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A memristive plasticity model 
of voltage-based STDP suitable 
for recurrent bidirectional neural 
networks in the hippocampus
Nick Diederich1,2, Thorsten Bartsch2, Hermann Kohlstedt1 & Martin Ziegler1

Memristive systems have gained considerable attention in the field of neuromorphic engineering, 
because they allow the emulation of synaptic functionality in solid state nano-physical systems. 
In this study, we show that memristive behavior provides a broad working framework for the 
phenomenological modelling of cellular synaptic mechanisms. In particular, we seek to understand how 
close a memristive system can account for the biological realism. The basic characteristics of memristive 
systems, i.e. voltage and memory behavior, are used to derive a voltage-based plasticity rule. We show 
that this model is suitable to account for a variety of electrophysiology plasticity data. Furthermore, 
we incorporate the plasticity model into an all-to-all connecting network scheme. Motivated by the 
auto-associative CA3 network of the hippocampus, we show that the implemented network allows 
the discrimination and processing of mnemonic pattern information, i.e. the formation of functional 
bidirectional connections resulting in the formation of local receptive fields. Since the presented 
plasticity model can be applied to real memristive devices as well, the presented theoretical framework 
can support both, the design of appropriate memristive devices for neuromorphic computing and 
the development of complex neuromorphic networks, which account for the specific advantage of 
memristive devices.

Synaptic plasticity in the excitability between neurons results from an increase or reduction of the strength of syn-
aptic connections and thus contributes to neuroplasticity. Neuroplasticity is the ability to adapt to and reorganize 
the structure or function to internal or external stimuli and occurs at the cellular, population, network or behav-
ioral level. Therefore, it is reflected in the cytological and network architecture, as well as in intrinsic properties of 
neurons and circuits. Synaptic plasticity can be mathematically described within the framework of the Hebbian 
learning theory1. In this respect, Hebbian models allow the description of long-term potentiation (LTP) and 
long-term depression (LTD) and account for temporal coding schemes, such as spike-time-dependent-plasticity 
(STDP)2–4.

A variety of plasticity models have been developed which account for different temporal and functional 
aspects observed in electrophysiological investigations (for a review the reader is referred to refs5,6). Of particular 
interest are voltage-based STDP models5–8 in which synaptic changes are depending on pre-synaptic spike arrival 
and post-synaptic membrane potential. These models sufficiently describe the voltage and frequency dependence 
sufficiently, as well as several non-linear effects that are observed in electrophysiological investigations of neuro-
plasticity. A further advantage is that voltage-based STDP models belong to the class of phenomenological models 
which aim to provide a minimal description of the principal phenomena observed in electrophysiological inves-
tigations. Such an approach has the advantage of reducing the complexity of the system to a few key parameters 
and allows testing the compatibility of model parameters with experimental synaptic plasticity data (an overview 
of model classification can find in ref.9).

Besides purely mathematical plasticity models, the development of electronic circuits, so-called neuromor-
phic circuits, enables a physical implementation of learning models in hardware and might therewith over-
come current restriction of serial, binary information processing in neuroinformatics9. Neuromorphic systems 
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-invented by Carver Mead in the 80’s of the last century- employs analogue VLSI (Very Large Scale Integration) 
which is based on Si CMOS (Silicon Complementary Metal Oxide Semiconductor) technology10,11. Recently, 
this field gained new momentum with the advent of memristive devices. We consider a memristive system as 
a two-terminal electrical device which is able to remember the history of applied electrical stimuli12–14. In the 
last couple of years, temporal as well as frequency coding schemes have been successfully emulated with mem-
ristive systems15–19. In this context, a variety of different memristive devices, which based-on different physical 
concepts and materials, were employed to emulate STDP15–19. Thus, memristive devices provide an interesting 
innovative approach in emulating synaptic plasticity with the advantage of real-time applications in neuromor-
phic systems15,16.

In this study, we show that the use of memristive behavior provides an excellent framework for phenome-
nological modelling of cellular synaptic mechanisms. Features of cellular synaptic plasticity as well as network 
learning mechanisms are simulated by the characteristic of a memristive device. In detail, the memory behavior, 
the voltage- and history-dependence of memristive systems, is used to incorporate a voltage-based plasticity 
rule suitable to account for a variety of experimental plasticity data. The key features of the developed model are 
a memristive synaptic learning rule, which is determined by a non-linear and state dependent synaptic weight 
change according to19, as well as a voltage-based STDP inspired by5–8. Furthermore, using models of neuronal 
all-to-all connecting networks and neurobiological hippocampal circuits, we extend our findings of synaptic 
plasticity from the cellular to the network level. At this respect, principles of the discrimination and processing of 
mnemonic pattern information in the auto-associative CA3 network of the hippocampus are emulated and dis-
cussed. In detail, based on biological data we show evidence that our network model is capable of learning by the 
discrimination and completion of similar input patterns (pattern separation or completion) and by the formation 
of functional bidirectional connections resulting in the formation of local receptive fields in auto-associative CA3 
networks.

