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Target tracking and 3D trajectory 
acquisition of cabbage butterfly 
(P. rapae) based on the KCF-BS 
algorithm
Yang-yang Guo1,2,3, Dong-jian He1,2,3 & Cong Liu1,2,3

Insect behaviour is an important research topic in plant protection. To study insect behaviour 
accurately, it is necessary to observe and record their flight trajectory quantitatively and precisely in 
three dimensions (3D). The goal of this research was to analyse frames extracted from videos using 
Kernelized Correlation Filters (KCF) and Background Subtraction (BS) (KCF-BS) to plot the 3D trajectory 
of cabbage butterfly (P. rapae). Considering the experimental environment with a wind tunnel, a 
quadrature binocular vision insect video capture system was designed and applied in this study. The 
KCF-BS algorithm was used to track the butterfly in video frames and obtain coordinates of the target 
centroid in two videos. Finally the 3D trajectory was calculated according to the matching relationship 
in the corresponding frames of two angles in the video. To verify the validity of the KCF-BS algorithm, 
Compressive Tracking (CT) and Spatio-Temporal Context Learning (STC) algorithms were performed. 
The results revealed that the KCF-BS tracking algorithm performed more favourably than CT and STC in 
terms of accuracy and robustness.

Insect behaviour has become an important research direction in the field of plant protection1. Behavioural 
research may inform methods for biological control2,3, biological model construction4,5 and plant-insect inter-
actions6,7. To study the behaviour of flying insects accurately, it is necessary to observe and record their flight 
trajectory quantitatively and precisely in three dimensions (3D).

Traditional detection methods for insect behaviour depend mainly on direct and manual observation, which 
are complicated by arbitrary qualification, wasting of human resources and low effectiveness8. Recent develop-
ments in computer vision have stimulated the application of these techniques to insect tracking9–11. Straw et al.12 
used three cameras to three-dimensionally track flying animals and can also track flies and birds, but the use of 
three cameras increased the difficulty of matching and the amount of 3D coordinate calculations. Okubo et al.13 
obtained images of a group of mosquitoes with a single camera and constructed the 3D trajectory of mosquitoes 
based on the geometric relationship between the mosquito group and its shadow on a white background. Stowers 
et al.14 used the FreemoVR platform to establish a height-aversion assay in mice and studied visuomotor effects 
in Drosophila and zebrafish. However, this method was not directly suitable for the investigation of behaviours 
for which stereopsis is important because it rendered visual stimuli in a perspective-correct manner for a single 
viewpoint. Jantzen and Eisner15 implemented Lepidoptera’s 3D trajectory tracking, and Lihoreau et al.16 obtained 
the three dimensional foraging flights of bumblebees. However, in these studies, the experimental environment 
was relatively simple, and the target was obvious.

Automated image-based tracking has been applied for outdoor research, and the imaging method includes 
thermal infrared17, sonar18, 3D19, and harmonic radar20 methods. Xu et al.21 proposed a method for the 3D obser-
vation of fish based on a single camera. A waterproof mirror was installed above an experimental fish tank to 
simulate a camera shooting from top to bottom. Although monocular vision was able to determine a 3D tra-
jectory, the shooting video was largely influenced by environmental factors, and the calculation process was 
complex. Hardie and Powell22 investigated the use of two or more parallel cameras to obtain an image sequence 
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of aphid-landing outdoors, and drew the 3D landing trajectory, but this method involved a complex 3D matching 
process due to the complicated external environment, which increased the difficulty of matching. Risse et al.23 
used a freely moving camera to track small animals in cluttered natural environments. Animals were represented 
by a single point, and the animal had to move in the majority of the frames to be tracked correctly. Although 
outdoor research has scored some achievements, complex natural environments (e.g., light, temperature, spatial 
structure of habitats, leaves, animals) increases the difficulty of outdoor research. Indoor research can weaken the 
impact of environmental factors and be conducive to the scholarly understanding of insect behaviour and also 
provide a technical and theoretical basis for outdoor experiments.

