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Bayesian Multi-Plate High-
Throughput Screening of 
Compounds
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High-throughput screening of compounds (chemicals) is an essential part of drug discovery, involving 
thousands to millions of compounds, with the purpose of identifying candidate hits. Most statistical 
tools, including the industry standard B-score method, work on individual compound plates and do 
not exploit cross-plate correlation or statistical strength among plates. We present a new statistical 
framework for high-throughput screening of compounds based on Bayesian nonparametric modeling. 
The proposed approach is able to identify candidate hits from multiple plates simultaneously, sharing 
statistical strength among plates and providing more robust estimates of compound activity. It can 
flexibly accommodate arbitrary distributions of compound activities and is applicable to any plate 
geometry. The algorithm provides a principled statistical approach for hit identification and false 
discovery rate control. Experiments demonstrate significant improvements in hit identification 
sensitivity and specificity over the B-score and R-score methods, which are highly sensitive to threshold 
choice. These improvements are maintained at low hit rates. The framework is implemented as an 
efficient R extension package BHTSpack and is suitable for large scale data sets.

High-throughput screening (HTS) of compounds is a critical step in drug discovery1. This typically involves the 
screening of thousands to millions of candidate compounds (chemicals). The objective is to accurately identify 
which compounds are candidate active compounds (hits). Those compounds will then undergo a secondary 
screen. A flow chart of a typical HTS process is shown in Fig. 1. The first step in the process, called primary 
screening, is a comprehensive scan of tens of thousands of compounds with the objective of identifying primary 
hits. Computational and statistical tools involved in the primary screening step need to be accurate and efficient, 
due to the large number of compounds to be screened.

Two types of error can occur in the primary screening process, namely false positive (FP) and false negative 
(FN) errors. While technological improvements and advances in experimental design and accuracy can help 
mitigate these two types of error, they by themselves are not able to sufficiently improve the quality of the HTS 
process in general and the primary screening step in particular1. There is a need for comprehensive statistical and 
computational data analysis systems that can characterize HTS data accurately and efficiently, including available 
prior information and borrowing information.

HTS Data Structure. Compounds are evaluated on 96-well or 384-well plates. For 96-well plates, the first 
and last columns typically contain only control wells, and thus a 96-well plate only contains 80 test compounds. 
Similarly, the first and last columns of a 384-well plate are typically used for controls, leaving 352 wells for test 
compounds. We assume that each well measures a different compound activity (e.g. no replicates) and has the 
same concentration of compound. It is also assumed that compounds are distributed randomly within the plate.

In a different 384-well plate design depicted in Fig. 2, four 96-well plates are screened as a common 384-well 
plate. This is done to achieve higher efficiency and number of screened compounds. Because the individual 
96-well plates are processed as a whole, artifacts from robotic equipment, unintended difference in concentration, 
agent evaporation, or other errors2 might propagate through the plates. This type of cross-plate correlation is not 
accounted for by simple HTS systems working on individual 96-well plates.
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Figure 3 provides a more detailed look of a 96-well plate. Ideally, controls should be placed randomly through-
out the plate, to mitigate edge effects. However, the standard practice is to place the controls in the first and last 
columns and the compounds in inner columns.

High-Throughput Screening of Compounds Methods. High-throughput screening statistical prac-
tice1,3 has traditionally used simple methods such as the B-score4, R-score5, Z-score and the normalized per-
cent inhibition (NPI), for measuring compound activity and identifying potential candidate hits. These methods 
transform the compound raw value into the so called normalized value, which can then be used directly to assess 
compound activity. Each of the above-mentioned methods has advantages and disadvantages and they differ in 
terms of how controls are used. The B-score, R-score and Z-score do not use controls in the normalization pro-
cess, while the NPI makes use of both positive and negative controls.

The Z-score and the NPI work on per individual compound basis. The NPI, which has a biologically plausible 
interpretation as the percent activity relative to an established positive control, is defined as
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where μz and σz are the mean and standard deviation respectively of all compounds in the plate.
The B-score and the R-score work on a per plate basis in the sense that the plate geometry has an effect on the 

computed score. The B-score is defined as

B
r

MAD
,

(3)
z

z
=

where rz is a matrix of residuals obtained after a median Polish fitting procedure and MADz is the median absolute 
deviation.