Modeling
Synaptic plasticity model. The key content of the plasticity model is to use memristive functionalities, 
i.e. voltage and history dependence to model synaptic connectivity. Memristive systems can be realized as two 
terminal electronic devices, as sketched in Fig. 1(a). These devices adapt their resistance to the previously applied 
electrical stimuli and therefore, have a memory16,17. The memory derives from local changes in the atomic struc-
ture, which occurs within the so-called memristive layer (see Fig. 1(a)). This is in particular important for the 
realization of electronic artificial neural networks, so-called neuromorphic circuits15,19,20. However, although the 
structure of a memristive device is rather simple, the underlying functional principle are quite divers and a large 
variety of material systems have been realized so far15,21–23. In particular, this leads to a large variability in the 
current-voltage characteristics of the different memristive systems. In this context, it is helpful to use a generic 
device model, which is able to describe the characteristics of different memristive devices and which at the same 
time enables the emulation of synaptic functionality quite realistically. We apply a recently developed memristive 
model, that allows the description of common plasticity measurements of memristive devices19.

In synapses, conductivity is described by the concentration of neurotransmitters within the synaptic cleft, 
which depends on the activity of the pre-synaptic neuron and the number of activated post-synaptic ion chan-
nels24. Mathematically, this can be described by an ion channel-dependent conductivity25 gsyn(xion(t)), where xion(t) 
is a gating variable counting the time-dependent number of activated ion channels. Thus, the synaptic current 
is given by Isyn(t) = gsyn(xion(t)) u(t), where u is the membrane potential of the post-neuron. In the memristive 
picture, the device conductance G (memductance) is a state-dependent function, where the state x(t) changes 
in dependence of the applied electrical stimuli over time, i.e. the applied voltage V or current I. For the case of a 
voltage driven memristive device this can be mathematically formulated as12–14

= ⋅ = .I G x t V x
t

f t x V( ( )) and d
d

( , , ) (1)

Here, f is a function which describes the dynamics of the resistance variation of a particular memristive cell 
under voltage application17. In an one-dimensional model, x(t) can be linked to the conductance by G(x(t)) = Gon 
x(t) + Goff (1 − x(t))14, where Gon, Goff are the boundary conductance values. In this model, if G is normalized to 
the boundaries Gon = 1 and Goff = 0, then the state variable x(t) of the memristive device is proportinal to the con-
ductance G. In the memristive synapse model the gating variable xion(t) defines the memristive state, where the 
weight of the synapse ω is dependent on xion(t). Since ω is limited to the interval from ωmin = 0 to ωmax = 1, it can 
be considered as a normalized conductivity, which gives the strength of synaptic transmission. Thus, dx/dt (from 
Eq. 1) corresponds to dω/dt.

To emulate synaptic plasticity with memristive cells, appropriate voltage pulses with different amplitudes must 
be applied to the two terminals of the memristive device -named in the following as “pre” and “post”, respectively 
(cf. Fig. 1). In order to simulate synaptic plasticity with memristive devices, the respective potentials at the two 
terminals of the device must be changed so that the device increases (potentiation) or decreases (depression) 
its conductance, depending on the activity of the respective neuron. This is usually done by a suitable voltage 
function for the pre-synaptic potential Vpre and post-synaptic potential Vpost, which leads to a suitable voltage V 
across the device17,21. In our model the post-synaptic potential Vpost is used to change the conductance state of the 
memristive synapse, while the pre-synaptic potential Vpre is held constant. As illustrated in Fig. 1(b), this enables 
the emulation of synaptic connectivity: if Vpost is higher than a critical set point voltage Vcritical the conductance 
of the memristive cell increases. While for the opposite condition, i.e. Vpost < Vcritical, a decrease in the synaptic 
connection is evoked. Inspired by the models of refs5–8, we assume that the synaptic weight can be affected only 
in the case that the pre-synaptic neuron is active, i.e. spiking. With regard to this idea, synaptic spike trains can 
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be mathematically formalized by a series of delta pulses x(t) = Σk δ(t − tk), where tk is the k-th spike time of the 
pre-synaptic neuron. Hence, whenever the pre-neuron is spiking (t = tk) the synaptic weight ω(t) is changed. By 
combining this concept with that of a memristive system the weight updating process can be described by a func-
tion which depends on the actual weight ω(t) and the current post-synaptic potential Vpost:

ω ω κω

κω
=







− =

−

d
dt

f t V t t t
t

( , , ) ( ), for
( ), else (2)

post
k

Here, f describes the dynamics of the synaptic changes and has to be determined in relation to biological bound-
ary conditions that define the memory capacity of the memristive synapse. κω t( ) describes a constant leakage 
term (κ > 0),which on the one hand describes a continuous depression observed in physiological nerve cells and 
on the other hand takes the retention characteristics of real memristive devices.