The cabbage butterfly is one of the most harmful insects to agriculture24, and thus it is necessary to track them 
and obtain their flight trajectories. In this study, we chose the cabbage butterfly adult as the research object, and 
performed research in a wind tunnel to which plants and wind were added to introduce a more natural environ-
ment than an empty tunnel. We then designed a orthogonal binocular vision measurement system with top-view 
and side-view cameras aimed at the wind-tunnel experimental environment, reducing the difficulty of camera 
matching. The insect can be obscured by plants. We propose a method for tracking and obtaining 3D trajectories 
based on a combination of the kernelized correlation filter (KCF) algorithm and background subtraction (BS) 
(KCF-BS). This method can occlusion and re-track the target after the target was lost. The proposed method 
will provide a theoretical foundation and valuable reference for further behavioural research on this insect and a 
technical reference for target tracking based on orthogonal binocular vision.

Results
Kernel function and characteristic parameter optimization. To optimize the kernel functions 
and the characteristics of tracking of cabbage butterfly targets, a top-view video of flight in the wind tunnel 
was employed as a test. Linear, Polynomial and Gaussian kernels were used successively in tracking tests under 
Histogram of Oriented Gradient (HOG)25 and Gray characteristics, while the actual flight curve of the cabbage 
butterfly target centroid coordinates in the test video frames was manually marked. Comparisons of the trajectory 
results from Linear, Polynomial and Gaussian kernels under the two characteristics in the top view video with the 
actual flight path are shown in Fig. 1a, and the error distance (Euclidean distance) vs. time (frame) for all algo-
rithm and parameters are shown in Fig. 1b. The Euclidean distance in pixels was used to express the relative error 
between tracking and the actual trajectories, as shown in Table 1.

Figure 1a shows that the tracking trajectory and the actual trajectory curves were quite close to each other, 
but there was a relatively large deviation between the tracking and actual trajectory curves using HOG/Gaussian, 
and HOG/Polynomials (Fig. 1b) and a relatively smaller tracking error using the Gray characteristic (Fig. 1b 
and Table 1). Although the average relative error of Gray/Gaussian was smallest, the maximum and minimum 
relative errors of Gray/Gaussian were larger and might lead to large fluctuations in estimates. Considering this 
synthetically using multiple factors, Gray/Linear with smaller maximum, minimum and average relative errors 
was selected as optimal for tracking the 3D trajectory in this paper.

Figure 1. Trajectories using KCF algorithm with different parameters. (a) Trajectories with different 
parameters and real movement. (b) Error distance (Euclidean distance) vs. time (frame) for all algorithms and 
parameters.

Parameters
Maximum 
relative error

Minimum 
relative error

Average 
relative error

Hog/Gaussian 36.24 1.00 7.12

Hog/Polynomial 35.51 0.00 8.15

Hog/Linear 18.11 0.00 6.59

Gray/Gaussian 18.44 1.00 5.58

Gray/Polynomial 18.25 0.00 6.52

Gray/Ginear 18.25 0.00 6.03

Table 1. Relative position with different parameters (Pixels).
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Target tracking and centroid trajectory acquisition. In the preliminary tracking test, the threshold T 
was 3. The test was conducted in an open area without plant shelter, when the insect was occluded by the plant 
leaves or was located at the edge of the wind tunnel, and when the background was similar to the target colour. 
Figure 2 shows tracking data for the insect target in the top-view video based on the KCF algorithm (first col-
umn), and the KCF- BS method (second column).

Figure 2a shows the tracking results when the insect was located in the open area in the centre of the wind 
tunnel, and both algorithms could be used to completely track and plot the trajectory of the target centroid. 
Figure 2b–d shows the tracking results when the insect was occluded by plant leaves, when located at the edge of 
wind tunnel, and when the target colour was similar to the background. Comparing the tracking results of the 
two methods indicates that, in those circumstances, the KCF algorithm alone failed to track continuously but the 
method of KCF-BS accurately tracked the actual flying trajectory of the cabbage butterfly, but missed information 
when the background colour was similar to the target. The success rates of the two algorithms in the four cases 
are shown in Table 2.

Comparison experiment. To verify the effectiveness of the tracking method described in this paper, 
Compressive Tracking (CT)26 and the Spatio-Temporal Context Learning (STC)27 were performed in the 
top-view video. Figure 3 shows comparisons of the object using the KCF-BS algorithm (first column), the CT 
algorithm (second column) and the STC algorithm (third column) in the wind tunnel centre case. The CT algo-
rithm dropped the target at the 45th frame (Fig. 3c2) and could not effectively track the target again (Fig. 3d2). 
The target was lost in the 59th frame using the STC algorithm (Fig. 3d3). The KCF-BS algorithm could still track 
the target in the 45th and 59th frames.