The R-score5 uses the robust linear model (rlm) as an alternative to the median polish, to obtain robust esti-
mates of row and column effects. Instead of the median absolute deviation, the scale estimate from rlm is used to 
compute the score. The R-score has been demonstrated5 to outperform the B-score in a number of cases, espe-
cially when there is an absence of positional effects in the HTS data plates.

The NPI, Z-score, B-score and R-score all have limitations. The NPI is very sensitive to edge effects, since it 
uses the negative and positive control wells that are typically in the outer columns. The Z-score is susceptible to 
outliers (although this can be mitigated by an alternative called the BZ-score5) and assumes normally distrib-
uted compound readout values, an implausible assumption in many screening contexts (Fig. 4). Although the 

Figure 1. Block diagram of an HTS process.
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B-score takes into account systematic row and column plate effects and is the method of choice1 in many cases, 
it requires an arbitrary threshold (the same applies to the R-score) to identify hits and tends to miss important 
compounds with minimal or moderate activity. Critically, most methods treat each plate independently. In some 

Figure 2. 384-well plate consisting of four 96-well plates. Figure taken from24.

Figure 3. Example of a 96-well plate with compounds in the middle 80 wells and controls in the first and last 
column wells. Left panel shows a plate containing compounds, negative and positive controls. Right panel shows 
a 96-well plate in which positive and negative controls alternate to reduce plate edge effects.

Figure 4. Density of mast cell activated compounds, exhibiting a log-normal law with a large positive outlier. 
Data are under the auspices of NIH contract No. HHSN272201400054C.



www.nature.com/scientificreports/

4SCieNtifiC REPORTS | (2018) 8:9551 | DOI:10.1038/s41598-018-27531-w

cases, systematic experimental and plate design effects may induce correlation among groups of plates. A vari-
ation of the B-score method described in4 makes use of compound wells from different plates by constructing 
a smooth function which is then applied locally to individual wells. The assumption in their approach is that 
systematic plate effects are fairly spatially and temporally (across plates) consistent. It would be desirable to have 
a more flexible system that works on multiple plates simultaneously, while selectively sharing statistical strength 
of well regions across plates.

A Bayesian approach for hit selection in RNAi screens was proposed in6. The model imposes separate 
Gaussian priors on active, inactive and inhibition siRNAs. Inference is based on hypothesis testing via posterior 
distributions. The posterior distributions are then directly used to control false discovery rate (FDR)7. The pro-
posed method is parametric and although it may be reasonable in some cases to model the siRNAs as normally 
distributed, many data in practice and particularly HTS data are not Gaussian (as shown in Fig. 4). Additionally, 
the priors of the proposed method incorporate common information that is pooled from all plates. This type of 
information sharing is fixed and is different from the multi-plate sharing mechanism in machine learning, where 
different groups of data iteratively and selectively share information via a global layer8.

In this paper we develop a new system for HTS of compounds based on Bayesian nonparametric modeling. 
The nonparametric method does not use controls and is capable of characterizing HTS data that are not neces-
sarily Gaussian distributed. It can handle multiple plates simultaneously and is able to selectively share statistical 
strength among plates. This selective sharing mechanism is important for discovering systematic experimental 
effects that propagate differently among plates. We develop an efficient Markov chain Monte Carlo (MCMC) sam-
pler for estimating the compound readout posteriors. Based on posterior probabilities specifying if a compound is 
active or not, it is possible to determine probabilistic significance, control FDR9 and adjust for multiple compari-
son10 in a Bayesian hierarchical manner. The framework is implemented as an R extension package BHTSpack11.

Materials and Methods
Statistical Model. Dirichlet process Gaussian mixtures (DPGM)12,13 constitute a powerful class of nonpar-
ametric models that can describe a wide range of distributions encountered in practice. The simplicity of DPGM 
and their ease of implementation have made them a preferable choice in many applications, as well as building 
blocks of more complex models and systems. In the DPGM framework, the Dirichlet process (DP)14,15 models 
the mixing proportions of the Gaussian components. The hierarchical Dirichlet process (HDP)8 is particularly 
suitable for modeling multi-task problems in machine learning. An example of multi-task learning is the simul-
taneous segmentation of multiple images (tasks) for the purpose of image analysis, which can be facilitated by 
the use of the HDP or a variation of it16,17. The analogy is that while in image analysis the input data are images 
of pixel intensities, in our HTS of compounds scenario they are plates of compound readouts. However, spatially 
proximate pixels in a typical image are correlated, while compounds in a plate are ideally (in the absence of 
effects) unrelated.

