterns of SNPs among multiple genes in 
a genomic feature were typically low, especially for genes in different chromosomes. Although the LD patterns 
among SNPs and the sizes of marker sets were not directly taken into account in the summary statistics, they have 

http://www.nordicebv.info/
https://bioconductor.org/packages/release/data/annotation/html/org.Bt.eg.db.html
https://bioconductor.org/packages/release/data/annotation/html/reactome.db.html
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been taken in account by the following cyclical permutation strategy as previously described21. Briefly, the test 
statistics (i.e., t2) for all SNPs were ordered according to their chromosome positions (i.e., t1

2, t2
2, 


 −tm 1
2 , tm

2 ,). A 
random test statistic (i.e., tk

2,) was chosen from this vector as the first, and the remaining test statistics were shifted 
to new positions, but retained their original orders (i.e., tk, tk+1  tm, t1  tk−1). Therefore, any association of SNPs 
with genomic features was uncoupled while maintaining the correlation structure among test statistics of SNPs. 
Afterwards, a new summary statistic of the genomic feature was computed according to its original chromosome 
position. The permutation procedure was repeated 1,000 times for each tested genomic feature, and an empirical 
P-value was computed according to one-tailed tests of the proportion of random summary statistics larger than 
that observed. This marker set-test method together with multiple quantitative genomic tools have been imple-
mented in our QGG package (http://psoerensen.github.io/qgg/).

Significant testing for between-traits/breeds correlations using random-target networks.  The 
between-trait correlations within a breed and the between-breed correlations for a same trait were computed 
based on the GWAS signal enrichments of miRNA target-networks. In order to determine the significant level of 
an observed correlation, we randomly generated targets with the same size as predicted for each miRNA, then a 
random correlation was calculated using the enrichments of random target-networks. We repeated this proce-
dure for 1000 times, thereby 1000 random correlations were generated for each particular correlation. Assuming 
that a correlation approximately follows a normal distribution r ~ N(µ, σ2), where µ and σ2 can be approximately 
estimated as the mean and standard deviation (SD) of the 1000 randomly generated correlations. The significant 
level for an observed correlation based on miRNA target-networks was then determined by using one-sided test.

Functional enrichment analyses of gene lists.  The functional enrichment analyses of a list of genes 
were conducted using R package clusterProfiler71, where a hypergeometric test, based on a KEGG pathway data-
base, was applied, and the P-values for each pathway were adjusted using the FDR method. We used pathways 
with FDR < 0.1 to indicate the putative biological function of gene lists being studied.

Availability of data and materials.  All genomic annotation data defining gene regions is available for 
download (ftp://ftp.ensembl.org/pub/release-84/gtf/bos_taurus). The miRNA annotation data is available for 
download (http://www.mirbase.org/ftp.shtml), and their best quantile predicted target genes is available in 
(http://mirmap.ezlab.org/). The GO annotation database can be publicly accessed (https://bioconductor.org/
packages/release/data/annotation/html/org.Bt.eg.db.html). The Reactome annotation database can be publicly 
accessed (http://bioconductor.org/packages/release/data/annotation/html/reactome.db.html). The whole genome 
sequencing data from the 1000 Bull Genomes Project are publicly available from NBCI under SRA no. SRP039339 
(http://www.ncbi.nlm.nih.gov/bioproject/PRJNA238491) and variations in dbSNP (http://www.ncbi.nlm.nih.
gov/projects/SNP/). The genotype and phenotype data, and genome sequence data from Aarhus University are 
available only upon agreement with the commercial breeding organization (http://www.vikinggenetics.com/) and 
should be requested directly from the authors or the breeding organization.
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