Three synaptic properties are of particular importance in this context25: locality, cooperativeness, and associa-
tivity. Locality, or in other words input specificity, means that the change of synaptic efficacy is critically depend-
ent on the activity of two interconnected neurons by a specific synapse, but not on the activity of other neurons 
in the network. Cooperativeness means that the probability of the induction of LTP increases with the number of 
stimulated pre-synaptic neurons. Associativity bridges the gap of the one-dimensional cellular learning mecha-
nism to the multi-dimensional network level. So that the system does not run into stable points of intrinsic given 
synaptic weight boundaries (ωmin < ω(t) < ωmax where ω ϵ {0, 1}), on the one hand we use sup(ω) = 0.05 and on 

Figure 1. Memristive Plasticity Model: (a) Schematic drawing of an memristive device, which consists of a 
metal-insulator-metal (MIM) structure. A memristive device adapts his conductance to the previous applied 
electrical signals. Here, an oxide based memristive device in a voltage-controlled operation mode is sketched: 
the attributive memristive layer defines a solid-state-electrolyte in which ions are moved in dependence on the 
voltage and the voltage history. Regard to this unique behavior memristive systems are used for the emulation 
of synaptic functionality. In the memristive point of view the device conductance corresponds to the synaptic 
coupling strength, i.e. the synaptic weight variable ω. (b) Schematic drawing of the voltage potentials applied 
to the memristive device to increase or decrease the device conductance, i.e. the the synaptic weight ω(t): 
While the pre-synaptic potential Vpre is set to a constant value (for example the mass potential, i.e. zero volt) 
immediately after spiking, the post-synaptic potential Vpost induces for values below a critical voltage Vcritical 
long-term-depression (LTD) or above Vcritical long-term-potentiation (LTP). Further, to account for the Hebbian 
learning procedure the device conductance is only affected when the pre-synaptic neuron is spiking (δpre > 0). 
(c) The memristive plasticity model provides a weight dependent learning process, i.e. the weight change dω/dt  
depends on the current value of ω0. LTP and LTD formation are shown (constant voltage pulses of 61.75 mV –
lines colored red-_ and −11mV –lines colored blue- were used for LTP and LTD, respectively, while Vcritical was 
set to zero.
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the other hand a continuous forgetting rate. The supremum condition protects the system from losing a possi-
ble connection for all times, whereas the continuous forgetting rate is a protection against a steady maximized 
connection. These conditions reflect the anticipated behaviour of memristive devices, too. Following19, those 
requirements can be met by using a modified logistic differential equation for f in Eq. 1:

ω β ω ω
ω

ω=





−





f t V t V t t( , , ) ( , , ) ( ) 1 1 ( )
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post post
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Here, β is the synaptic learning rate which is assumed to be weight and voltage dependent. Recently, we showed 
evidence that an appropriate choice of β allows the description of different memristive devices characteristics 
within the framework of this plasticity model19. For this investigation, however, we focus on synaptic plasticity 
measurements and extent our former model to a more neurobiologically relevant framework: we would like 
to address the question of how far the plasticity model accounts for experimental electrophysiological data. 
Therefore, we have chosen the following linear dependency for the synaptic learning rate β:

β ω ω=( )t V k t V, , ( ) , (4)post post

where k is a positive constant. Furthermore, to account for both depression (a down regulation of ω) and potenti-
ation (up regulation of ω), a bipolar voltage is assumed for Vpost. Hence, either potentiation is induced, if Vpost > 0, 
or depression occurs in the case that Vpost is negative, as shown in Fig. 1(c). Therein, the adaptive behaviour of the 
plasticity model is presented, wherefore the weight change dω/dt is plotted as function of the weight ω(t) itself, as 
highly possible for LTD and LTP with the used simulation parameter. For this simulation the maximal and min-
imal voltage for Vpost has been used, respectively. In particular, it shows that for low and high values of ω(t) their 
changes convert to zero, which binds the weight, avoids an uncontrolled synaptic growth and therefore emulates 
an important characteristics of biological networks. Thus, ωmin and ωmax are stable points of the modified logistic 
differential equation for the decreasing or increasing case, respectively. Most sensitive for a weight modification is 
the model if the weights have middle values, i.e. between 0.4 and 0.8. This in particular ensures a bimodal weight 
distribution, as needed for asymmetric Hebbian learning rules, such as spike-timing dependent plasticity (STDP, 
see26) and differs therewith from a constant learning rate as shown in Fig. 1(c) (dashed lines).

Neuron model. In the here proposed memristive plasticity model, the voltage course of Vpost plays a crucial 
role. In particular, the polarity decides if the synaptic connection is potentiated or depressed, while the actual 
value of Vpost together with the actual synaptic weight determines the amount of the synaptic change. Hence, a 
neuron model is required to describe the membrane potential evolution. A straightforward description of a neu-
ron is given by the leaky-integrate-and fire model (LIF, see1): a membrane capacitance C is connected in parallel 
to a leaky conductor gL and they are driven by an input current I(t), which simulate the ionic current through a 
synapse. With respect to the non-linearity and singularity of action potentials, the so-called quadratic-integrate 
and fire model offers a mathematically simple extension to LIF. This model can be expressed by.