Our framework deploys two HDPs to characterize the active and inactive components. In the following sequel 
we approximate the DP via the finite stick-breaking representation18. Let m ∈ {1, …, M} denote the plate index, 
where M is the total number of plates. Let i ∈ {1, …, nm} denote the compound well index within a plate, h ∈ {1, 
…, H} denote the DP mixture cluster index within a plate and k ∈ {1, …, K} denote the global DP component 
index. Let superscripts (1) and (0) refer to active and inactive compounds, respectively. Motivated in part by19, we 
propose to model the compound activity via a two HDP mixture model as follows:
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where zmi is the measured activity of the ith compound from plate m and ( ; )θ⋅  is a Gaussian kernel with param-
eters θ.

Continuing the HDP model specification, we have:
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where DP(α, ⋅) denotes the finite stick-breaking representation of the DP with concentration parameter α (see 
supplementary materials for more details about the stick-breaking construction).

The beta distribution, with its sub-case the uniform distribution, is defined on the interval [0, 1] and is flexible 
enough to model mixing proportions. At the same time, the gamma distribution, a conjugate (its posterior is also 
gamma) to the beta distribution, has a support (0, +∞) and is particularly suitable for specifying DP concen-
tration parameters, adding flexibility to the overall model. We therefore place a beta prior on the HDP mixing 
proportion, and gamma priors on the DP concentrations:

a bBeta( , ) (8)π ∼ π π
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α α ∼ α αa b, Ga( , ) (9)1 0

τ τ ∼ τ τa b, Ga( , ) (10)1 0

Finally, we place Normal-inverse gamma priors on the Gaussian kernel parameters:
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2  model the activity mean and variance of active and inactive compounds respectively. 
The hyperparameters μ11 and μ10 reflect our prior belief for the expected activity level of active and inactive com-
pounds, respectively. These hyperparameters do not need to be precisely specified and the next subsection pro-
vides guidelines for choosing appropriate values.

At each iteration of the MCMC sampler, the model determines plate-specific groups of active and inactive 
compounds, via the local DP layers Gm

(1) and Gm
(0) respectively. A group of compounds (either active or inactive) 

will share the same DP mixture component variables. At the same time, the model also clusters the plate-specific 
groups of compounds into global groups of active and inactive compounds, via the global DP layers G0

(1) and G0
(0) 

respectively. A global group of compounds may contain compounds from different plates that share the same 
global DP mixture variables. This selective sharing mechanism of the HDP framework mitigates systematic 
experimental effects that propagate differently among plates and plate regions.

Specification of hyperparameters {μ10, μ00, a, b}. The compound data mean and variance can be used 
to specify the model hyperparameters {μ10, μ00, a, b}, without the help from controls. Let μ denote the mean of the 
compound data. We found that automatically setting μ00 = 0.5 μ and μ10 = 3 μ00 yields good results across cases 
in our experiments.

The compound variance hyperparameters {a, b} are common for both active and inactive compounds, but the 
model facilitates different active σ1

2 and inactive 0
2σ  compound variances. These hyperparameters can be derived 

using the compound data, and the expressions for the inverse gamma mean 
−
b
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 (for >a 2). Let v denote the compound data variance. The choice of the specific value for inverse 

gamma variance determines the concentration of the prior around the variance of the compound data. The 
smaller the value the more concentrated the prior is. We found that the value 10−4 gave a well concentrated prior 
with a valid hyperparameter a 2> . As a result, setting the inverse gamma variance to 10−4 and using v as the 
mean, the hyperparameters can be explicitly derived as:
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A graphical representation of the complete BHTS model is shown in Fig. 5.
We derive MCMC update equations based on approximate full conditional posteriors of the model parameters 

and construct a Gibbs sampler that iteratively samples from these update equations. The stick breaking construc-
tion18 is used in the approximate posterior distributions of the global and local DP weights. The update equations 
are shown in the supplementary materials.