Figure 4a shows the actual trajectory and tracking trajectory using the KCF-BS algorithm, the CT algorithm 
and the STC algorithm in the wind tunnel centre case, and Fig. 4b shows the error distance (Euclidean distance) 
vs. time (frame) for all algorithms. CT and STC algorithms could not continuously track the target (Fig. 4a) and 
showed a large deviation in Fig. 4b. When the target was not lost, the average errors of the CT and STC algorithms 
were 8.3 pixels and 10.9 pixels, respectively. The KCF-BS algorithm tracked the target continuously with an average 
error was 7.1 pixels. The success rates of the CT, STC and KCF-BS algorithms in the four cases are shown in Table 3.

Acquisition of the 3D trajectory. A target-tracking test was performed on the acquired cabbage butterfly 
video, and a representative result for the side-view and top-view video target tracking is shown in Fig. 5. The 3D 
spatial coordinate sequence P(xn, yn, zn) during cabbage butterfly flying was generated from the coordinate matri-
ces P(xn, zn) and P(xn, yn) obtained by side-view and top-view video tracking, respectively. Thus, the 3D trajectory 
of the cabbage butterfly in flight could be drawn (Fig. 6).

Figure 6 shows that the 3D trajectory obtained in the wind tunnel centre case was better and smoother. The 
abnormality in the 3D trajectory (Fig. 6b) was caused by the occlusion of the plant, as seen from Fig. 5b1,b2, but 
the target could still be effectively tracked afterwards. In the case of the target at the edge of wind tunnel, the poor 
3D trajectory (Fig. 6c) was caused by the similar colour of the background area and the target, which as seen from 
Fig. 5c1,c2.

Accuracy evaluation of target three-dimensional coordinates. To evaluate the accuracy of the 3D coor-
dinates of the insect target in this paper, five white ping-pong balls with a diameter of 40 mm were numbered and 
suspended from fine lines in different locations in the wind tunnel (the fan was stopped), and the actual distances 
between the ping-pong balls were measured using a steel tape. The 3D spatial coordinates of the centre of each sphere 
were also obtained using the methods described in this paper, and the Euclidean distance between the balls was 
calculated. The comparison of the calculated and actual distance between balls is shown in Table 4. The minimum, 
maximum and average errors were 4 mm, 20 mm, and 8.8 mm, respectively. The standard deviation was 4.9 mm.

The 3D trajectory error of the actual distance of KCF-BS, CT and STC algorithms in the wind tunnel centre 
case are shown in Fig. 7. The minimum, maximum and average errors of the KCF-BS algorithm were 0.11 cm, 
1.65 cm, 0.76 cm, respectively. As seen from Fig. 7b,c, the error of CT and STC algorithms is large because the CT 
and STC algorithms could not redetect the target when the target was lost, and the position of the tracking box 
was basically unchanged.

Discussion
The experiment was performed in the wind tunnel, and cabbage butterfly occupied a small proportion in the 
scene with deformation, making video capture and tracking detection difficult. To meet the tracking test at 60fps, 
the present study proposed improved upon KCF and compared these results to KCF.

Tracking experiments using the KCF algorithm found that the algorithm missed the target when the butter-
fly was occluded by a plant, or when it was near the edge of wind tunnel, or when it was similar in colour to the 
background due to deformation during flight (Fig. 2b1–d1). For example, when the wings were in the closed 
state during flying, a partial lack of information led to tracking failure. The grey-black body and white wings of 
the adult cabbage butterfly resembled the colour of the floor in the top view as seen through the partial area of 
the glass frame, and thus the target could not be effectively detected. After missing the tracking target, the target 
box remained in its current position and was unable to re-detect and recognize the target. However, in the above 
situation, the proposed KCF-BS method could still obtain better test results (Fig. 2b2–d2). The success rates of 
KFC-BS detection in the cases of wind tunnel centre, obscured target, wind tunnel edge and similar colours 
were 100%, 81.0%, 96.4% and 52.6%, respectively (Table 2). In the obscured target case, the frames missed by the 
KCF-BS were the target occlusion frames. In the wind tunnel edge case, the frames lost by KCF-BS were due to 
the similar colour of the target and the background, as proved in the similar colours case (Fig. 2d2), and KCF-BS 
missed more target frames, which was a further consideration.
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To verify the effectiveness of the tracking method described in this paper, the CT algorithm and STC algo-
rithm were used to assess the performance of the KCF-BS method. As seen from Figs 3 and 4, the KCF-BS method 
can more precisely track the target in this case.