⋅ = − ⋅ − − +C du
dt

g u u u u I t( )( ) ( ) (5)L critical rest

where 
gL has the dimension of conductance per voltage. Further, u(t) refers to the membrane potential of the 

neuron, while urest is its resting potential, which has to be set to an appropriate value in order to account for the 
bipolarity of the memristive plasticity model. Further, ucritical refers to the threshold potential for self-induced 
spiking. A sketch of the neuron model together with the representation of the membrane potential at constant 
input current is shown in Fig. 2, while the used parameters are summarized in Table 1. These parameters are 
selected as adaptation parameters for neuro-physiological data, the adjustment is explained in the first part of 
chapter ‘results’ and is shown in Fig. 2. In detail, the application of an input current evokes an integration of u(t) 

Figure 2. Quadratic-Integrate- and fire neuron model: (a) Schematic of the spiking neuron model in which a 
particular current input I(t) evoke a corresponding spike-pattern δspike. (b) Obtained membrane potential u(t) 
for a constant input current: when the membrane potential reaches the threshold voltage ϴthres a spike is created. 
For the neuron model a quadratic-integrate-and fire model has been used. The used simulation parameters are 
shown at Table 1.
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according to Eq. 5. If u(t) reaches the threshold potential ϴthres, a spike is generated and the membrane potential 
is reset to urest. Such a spike propagates to the downstreaming neurons in the network as a fixed current delta 
pulse. Further, to prevent the neuron from spiking directly after the depolarisation, a refectory period tref has been 
added. During its term u(t) is hold at urest.

Network model. In order to employ the above presented neuron model for spike generation in bidirec-
tional all-to-all connecting auto-associative networks, a Hopfield-like network has been implemented27. In 
Hopfield networks all neurons are bidirectionally linked, i.e. ωji are the synaptic weights between neuron i and 
j, and ωij vice versa. Thus, the presented plasticity model has to be extended to account for the bidirectionality  
of the network. This can be done as follows: The neuron i is firing at k-th time whenever ui(t) reaches the 
threshold voltage ϴthres:

θ= ≥t t if u t( ) (6)i
k

i thres

Afterwards, ui(t) is set to the resting potential urest, while the connections of the k-th time spiking neuron i (in 
this case the pre-neuron) to the respective other network neurons j (in this case the post-neurons) are set by their 
actual membrane potential

= .
=

V t u t( ) ( )
(7)post i

k
j t ti

k

A schematic with two bidirectionally connected neurons is illustrated in Fig. 3(a). If the membrane voltage of 
neuron A (orange trace) reaches the threshold potential, then their mutual connection is potentiated due to the 
high positive value of the membrane voltage of neuron B (marked by a red points on the black trace). However, if 
neuron B reaches the spiking threshold, the connection to neuron A is depressed due to the negative membrane 
potential of neuron A (indicated by the blue dots). Hence, depending on the actual value of the membrane poten-
tial of the opposite neuron, either LTD or LTP is induced for their mutual connection.

Extraction of model parameters from synaptic-plasticity data. The advantage of the proposed neu-
ron model is to limit the number of free parameters. Therewith, the complexity of the model is reduced and a 
transition to a multi-dimensional network level is feasible. In particular, a very limited number of parameters 
allow the systematic answer to the question of how each parameter affects the overall network behaviour. The 
simplicity of the models should nevertheless allow reproducing experimental data in such sense, that the obtained 
network behaviours contain biological relevance. For the following simulation the model parameters have been 
chosen to reproduce the experimental data on synaptic plasticity investigations2–4,28 and compared to the sim-
ulation model of9. The used sets of parameters are listed in Tab. 1. We would like to mention, that the presented 
model further reduces the number of free parameter in comparison to previous published models9. Moreover, 
since the model is also suitable to describe emulation data obtained with memristive devices19, it has an additional 
relevance for the development of real time systems, i.e. neuromorphic systems.

Results
Voltage-response functionality for the induction of LTP and LTD. As a first test of the validity of the  
proposed memristive plasticity model, the synaptic changes as a function of the post-synaptic membrane poten-
tial are investigated. Experimental investigation on cells from the hippocampal CA1 slices found that the induc-
tion of LTP and LTD strongly depends on the variation of the level of post-synaptic polarization28,29. For their 
experimental investigation, the authors employed the voltage clamp technique, in which the post-synaptic poten-
tial is fixed to a reference potential, while the pre-neuron is stimulated.

