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Cross-scale neutral ecology and  
the maintenance of biodiversity
James P. O’Dwyer1 & Stephen J. Cornell2

One of the first successes of neutral ecology was to predict realistically-broad distributions of rare 
and abundant species. However, it has remained an outstanding theoretical challenge to describe 
how this distribution of abundances changes with spatial scale, and this gap has hampered attempts 
to use observed species abundances as a way to quantify what non-neutral processes are needed to 
fully explain observed patterns. To address this, we introduce a new formulation of spatial neutral 
biodiversity theory and derive analytical predictions for the way abundance distributions change with 
scale. For tropical forest data where neutrality has been extensively tested before now, we apply this 
approach and identify an incompatibility between neutral fits at regional and local scales. We use this 
approach derive a sharp quantification of what remains to be explained by non-neutral processes at the 
local scale, setting a quantitative target for more general models for the maintenance of biodiversity.

Neutral biodiversity theory has become one of the most tested paradigms of macroecology1–4. It combines the 
ecological mechanisms of birth, death, competition, speciation, and spatial dispersal to make predictions for 
ecological patterns, and makes manifest the belief that the many differences between species may not be critical 
for successfully predicting large-scale, aggregated phenomena. Subsequent studies have expanded on the original 
neutral approach5,6, generalizing the theory to include life history7,8, fitness differences9–11 and multiple modes 
of speciation12,13. But at the core of this theory there is a missing link: we lack a complete picture of how neutral 
predictions change with spatial scale.

Censusing of species abundances at the scale of hectares has provided a tractable approach to test neutral 
predictions. At these local scales we would expect dispersal limitation to significantly affect the distribution of 
species abundances alongside birth, death, and competition, leading to departures from the log series distri-
bution of abundances that neutral theory predicts at the largest scales1,14,15. But existing neutral predictions for 
local community abundances are based on spatially-implicit models, meaning that the process of dispersal is 
not modeled explicitly, and is instead treated by fitting a parameter in a sampling process. Because there are 
differences between this spatially-implicit approximation and the full, spatially-explicit neutral processes16, it 
has been unclear whether neutrality is consistent with observed local community species abundances or not. 
Spatially explicit neutral approaches have been developed by modelling dispersal with a dispersal kernel, includ-
ing numerical simulations1,17–20; hybrid approaches where non-spatial parameters are fitted to a spatially-explicit 
simulations16,21; the limit of very short-scale dispersal22; a focus on predicting pairwise correlations in species 
composition23–25; phenomenological models26; and analytical approaches that make statistical assumptions which 
are violated in real communities27,28. In short, each has some drawbacks, approximations, or limitations in appli-
cability, so that while spatially explicit models make more realistic assumptions, only the spatially implicit theory 
has so far been compared exhaustively to empirical abundance patterns.

In this paper, we address this gap by introducing a new mathematical formulation of the spatial theory of 
neutral biodiversity, derived using the backward equation formulation of stochastic processes. While an exact 
solution of these equations is not available due to non-linearities, we have identified an accurate approximation 
scheme which we test extensively using spatially-explicit numerical simulations. These new results allow us to 
generate a set of predictions that connect both local observations and regional data, in a way that is faithful to 
neutral model assumptions across this range of scales. We subsequently parametrize the neutral model using 
sparse, regional and continental-scale observations, and go on to test whether it is then consistent with distribu-
tions of abundance at the local scale. We focus on data that has already been fitted using spatially-implicit models, 
to see whether our spatially-explicit approach deviates from these earlier results.
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Combining our modeling approach with data from these multiple scales, we find that neutrality alone sig-
nificantly underestimates local species diversity, and also deviates from the observed distribution of rare and 
abundant species. Our intuition might have been that dispersal and neutrality would lead to many rare, transient 
species, which disperse into a local community and quickly drop out before proliferating. In fact, our spatial 
neutral prediction dramatically under-predicts the observed number of rare species. This indicates that local sta-
bilizing mechanisms are likely important to understand and accurately predict local patterns of biodiversity29–31, 
and precisely quantifies what remains for these approaches to explain.