Figure 2. Tracking results of the KCF algorithm (first column) and paper algorithm (second column) in 
different situations. In all images, the rectangular box is the frame target position at the end of tracking, and the 
red point is the two-dimensional centroid of the cabbage butterfly. (a) Case of target flying in the middle of the 
wind tunnel. (b) Case of obscured target. (c) Case of target at edge of wind tunnel. (d) Case of similar colours 
for target and background.
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CT and STC algorithms are commonly used in tracking algorithms28–31. The CT algorithm is a discriminant 
tracking algorithm that uses a rectangular window to represent the tracking result. Most of the pixels in the 
tracking window come from the target and a small part comes from the background. When sparse local Haar-like 
features are extracted in the window, the pixels in the background affect the robustness of the algorithm. The cab-
bage butterfly possess a grey-black body and white wings with fine scales, and has deformation in motion. When 
the wings of the cabbage butterfly were closed, the background pixels in the tracking window occupy a large 
proportion, and thus, the CT algorithm could not effectively detect the target. As seen from the second column of 
Figs 3c2,d2 and 4a, the CT algorithm dropped the target and could not effectively track the target again. This was 
reflected in Table 3, with a lower accuracy rate. The STC algorithm was based on the generative appearance model 
and was integrated with tracking, learning and detection. In STC, Zhang et al.27 added background information 
including spatial location in the generative appearance model and adopted Fast Fourier Transform (FFT) to 
reduce calculations, so this algorithm could achieve real-time, robust and efficient tracking results. However, the 
method was less effective in terms of target distortion, background colour similarity and motion blur. In tracking 
the cabbage butterfly, the STC algorithm also dropped the target (Figs 3d3 and 4a). This was reflected in Table 3 
lower accuracy. When the target was not lost, the average errors of the CT and STC algorithms were 8.3 pixels and 

Cases Frames KCF (%) KCF-BS (%)

Wind tunnel centre 108 100.0 100.0

Target obscured 58 13.8 81.0

Wind tunnel edge 278 6.1 96.4

Similar colours 196 1.0 52.6

Table 2. Success rates of KCF and KCF-BS algorithms in four cases in top view video.

Figure 3. Comparison of objects using the KCF-BS algorithm (first column), CT algorithm (second column) 
and STC algorithm (third column). In all images, the rectangular box is the frame target tracking position. 
(a) First frame marking results. (b) Local map of the first frame. (c) Local map of 45th frame in the tracking 
process. (d) Local map of the 59th frame in the tracking process.
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10.9 pixels, respectively. The KCF-BS algorithm could track the target continuously, and the average error was 
7.1 pixels. When the target disappeared or the tracking effect was poor, the BS algorithm was used to retrieve the 
target position. However, when the target was similar in colour to the background, the phenomenon of missing 
frames was still observed (Fig. 2d2).

The two-dimensional coordinates of the target centroid were obtained by tracking cabbage butterflies in 
top-view and side-view videos using the KCF-BS algorithm. The 3D coordinates of the target centroid were 
obtained by matching the corresponding frames in the videos from the two cameras, from which the 3D trajec-
tories was obtained. Comparing the measured distance and actual distance between the balls (40 mm diameter) 
of the test ball with the Euclidean distance obtained by the algorithm proposed in this paper, the results showed 
that the average error was 8.8 mm and the standard deviation was 4.9 mm. The distance error was mainly caused 
by camera calibration error, orthogonal binocular visual matching error and manual measurement error. The 
calibration pixel errors for the top and side view cameras were (0.51; 0.49) and (0.42; 0.52), respectively. The 
orthogonal binocular visual matching error, caused by hardware performance, was ignored. The manual meas-
urement errors were inevitable, and we invited experienced researchers to make the measurements to reduce the 
errors. In Fig. 7, the minimum, maximum and average errors of KCF-BS algorithm were 0.11 cm, 1.65 cm, and 
0.76 cm, respectively. The centroid positioning deviation caused by deformation of the cabbage butterfly during 
flying affected the measurement accuracy of the target. The problem of how to effectively acquire the target cen-
troid must still be solved.