To emulate such experiments, we set the post-synaptic potential to a fixed value, while for each post-synaptic 
potential the pre-synaptic neuron input current was employed to evoke a spike train of 25 current pulses. In order 
to get a direct comparison of the model with the physiological data for the simulation, the used voltage inter-
val has been shifted for the presentation from [−11 mV, 61.75 mV] to [−40 mV, 32.75 mV]. Further, we would 
like to mention that potentiated synapses are used in the experimental investigation. To account for this in our 

Parameter Value

θthres, spiking threshold 61.75 mV

ucritical, critical potential 9.00 mV

urest, resting potential −11.0 mV

C, membrane capacitance 1 mF

gL, leak conductance 1 (ΩV)−1

Vcritical, set point voltage 0 V

k, learning rate 1.21 (ms)−1

κ, forgetting rate 4.17 10−3 (ms)−1

ωmin, minimal normalized conductance 0.05

ωmax, maximal normalized conductance 1.00

Table 1. Parameter for the plasticity and neuron model of the present simulation model, adapted to neuro 
physiological data.
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modeling, the memristive synapses were initialized to ω = 0.5, i.e. to the half of their maximal conductance value. 
The obtained results are shown in Fig. 3(b): the memristive plasticity model is able to reproduce the experimen-
tally recorded voltage dependent data from refs28,29, in which LTD and LTP is induced in dependence on the post 
synaptic potential.

Spike-timing-dependent plasticity. For a second test of validity of our memristive plasticity model, we 
reproduced spike-timing dependent mechanisms observed in synaptic plasticity investigations. Therefore, the 
typical spike-timing dependent plasticity protocol STDP has been reproduced in our model. Here, the pre-neuron 
is activated shortly before or after the post-neuron is spiking (see sketch in the inset of Fig. 3(c)). Those pairings 
have been repeated for 60 times at a fixed frequency of 6 Hz. The obtained changes in the weight of the synapse 
as a function of the relative timing between pre-synaptic spike arrival and post-synaptic firing are compared in 
Fig. 3(c) with experimental data of Bi and Poo2. The comparison shows an excellent accordance of the model data 
with the STDP experiment.

Additionally, to investigate frequency dependence of the spike pairing, a fixed time delay of +10 ms for 
(pre-post) or −10 ms (post-pre) was used for pair frequencies ranging from 1 Hz to 60 Hz. The obtained results 
are compared in Fig. 3(d) to data from cortical pyramidal neurons4. For the modeling, two cases has been inves-
tigated: while in the first case the weight of the synapse was not affected between the respective spike times, in the 
second scenario a constant forgetting rate of 4.17 10−3 ms−1 in ω(t) has been assumed (see sketched in Fig. 3(d)). 
For both cases, a post-pre pairing (red line) below 40 Hz leads to the induction of LTD, while above LTP is 
evoked. For the pre-post pairing (blue line) the situation however differs between both cases. Here, the use of a 
leakage rate in the model (lower panel in Fig. 3(d)) enables us to account for the pair frequency dependent weight 
change at low frequencies (below 10 Hz), as it was observed in experimental investigations (see blue data points 
in Fig. 3(d))4. In particular, it has been found that pre-post pairings with frequencies below 2 Hz cannot trigger 
LTP. To account for this in the model, the leakage rate has been added, which provides a constant resetting of 
the synaptic weight: for low frequencies the spike time initiated weight changes are infrequent, compared to the 
leakage rate. Therefore, the initiated weight change can be reversed and an even lower value for the weight can be 

Figure 3. Illustration of the present memristive neural plasticity model in comparison to synaptic plasticity 
data from neurophysiologic experiments: (a) Schematic of the given model: LTP occurs whenever one of the 
neurons (A or B) is spiking (whichever reaches the threshold voltage ϴthres) and the membrane potential u(t) 
of the opposite neuron is positive (above the black solid line in a). LTD is introduced if at the spike time the 
opposite neuron has a negative u(t). Thus, the role of pre and post neuron can change so that a bi-directional 
coupling between the neurons can be obtained. (b) Pre-synaptic stimulation under voltage clamp condition 
with 25 spike repetitions. Experimental data are taken from ref.28 shown as dots. (c) Spike-timing-dependent 
plasticity is compared to experimental data from ref.2. (d) Frequency dependency of spike pairs for pre-post 
(blue lines) and post-pre (red lines) pairing. While in the upper graph the synaptic weight is held constant 
between spike events, a weight dependent depression was applied to obtain the data shown in the lower graph. 
Solid lines are model data, while dots are experimental data taken from ref.4. The used simulation parameters 
are listed in Table 1. The parameters have been adjusted in such a way that the same set of parameters can be 
used for all illustrated plasticity emulations.
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observed, compared to the initial value. At higher pair frequencies, however, the leakage rate is relatively small, 
compared to the spike repetition rate. Thus, LTP can be triggered (see Fig. 3(d)).

We would like to emphasize, that the assumed leakage rate is realistic for real memristive systems, where a 
back diffusion of the ions within the memristive layer leads to a loss of memory23.