False Discovery Rate and Multiplicity Correction. Our problem can be formulated as performing 
∑ nm m dependent hypothesis tests of bmi = 0 versus bmi = 1. Following20, an estimate to FDR for a given threshold 
r can be computed as:
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where z( )miπ̂  is the posterior probability estimate of the compound zmi being a hit (see supplementary) and 1(⋅) is 
the indicator function. Since the model is fully Bayesian, multiple comparison is automatically accounted for10 in 
the estimated posteriors π̂ z( )mi .

Results
We assess the performance of the BHTS method using synthetically generated and real data sets, and compare it 
with the B-score and R-score methods in terms of receiver operating characteristic (ROC) curves and area under 
the curve (AUC). We also perform experiments with a data set containing very low proportion of compound hits. 
The R extension packages sights21 (implementing the R-score) and pROC22 were employed in the analysis.

Synthetic Compound Data. We constructed synthetic data for the purpose of assessing sensitivity and 
specificity of the proposed algorithm. Here we describe synthetic data generation based on the 96-well plate 
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format. Experiments with 384-well plates are described and presented in the supplementary. We generated a set of 
80 × 103 compounds consisting of hits and non-hits. The hits were generated from a four component log-normal 
mixture model with means {0.20, 0.24, 0.28, 0.32} and variances {0.0020, 0.0022, 0.0024, 0.0026}. Similarly, the 
non-hits were generated from a four component log-normal distribution with means {0.10, 0.12, 0.14, 0.16} and 
variances {0.010, 0.011, 0.012, 0.013}. The compounds were then randomly distributed among 1000 compound 
plates, with each plate consisting of eight rows and ten columns. In choosing the means and variances we tried to 
obtain a synthetic data that will closely resemble the real compound data shown in Fig. 4.

We simulated plate effects by generating random noise from the matrix-normal distribution, with a zero loca-
tion matrix and specific row and column scale matrices. The row and column scale matrices were designed in a 
way to reflect the structure of within plate row and column effects encountered in practice. Specifically, we used 
a real data set of compounds exhibiting the plate design shown in Fig. 3. We excluded the control well columns 
and computed B-scores based on individual 8 × 10 compound well plates. We then estimated the row-wise and 
column-wise covariance matrices of the difference between the compound raw values and their B-scores. The 
estimated covariance matrices were then properly scaled and used as row and column scale matrices (shown in 
Fig. 6) in generating the plate noise effects. An independently drawn noise plate was added to each of the com-
pound plates. The resulting data plates were used as test data.

Experiments were performed with data sets containing different proportions of active and inactive com-
pounds. Considering the fact that a large collection of compounds will probably contain a relatively small num-
ber of candidate compound hits of interest, we experimented with data sets containing 10%, 5%, and 1% of active 
compounds, respectively. See supplementary materials for specific choice of model hyperparameter values.

Comparison with B-score and R-score Methods. Experimental ROC results are shown in Fig. 7. The B 
and R score ROC curves which have piecewise-linear shape due to the binary nature of the predictor, are based on 
the maximum achievable AUC threshold. It can be seen that the BHTS method improves upon the other methods 
in terms of classification accuracy. The results in Fig. 7 also demonstrate that the B-score is highly sensitive to a 
particularly chosen optimal threshold, as evidenced by the spike in the AUC curve as a function of the threshold.

Hyperparameter Sensitivity Analysis. In this subsection we assess the sensitivity of the proposed 
method to the choice of hyperparameter values {μ10, μ00} by computing the AUC for a range of values of the dif-
ference (μ10 − μ00). Experimental results are shown in Fig. 8. It can be seen that the model performs similarly in 
terms of AUC, for a range of (μ10 − μ00) values and different data sets.

Low Hit Rates. We assess the proposed method capability to identify potential hits from data sets containing 
very small proportion of hits. Low hit rates of HTS have been reported in23. In their paper, the authors describe 
a corporate library of approximately 4 × 105 compounds that was screened for compound hits that inhibited 
PTP1B. Of approximately 4 × 105 molecules tested, 85 (a hit rate of 0.021%) inhibited the enzyme with IC50 
values less than 100 μM.

The above mentioned corporate library of compounds is not publicly available. To simulate such a low hit 
rate scenario, we generated 4 × 105 compounds in the same way as before, but this time the compound data set 

Figure 5. A graphical representation of BHTS model. The blue circle represents the observed variable, white 
circles represent hidden (latent) variables and squares represent hyper-parameters. Conditional dependence 
between variables is shown via the directed edges. The latent binary variable bmi specifies active (1) or inactive 
(0) compound.
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contained 0.021% of active compounds. Experimental ROC results are shown in Fig. 9. It can be seen that the 
BHTS method maintains its performance improvement in the case of low hit rates.