Model
Our model is based around the neutral assumptions of intrinsic birth and mortality rates that are identical across 
all species, in addition to symmetric competition for a single resource, which we approximate using the mean 
field approach10. This is also known as a non-zero sum formulation32 because the total community size is allowed 
to fluctuate around an average value. We assume that individuals are sessile and dispersal takes place at birth, 
though as we show in the Supplementary Information the same species-area curve and species-abundance dis-
tribution would occur if the organism moved during its lifetime. The resulting model is an assemblage of eco-
logically identical species, with a constant, total density across space and time when in steady state. New species 
enter the community via speciation, which occurs at a fixed per capita rate, and hence a fixed rate per unit time 
and area. All species eventually leave the community due to extinction. So the model reduces to a set of inde-
pendent populations, beginning their existence with a single individual, and proliferating transiently across space. 
Meanwhile, we would like to predict the probability that a focal species has a given number of individuals in our 
sample location in the present day.

In our Supplementary Information we derive the following backward equation (so-called because we look 
‘backwards’ from the present day, as explained in our Supplementary materials) to characterize these dynamics 
and this observable:
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In this equation, P(k, A, x, y, t) is the probability that a single individual at time 0, at a spatial location defined by 
coordinates x and y, will have k conspecific descendants in a sample region of area A, after a time t has elapsed. 
We can derive patterns of species abundance from this quantity because, if the individual at time 0 is the founding 
individual of the species, then P(k, A, x, y, t) is the total number of members of this species in the sampling region 
at time t. This equation describes how P changes in time and space due to the processes of birth (with associated 
dispersal) and death, and is derived by considering how the lineage starting from a single individual can change 
in a short time interval. The first term represents birth of a conspecific (which takes place at rate (b − ν)), and is 
bilinear in P because birth leads to two independent lineages which can contribute descendants to the sampling 
region. The sum over m represents the different combinations of lineages that lead to a total k descendants in the 
focal region. Offspring of a different species are produced at rate ν, but these do not contribute to P(k, A, x, y, t). 
The second term contains a Laplacian to represent the fact that offspring are distributed at a random distance, 
proportional to the parameter σ, from their parent. The term bδk,0 (using the Kronecker δ symbol, which is equal 
to one if k = 0, and zero otherwise) represents the fact that a death event (occuring at rate b) causes a lineage 
containing a single individual to go extinct (in which case the only possibility is k = 0).The linear term, whose 
prefactor (2b − ν) is the sum of the birth and death rates, represents the fact that either a birth or a death event will 
change the number of descendants.

From the definition of the quantity P(k, A, x, y, 0), the appropriate initial condition for this equation is simply 
that at t = 0, if the location (x, y) is inside the sample area A, then P(k, A, x, y, 0) = δk,1, again using the Kronecker 
δ symbol. Conversely, if (x, y) is outside the sample area, P(k, A, x, y, 0) = δk,0. We have chosen the sample area 
to be circular, and centered at the point 0,0 in two-dimensional space. Assuming for the time being that we can 
solve Eq. (1) for P(k, A, x, y, t), then we immediately have a community level prediction for the average number of 
species with exactly abundance k in a sample area A:
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where ρ is the constant average total density across space. However, solving Eq. (1) with the appropriate initial 
condition is non-trivial, due to the quadratic terms in P, which derive from the birth process, and we do not 
know of any closed-form solution. This non-linearity is the essence of why this is is a difficult problem, and is also 
reflected in the challenge of finding exact solutions in the corresponding forward-in-time, field theory version of 
this model27.
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Model Solutions
Species-area curve. In our Supplementary Information we introduce an approximation scheme to linearize 
Eq. (1), with different linearizations applying in different regions of the landscape. As a special case of Eq. (2), we 
first focus on solutions for the Species-area curve, which counts the total number of distinct species (with any 
value of k > 0) as A increases, in this case for a circular sample region. We find the following approximate solution 
for this relationship:
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In this solution, we have used the short-hand ν ν= ν
ν−

blog( / )
beff , but no new parameters have been intro-

duced, while In and Kn are modified Bessel functions. Note that only the per capita, per generation speciation rate, 
ν/b enters this solution, and so the rates b and ν do not independently affect the Species-area curve. How well 
does this approximation work? In Fig. 1 we demonstrate the agreement between theoretical and simulated curves 
over a range of speciation rates and values of σ.