Connectivity pattern in all-to-all network architectures. In order to investigate the frequency 
dependent formation of bi-directional connections in a network environment, a system consisting of nine QIF 
neurons is used (cf. Fig. 4(a)). These neurons are linked to each other in an all-to-all connecting network struc-
ture. However, in contrast to Hopfield network structures27, the implemented network is bidirectionally linked 
by two different pathways and not necessarily symmetric. In particular, this allows the investigating of the neural 
requirements in forming symmetric network topologies and to what extent the plasticity model led to connectiv-
ity patterns that reflect the neural code, as it was observed in advanced plasticity models9. For the performance 
investigation, two test patterns are presented to the network, as depicted in Fig. 4b. The obtained connectivity 
matrixes (weight matrixes) for five different frequencies are shown in Fig. 4c. Therein, two different cases are com-
pared. While for the data shown in the first row, perfect conditions are assumed, namely a complete retention, in 
the second row data is shown, for which a constant leakage rate of 0.42% per second has been set. As a result, for 
both cases a frequency dependent increase of bidirectional connections was found, while a constant leakage rate 
of the memristive connections additionally suppresses those weights, which are not part of the learned pattern. 
This particularly shows, that the rate coded input is mainly responsible for the formation of bi-directional connec-
tions, while a linear depression in terms of a constant leakage rate provides a suppression of all those connections 
not belonging to the trained pattern.

In particular, the dependency on the post-synaptic voltage enables the formation of receptive fields and allows 
a linkage between coding and connectivity, as only provided by advanced mathematically plasticity models9. This 
enables the change of the weight evolution in an all-to-all connected network in dependence of the input coding. 
In order to study this aspect in some more detail, all nine pixels of the input pattern are given successively every 
17 ms to the network at a frequency of 60 Hz, i.e. temporal coding is employed (cf. Fig. 4(d,e)). The resulting 
weight matrix is shown in Fig. 4(f). In contrast to the previous rate coded case, in the case of a temporal coding 

Figure 4. Connectivity pattern in all-to-all connecting networks: (a) Schematic of the network topology 
in which the neurons (1–9) mutually coupled to each other. The colored neurons represent the two applied 
pattern 1 and 2, shown in (b). (c) Obtained connectivity patterns (adjacency matrices show the strength of the 
connection of two neurons each, with rows denoting the jth and columns the ith neurons) for five different 
spiking frequencies by using rate coding. For the different frequencies the input current to the spiking neurons 
has been varied. In the upper row the synaptic weight is held constant between spike events, while a weight 
dependent depression is used in for the simulations shown in the lower row. (d) Schematic of the network 
topology for temporal coding: the black arrows highlighted the connectivity pattern, which are expected to 
appear for a temporal coding. (e) All nine pixels of the input pattern are given successively every 17 ms to the 
network at a frequency of 60 Hz. (f) The weight matrix (adjacency matrix as explained in caption of Fig. 1 (c)) 
under temporal coding shows the eight unidirectional connections which has been formed in respect to order 
of showed pixels. For the simulation a constant leakage rate for the single connections has been used. Simulation 
parameters are given in Table 1, while further technical details of the simulation can be found in the appendix.
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of the input information unidirectional connections are developed. Since the model parameters and simulation 
conditions are not changed for the temporal coded simulation, we can conclude that our memristive plasticity 
models accounts for a coding dependent connectivity, similar to the model of ref.9.

Hippocampal network model of mnemonic discrimination. In order to study the network capability 
of the implemented memristive model in some more detail, the before described network scheme is applied to 
emulate the discrimination and processing of mnemonic pattern information within the CA3 field of the hip-
pocampus. It has been shown that hippocampal networks are critical for mnemonic discrimination of similar 
input patterns (pattern separation). For this purpose, bidirectional connections are required, which results in 
the formation of local receptive fields to model the auto-associative nature of the CA3 network, as sketched in 
Fig. 5(a). Beside the recurrent projection within the CA3 network, an external input to the CA3 region is mainly 
provided from the entorhinal cortex (EC) via the perforant path. For the simulation, an uncrossed unidirectional 
flow of information has been assumed (cf. 5(a)).

To have a qualitative comparison to behavioral test data, the network was trained with four different images 
taken from the Mnemonic Similarity Task (MST). The MST is an established behavioral task which assesses 

Figure 5. Scalability to the hippocampal circuit:(a) Schematic drawing of the CA3 region of the hippocampus, 
which receive information primarily from the entorhinal cortex (EC). Due to the strong recurrent connections, 
the CA3 region is assumed to build an auto-associative network with strong bi-directional connections31–34. 
(b) MST data used as input pattern to train the network35 (the MST behavior task and images are freely 
available at http://faculty.sites.uci.edu/starklab/mnemonic-similarity-task-mst). For the simulation MST 
images has been transformed into black and white 32 × 32 pixel images and thereafter their pixel intensities 
were applied as current values to the model neurons. (c) Receptive field of the network, before and after 
training the network, shows the weights of more than 1 million synaptic connections. Before training, weights 
are uniformly distributed, after the training matrix of weight shows nearly perfect symmetry (d) Incomplete 
patterns can be completed by the network because of the strong bi-directional connections that have formed 
during learning. (e) Quantitative (gray line) and qualitative (black line) evaluation of completion, depending 
on the completeness of the original image. (f) Schema of temporal coding during training. (g) The temporary 
relationship between the learned sequence and intensity decreases in the output image when the first training 
image is presented to the trained neural network. Simulation parameters are given in Table 1, while further 
technical details of the simulation can be found in the appendix.