Real Compound Data. We considered the data set “Inhibit E.coli Cell Division via Induction of 
Filamentation, but Excluding Filamentation Induced by DNA Damage”, available from ChemBank (http://chem-
bank.broadinstitute.org) at Broad Institute. The data set consisted of twenty four assays, most of which were run 
on 352-well (excluding controls) plates. From all screened compounds, 389 were confirmed hits. The data set 
was collected under different experimental conditions, namely three organisms (DRC39, DRC40, DRC41) and 
two incubation times (24 h and 48 h). We therefore restricted the analysis to one organism and incubation time 
(DRC39 at 24 h). Considering only 352-well format plates, we had 57 plates available for the analysis. The plates 
contained data from 4 assays. The plates were run in duplicates, but only one of the replicates was present for each 

Figure 6. Synthetic compound data used in the experiments. Left and middle plots show scale matrices used in 
generating the synthetic noise plates, indicating predominantly row dependent within plate effects. Right plot 
shows density of resulting synthetic compound and plate effect data.

Figure 7. Top row shows AUC plots of B and R score methods, as functions of thresholds. Bottom row shows 
ROC plots of the B-score, R-score and BHTS methods. Data sets containing 10% (left column), 5% (middle 
column) and 1% (right column) of active compounds, respectively. The piecewise-linear shape of the B and R 
score curves is due to the binary nature of the predictor.

http://chembank.broadinstitute.org
http://chembank.broadinstitute.org
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compound well. We therefore used that replicate in the subsequent analysis. Since compounds were screened in 
more than one assay, the number of compound hit wells was 434 out of a total number of 352 × 57 = 20, 064 wells.

Prior to applying the BHTS, B-score and R-score methods, we normalized the data so that each plate had a 
mean zero and variance one (can be seen as computing the Z-score). Experimental results, along with the com-
pound density (being quite idiosyncratic), are shown in Fig. 10. It can be seen from the ROC curves that this real 
compound data set is far more challenging than the considered synthetic data set examples, but the BHTS method 
still outperforms the B-score and R-score methods.

Implementation and Scalability. We implemented the proposed model as an R package BHTSpack11, 
with some of the inner routines implemented in C/C++. We experimented on a laptop with an Intel(R) 
Core(TM) i7-4600M CPU @ 2.90 GHz and 8 GB of RAM, running the 64-bit Ubuntu Linux operating system. 
It takes 30 minutes to complete 7 × 103 Gibbs sampler iterations, using 103 plates with 80 × 103 compounds. 
Additionally, it takes 23 hours to complete the same number of iterations, using 50 × 103 plates with 4 × 106 com-
pounds. The proposed MCMC algorithm for Bayesian posterior computation had good mixing rates across cases 
in our experiments (see trace and autocorrelation function plots in the supplementary materials).

Discussion
We developed a new probabilistic framework for primary hit screening of compounds based on Bayesian nonpar-
ametric modeling. The statistical model is capable of simultaneously identifying hits from multiple plates, with 
possibly different numbers of unique compounds, and without the use of controls. It selectively shares statistical 

Figure 8. AUC as a function of (μ10 − μ00), for data sets containing 10% (left plot), 5% (middle plot) and 1% 
(right plot) of active compounds. Red line indicates mean of compound data.

Figure 9. ROC plots of the B-score, R-score and BHTS methods. Data set containing 0.021% of active 
compounds.
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strength among different regions of plates, thus being able to characterize systematic experimental effects across 
plate groups. The nonparametric nature of the model makes it suitable for handling real compound data that are 
not necessarily Gaussian distributed. The probabilistic hit identification rules of the algorithm facilitate principled 
statistical hit identification and FDR control. Experimental validation with synthetic and real compound data 
show improved sensitivity and specificity over the B-score and R-score methods, which are shown to be highly 
sensitive to the choice of an optimal threshold. The performance improvement of the BHTS method is shown to 
be maintained at low hit rates. An efficient implementation in the form of an R extension package BHTSpack11 
makes the method applicable to large scale HTS data analysis.
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