At small areas, with A 2
 πσ , both simulations and theoretical results give  ρS A A( ) , i.e. where most new 

individuals belong to distinct species as the sample area is increased. At large areas,  πσ νA /2
eff , both simula-

tions and theoretical results approach ρνS A A( ) eff , so that richness again increases linearly with area, but with 
a smaller overall coefficient. In between these extremes, we also see good agreement between the simulated and 
theoretical curves. The transition between large and intermediate scales has been modeled before, by making 
various phenomenological assumptions about species range shapes and distributions33,34. Here we can see that 
explicitly the first correction to large-scale linear behavior is proportional to A , identical to these earlier 
results33, so that at intermediate to large scales:
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again only valid when ν πσ A / 1eff
2 . This agreement is non-trivial, given that the shape of any given neutral 

species range will not satisfy the simplifying assumptions (of circularity or convexity) made in the phenomeno-
logical approaches. Finally, the intermediate region as a whole has been fitted to empirical data drawn from across 
many taxa and enviroments using a power law35, and our resuls show that in neutral theory the power law SAC 
can only ever be an approximate description.

Spatial Scaling of the Species Abundance Distribution. We now apply the same approximation 
method to solve for the species abundance distribution, S(k, A), given by Eq. (2). Our solution is expressed in 

Figure 1. The species-area curve. We show a comparison between species richness as a function of sampled 
area for our analytical approximation to spatial neutral theory, compared with numerical simulations17. Over 
this range of values of speciation rate ν( )b

 and dispersal length-scale (σ in the main text), we see quantitative 
agreement between our approximation method and these earlier numerical results.
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terms of the generating function, z A S k A z( , ) ( , )k
k

1Ψ = ∑ =
∞ , and we supply R code to extract the SAD itself 

from this generating function, following the method of36. Our solution is given by:
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b b z( )  and h(z) = 1 − z(1 − ν/b) for ease of notation, 
and S(A) is given by Eq. (3). While finding the Species-area curve is already a promising step, matching the full 
species abundance distribution as a function of area is a much sterner test for our approximation scheme. In 
Fig. 2, we show that our solution closely matches earlier numerical simulations over a range of speciation rates ν, 
values of dispersal length-scale, σ, and sample areas.

This expression for Ψ displays the properties of species abundance distributions that have previously been 
found by simulations of spatial neutral models19. First, when A is very large, the third term becomes much smaller 
than the second term, so the generating function is approximately ρf(z)A. Expanding in powers of z, we find in 
this limit

∝
− ν( )

S k A
n

( , )
1

, (6)
b

n

which is a Fisher logseries with diversity parameter 1
b

α = − ν .
Second, the species-abundance distributions display the “universality” noted by Rosindell and Cornell19. 

While the expression for Ψ depends on all four quantities z, A, ν/b, and σ, in Appendix 2.3 we show in that, when 
the speciation rate is small (ν/b → 0), it reduces to an expression that depends only on the two combinations 
Z = (1 − z)b/ν and Y = Aν/(bσ2). We also show in Appendix 2.3 that this is not limited to our approximation, but 
is also a property of the exact solution to the backward equation. We further show in Appendix 2.3 that this is 
equivalent to the species abundance distribution taking the scaling form S k A S k A( , ) ( , / )2

ν ν ν σ= . This confirms 
analytically that species abundance distributions for spatial neutral models form a single-parameter family of 
curves, which extends the universality described by Storch et al.34 for species-area curves and endemics-area 
curves.