http://faculty.sites.uci.edu/starklab/mnemonic-similarity-task-mst
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pattern separation and pattern completion in the hippocampus30–32 and comprises an encoding and a recall phase. 
In the encoding phase, a set of daily life objects are presented to a participant, while in the recall phase behavioral 
pattern separation and completion is tested by displaying previously displayed images, images that are similar to 
the previously seen images, and new images which the participant had not seen before. To use these images within 
our simulation environment, an edge detection algorithm has been employed to transform the photographs to 
contour images (cf. Fig. 5(b)). Furthermore, the contours have been centered to the middle of the image and 
afterwards applied to the network. The respective weight matrixes before and after the learning phase (i.e. before 
encoding and during recall phase) are shown in Fig. 5(c). As a result, we obtained a symmetric weight distribution 
from the initial random distributed weights which shows the successful development of bidirectional connections 
by itself.

In order to test the performance of the network, i.e. to emulate the recall phase of the behavioral test, slight 
modifications on the MST images has been made as shown in Fig. 5(d). This should mimic the encoding phase in 
the MST, in which capability of pattern recognition is investigated by showing the participants the same, as well as 
similar objects from the encoding phase. In this context, it is important to mention that networks of the Hopfield 
type are not invariant against spatial shift of the input pattern. If the image is shifted by only one pixel, the net-
work will account this as a new image. That is why we used fragmented versions of the original images instead of 
using pictures of similar objects as it is done in the MST.

The recognition performance of the implemented network is shown in Fig. 5(e). Therefore, the number of 
applied pixels of the input pattern is varied and the therewith obtained completion of this image has been inves-
tigated. As results, we found that an input pattern has to be presented to 27% for the network to complete it. The 
abrupt jump in the curve underlines the adequate pattern completion performance of the network, as expected 
for Hopfield networks. Instead of ordinary quotes, a more qualitatively measure of the completion performance 
of the networks can been analyzed by calculating the quality of the completion

∑=
=af

f eQ(e) 1 ( ),
(8)n

a

n
max 1

where n is the running number of internal activated neurons, a the number of target pixels, and fn(e) the fire rate 
of the corresponding neuron n that changes with the number e of external activated neurons. Further, fmax defines 
the maximum fire rate of internal neurons, i.e. fmax measures the maximal internal fire capability of the network 
neurons due to their auto-associative projections. The obtained results are added as a gray curve into Fig. 5(e). 
We found that the completion process is already starting when a fraction of 27% of the target pattern is externally 
stimulated, i.e. only 27% of a prior learned pattern must be presented to the network. However, for a perfect 
reconstruction of the incomplete input pattern, 85% of the corresponding input neurons must be stimulated 
externally, whereat perfect is in the meaning of a homogenous completion performance.

Finally, we investigated the network performance for temporal coded (schematic shown in Fig. 4 (d)) input 
information (Fig. 4 (e)). For this purpose, the four input images are transformed into contour plots and were 
thereafter sequentially presented to the network, as sketched in Fig. 5(f). In total, 500 loops are used, in which 
each of these contour plots were applied for 19.2 ms. After the learning phase, i.e. in the recall, the first image 
(pineapple) is applied to the trained network again. As a result, we found that the three other learned images also 
appear, but their intensities are reduced in respective to their position in the learned cue. However, if during the 
recall the third trained pattern (pear) is applied to the network, the last trained picture (apple) is activated with 
the second highest intensity. Thus, the learned sequence of images can be completely reproduced by the network. 
This is a particularly important aspect for hippocampal learning and memory formation, in where memory is 
stored episodically32–34, i.e. the hippocampus is known to be the pivotal structure for the formation of episodic 
memory. Thus, the presented model allows emulating hippocampal key functionalities in a simplified circuit 
model by using appropriate coding schemes.

Discussion
Here, evidence has been shown that the presented memristive plasticity model can serve as a basis for the emu-
lation of neural cells of the brain in the context of cellular learning and memory processes, particularly in the 
hippocampus. For the emulation of learning processes in hippocampal networks, it is important to ensure that 
new mnemonic information can be stored quickly, flexibly and associatively. In this respect, two processes have 
a critical function in the establishment of new memory representations: pattern completion and pattern sepa-
ration35. As a structural basis for pattern completion and separation, recurrent collaterals (i.e., the same nerve 
cell projects onto itself) form auto-association networks33,34. These networks consist of separate unidirectional 
connections, in each case between two neurons, which become bidirectional through the training. The presented 
memristive model is of particular interest for hippocampal learning, as it allows a connection to the Hebbian 
learning theory, in which co-actively spiking neurons increase their synaptic coupling weight. This coactivation 
forms stable activity states (attractor states) by auto-association, as in models described in32,34, in which all those 
activity patterns, which are similar to previous learned patterns, converge towards a stable (learned) attractor 
state in the absence of further synaptic modifications. Hence, the system facilitates pattern completion. Thus, the 
synaptic links between those cells are strengthened, which represent different components of the same object and 
subsequently allow the reactivation of the complete set of original cells by a partial or fragmented subset of cells, 
that were present during initial learning (cf. Fig. 5). In particular, the formation of bidirectional connections is 
therefore of importance for pattern completion. This can be addressed with the above described memristive net-
work. Therefore, the memristive plasticity rule enables the formation of bidirectional connections in dependency 
on the stimulation frequency and coding conditions (cf. Fig. 3).
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It is worth to compare our plasticity model with prior published phenomenological models, such as the model 
published in refs8,9. In accordance with this model, a spike-time-dependent plasticity model has been developed, 
in which synaptic changes are dependent on the spike arrival of the pre-synaptic neurons and the post-synaptic 
membrane potential. One of the important key contents of the model of refs8,9 is that the postsynaptic membrane 
potential is filtered with two different time constants. Therewith, the weight update differs between the momen-
tary membrane potential and a low-pass filtered version of it, which takes the voltage history over the recent past 
into account. In this context, memristive behavior provides an excellent opportunity for the simulation of such 
weight change dynamics, manifesting in a weight dependent learning rate. Thus, in the memristive plasticity 
model, the strength of the weight change depends on the current value of the post-synaptic membrane potential, 
the frequency of pre-synaptic firing, and the current weight state itself. We have shown evidence that this makes 
our memristive model functional comparable to phenomenological neurobiological models and accounts for a 
variety of non-linear effects that are observed in STDP experiments, as well.

An advantage of the memristive plasticity model is that the model can also be applied to real memristive 
devices19,30. In this context, we were able to show that the described memristive model can be transferred to differ-
ent types of memristive devices19,30, which differ significantly in their resistance change characteristics. Although 
the model cannot make any statement about the physical mechanisms underlying the resistance switching pro-
cess, it allows a simple description of the nonlinear behavior of memristive devices. Thus, the model can be 
applied to a variety of different memristive devices and therefore accounts for the rich variety of memristive 
devices. This is of particular relevance to the development of neuromorphic computing, since it supports both the 
design of appropriate memristive devices and the development of complex neuromorphic networks, which take 
the specific behaviors of memristive devices into account. Therefore, memristive devices are useful to mimic local 
synaptic features, but can account for global neural network properties as well.

In conclusion, we present a voltage-based plasticity model, which is based on the voltage and history depend-
ence of memristive devices. We showed that the non-linear and state dependent state change of a memristive 
device is able to account for a variety of experimental plasticity data on STDP and is principally compatible 
with phenomenological voltage-based SDTP models. In particular, the presented model enables the formation 
of bidirectional connections and therewith the formation of local receptive fields in auto-associative networks. 
This might serve as a functional basis for a description of learning and memory formation in the hippocampus. 
While the presented model is functionally based on an abstract description of a memristive device, we emphasize 
that the model is also suitable to account for real device hardware. Therefore, we suggest that the presented model 
helps to implement real-time capable network models, which are able to cope with the high complexity and par-
allelism of information computing in the brain.

Methods
Simulation details. The model has been implemented into a C-code. The neuron model is solved by the 
classical Runge Kutta method (RK4), while the forward Euler method has been used for solving the differential 
equation of the memristive plasticity model.

For the network simulation of the CA3 region of the hippocampal field 1024 neurons are recurrently cou-
pled into a bi-directional 1024 × 1023 auto-associative network. Self-projections are forbidden in the simulation 
model. The input current vector I(t) to the neurons of the network depends on both, an external input Iext(t) and 
the recurrent synaptic connections Iint(t):

= +I t I t I t( ) ( ) ( ) (9)ext int

The constant external input current to the network is defined as

= .I I P (10)n
ext ext

n0

Here, Pn is the particular pixel of the 1024 pixels of the input image, which is either 0 or 1. I0
ext is a constant, 

which has been set to 430.25 mA in the simulation. As input pattern images from the mnemonic Similarity Task 
(MST) have been used, which is a behavioral task designed to tax pattern separation. The test is freely available at 
the webpage of Stark Lab38 and contains different sets of patterns, which show images of daily live objects. To use 
those images as input patterns in our simulation model, an edge detection algorithm was applied to the images 
prior to their application to the network. The algorithm set the pixel value in the compressed image to one, when-
ever the change in the intensity between two neighboring pixels in the original image is above a threshold. This 
particularly leads to a black-white image containing of binary pixel intensity.

The internal current, which is provided by the recurrent synaptic connections, is given by

∑ ω
δ

ω
=

−

∑
I I t t( ) ,

(11)
j
int

i ij

int
i
spike

j ij

0

where the ωij are the elements of the adjacency matrix defining the synaptic coupling strengths and I0
int is the 

amplitude of the current pulse, which is emitted from a neuron during is spike time tspike. I0
int has been chosen to 

2.4 A in the simulation. Further, the current is normalized by the sum of all connections for convergence.
The network simulation was divided into two phases: training and recall. For training, a time of 7.2 s has been 

simulated, in which every 19.2 ms the training patterns are changed. Depending on the specific task the network 
has been trained with two or four patterns. During recall, incomplete versions of the before trained patterns are 
shown to the network. For better statics, those patterns are applied for a long time of 72 s.
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