Application to Tropical Forest Communities
Now armed with a spatially-explicit prediction for the species abundance distribution, we test whether the 
observed distribution of tree species abundances at the Barro Colorado Island 50 ha plot (BCI) is consistent 
with a neutral model where parameters are fixed independently of the plot-scale counts. Due to its high diversity 
and regular and comprehensive census, this plot has often been a testing ground for theoretical explanations of 

Figure 2. The species-abundance distribution. We test our approximation over a range of speciation rates, 
ν/b (and two different dispersal length-scale, σ), by comparing the predictions using Eq. (5) with numerical 
simulations19. Our results show good (though not perfect, due to both our approximations and the details of the 
numerical simulation) agreement over this range of parameter values.
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biodiversity patterns. It has also been extensively compared to the spatially-implicit neutral predictions, which 
have closely matched the observed abundance distribution37–39, although even early on it was emphasized that it 
may be difficult to distinguish neutral fits from alternatives with the same number of parameters40,41. Taking our 
alternative route, how should we determine the parameters of our spatially-explicit model? Density ρ is straight-
forward to estimate, and we could conceivably match the dispersal length-scale σ using inverse modeling and 
seed-trap data42. However, the speciation rate ν would be extremely challenging to measure directly, even to the 
extent that it is well-defined12,13.

Here we take a different approach, leveraging the methods and results of earlier studies focusing on large-scale 
spatial correlation functions23,24. These papers focus on the two-point spatial correlation function, known as F(r), 
the probability that two trees sampled at a separation r from each other are conspecifics. For spatial neutral the-
ory, it has already been shown23,27 that this function takes the following form at large spatial separations:
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Using this result, and data from trees with diameter >10 cm in 34 1 ha plots in Panama (separated by values of r 
between ~0.5 and ~50 km), Condit et al.24 obtained parameter fits of σ = 40.2 m and ν/b = 5.10−8. These fitted 
values used the observed density of m0 04 2

ρ . − . While speciation would be difficult to estimate independently 
of this fit, this value of σ is similar to those obtained from seed-trap data42.

With these parameters fixed, we can test whether these large-scale data are consistent with the observed dis-
tribution of species abundance at the 50 ha plot scale43–45. Figure 3 demonstrates that the spatial neutral model 
severely underestimates diversity at the 50 ha scale, by approximately a factor of two. It also skews the distribution 
of species abundances towards more dominant species, with singleton species (those with just one stem >10 cm 
in the plot) underestimated by a factor of around twenty compared with observed counts. We also acknowl-
edge the huge variation in fitted speciation rates across different regions using large-scale plot data–for example, 
South American plots fitted in24 led to much lower speciation rates than the data from Panama. To allow for the 
possibility that the large-scale Panama data is skewed in some way, in Fig. S1 we use the parameters fitted using 
Ecuadorian forest data, but find the same general pattern: an underestimate of overal local species richness at the 
50 ha scale, alongside a skew away from rare species. We emphasize that while we are only looking at one plot, 
but this is a data set where spatially-implicit neutral predictions had already passed a series of tests, and so it is 
important to see whether these hold up when the neutral model is spatially-explicit. In summary, the formulation 
of spatial neutral theory we have considered here allows us to show that local abundances are not consistent with 
the parameters inferred from large-scale data.

Discussion
Neutral theory has most often been formulated in a spatially-implicit way, so that local species abundance dis-
tributions depend on two free parameters characterizing the influx from a larger (but unmeasured) regional 
community1,37. These parameters, known as the fundamental diversity parameter, θ, and dispersal limitation 
parameter, m, respectively determine the richness of this larger community and then the rate of immigration 

Figure 3. Neutral predictions at BCI. This comparison demonstrates the discrepancies between neutral 
predictions and the observed data at the 50 ha plot on Barro Colorado Island43–45. Neutral predictions are 
generated by fitting our spatial neutral model using large-scale data reported and analyzed in24. The results show 
that these large-scale fits produce a local-scale prediction for species abundances that both underestimates local 
species richness, compared with observed data, and also skews abundances from rare to more abundant species.
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from the regional to the local scale. It is certainly difficult to estimate the richness of this larger community, and 
hence θ, and while some model approaches have attempted to connect the m to explicit mechanisms of disper-
sal21,46, this matching only works in certain idealized limits. It has therefore been difficult to know the values of 
these two fitted parameters θ and m are biologically reasonable or not, even when the neutral theory successfully 
matches the distribution of species abundances in a local community.

We have introduced a new formulation of spatially-explicit, stochastic biodiversity theory that comple-
ments and extends the predictions of earlier approaches17,23,27. Making predictions from our model reduces to 
the solution of a non-linear partial differential equation, and while it is unlikely that this equation has a closed 
form solution, we identified an approximation scheme which closely matches the quantitative results of numer-
ical simulations reported in previous work. The underlying model is essentially the same as considered in27, 
but the new formulation leads to a much better approximation of macroecological patterns (see Supplementary 
Information for a further discussion of the unrealistic approximations used in the ‘forward-in-time’ approach 
of27). We focused here on predictions for the species-area curve, and for the distribution of species abundances 
as a function of spatial scale. The latter prediction is a key advance over earlier formulations of neutral theory, as 
it allows us to test whether neutral theory matches observed abundance distributions without tuning parameters 
to fit this data.

It is uncontroversial to say that neutrality is an incomplete description of any given natural system. Instead, 
neutrality provides a starting point from which we might hope to infer the importance of non-neutral processes. 
The species abundance distribution has been largely written off as an approach to achieving this, in part because 
spatially-implicit neutral models are flexible enough to fit a vast range of different local abundance distributions. 
In applying our spatially-explicit methodology to Panamanian tropical forest data, we in part rehabilitate the spe-
cies abundance distribution as a diagnostic for what is missing from the neutral explanation, in an approach con-
sistent with previous calls to test multiple patterns simultaneously, rather than just species abundances alone47. 
Specifically, by fitting neutral parameters using large-scale large-scale pairwise correlation data, we identified a 
mismatch between those fitted parameters and local community abundances, under the neutral assumption: by 
fitting neutral parameters using large-scale data for the pairwise-similarity of widely separated plots, we were able 
to show that the corresponding neutral prediction for species abundances underestimates diversity at the 50 ha 
scale, and dramatically skews the distribution of abundances away from rare species. Conversely, we could in 
principle tune the neutral parameters to more closely match the 50 ha scale data, but at the expense of explaining 
large-scale spatial correlations poorly. Overall, this shows that neutral demographic processes, combined with 
Gaussian dispersal limitation alone, are unlikely to explain the maintenance of diversity at the both plot scale and 
regional scale.

Our goal in this study was not to identify what specific mechanisms could be added to the neutral dynamics 
to explain the maintainence of observed distributions of species abundances. However, there are several likely 
ways to resolve this mismatch, and our analysis now opens up the possibility of quantifying what kinds of addi-
tional ecological mechanisms provide the best explanation. Very generally, the skew towards rare species in the 
empirical data can be explained by the presence of stabilizing mechanisms at the local scale. Stabilization can 
arise from density-dependent interactions, perhaps in turn driven by plant-soil feedbacks29,30, which act to reduce 
both local dominance and extirpation. An alternative is that neutral models can still explain the presence of these 
rare species, but that we need to consider so-called “fat-tailed” dispersal, where the probability of dispersing a 
given distance from a parent tree drops off relatively slowly with distance18,23,48. Our results raise a challenge to 
either of these explanations for rare diversity in tropical forests. For example, if plant-soil feedbacks explain this 
combination of patterns, can we quantify exactly how strong and at what spatial scales these mechanisms must 
act? Similarly, can we quantify exactly what type of long-distance dispersal, if any, can explain the same patterns? 
Building on the development of this spatial model to include more general processes will provide a sharp, quan-
titative test of whether a given proposed mechanism is consistent with observations.

Neutrality has perhaps been tested more than any other single theory of biodiversity. This scrutiny has ranged 
across decadal fluctuations49–51 and evolutionary timescales52–56, and across taxonomic groups and environ-
ments37,55,57–59. In this manuscript, we show that in terms of the patterns where it has seen greatest success, species 
abundance distributions, we are seeing discrepancies between the theoretical predictions and observed data. On 
the other hand, the precise formulation of the neutral theory is exactly what makes it possible to perform these 
quantitative tests. While the presence of species differences and local niche structure has also been extensively 
tested, it has rarely been possible to translate the existence of these mechanisms into quantitative predictions for 
biogeographical patterns, like the distribution of species abundances as a function of spatial scale. The approach 
we have taken and discrepancies we have identified may therefore serve to motivate new, and more accurate, 
models of biodiversity, taking us a step closer to identifying precisely what mechanisms do and do not matter for 
the prediction of biodiversity patterns60,61.
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