The method in this paper achieves target tracking and obtains three-dimensional motion trajectory, and this 
study of the cabbage butterfly provides a technical basis for the study of insect behaviour and a reference for 
tracking research. The proposed method was only suitable for a single moving insect, and the tracking trajectory 
may be incomplete when the target and background are similar. Further study is needed to apply this method 
detection and tracking to the high-speed flying of multiple targets and to improved tracking performance when 
the colour of the target and background are similar.

Methods
Insects. The cabbage butterfly has a wide distribution worldwide, and cabbage butterfly adults are employed as 
the experimental subjects (Fig. 8); these adults have a grey-black body and white wings with fine scales. They pre-
fer to fly under strong light in the daytime. A total of 26 cabbage butterfly adults were acquired from the Chinese 
Arid Area Research Institute of Water-Saving Agriculture, Northwest A & F University, Yangling, Shannxi, China 
from May 25 to June 8, 2016. Their body lengths were 12–20 mm and wing expanses were 45–55 mm. The cap-
tured cabbage butterflies were fed honey-water for 1–2 days before use in experiments.

Experimental scene. Wind-tunnel technology is an important experimental setup to study the behaviour 
of insects32. This experiment was conducted in the wind tunnel of the Insect Behavioral Laboratory of Northwest 
A&F University. The dimensions of the wind tunnel are 1.8 m × 0.58 m × 0.58 m (L × W × H). Potted cabbage 
seedlings ~20 cm high and potted green pepper seedlings ~18 cm high were placed on the left side of the wind 
tunnel to serve as an experimental chemical source for the butterfly. An axial fan was installed on the right side 
of the tunnel to produce a weak airflow from right to left. In this paper, wind tunnel airflow velocity was set to 
0.4 m/s to simulate the breeze in a natural environment.

Figure 4. Trajectories using the KCF-BS algorithm, CT algorithm and STC algorithm. (a) Trajectories with 
different algorithms and real movement. (b) Error distance (Euclidean distance) vs. time (frame) for all 
algorithms.

Cases Frames CT (%) STC (%) KCF-BS (%)

Wind tunnel centre 108 41.7 54.6 100.0

Target obscured 58 13.8 13.8 81.0

Wind tunnel edge 278 1.1 1.4 96.4

Similar colours 196 2.6 1.5 52.6

Table 3. Success rates of CT, STC and KCF-BS algorithms in four cases in top view video.
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Design of the video capture system. To obtain behavioural information from the butterfly, we designed 
an orthogonal binocular vision video acquisition system appropriate to the location and size of the wind tunnel 
(Fig. 9). The system consisted of two CCD cameras, a trigger, a computer, a camera-mounting bracket and ancil-
lary equipment. To detect flight motion parameters for the fast-flying insects, we selected a gigabit network indus-
trial camera (MICROVIEW, RS-A2300-GM60, BeiJing, China) with 1600*1200 pixels, a sensor of 7.2 × 5.4 mm, 
a lens (KOWA, LM3NCF, BeiJing, China) with a focal length of 3.5 mm, and a field of view of 89.0° × 73.8°. The 
camera was connected to a gigabit network card via an RJ45 interface to transmit grey video information. The 
optical axes of two cameras with same configuration were mounted orthogonally on brackets to obtain side-view 
and top-view image sequences, respectively. To effectively obtain 3D information for the targets, a MATLAB 
camera calibration toolbox was employed for internal parameter calibration of the two cameras33,34. To achieve 
two-camera synchronized shooting, an external trigger (MVM-B-0008-S00-V0001) was used to achieve syn-
chronous acquisition. A 6-pin IO connector at the rear of the camera powered the camera and provided a trigger 
I/O. The trigger was connected to the two cameras via network cables connected to the computer. The unified 
trigger input pulse signals were set on the computer with control software to directly control the synchronized 
acquisition of two cameras.

Data processing platform. The video data were obtained using the above system, and valid video seg-
ments were randomly selected for experimentation. Then, a computer with an Intel Core I5-2400 processor with 

Figure 5. Trajectory results of cabbage butterfly using the herein-presented method. In all images, the 
rectangular box represents the frame target position at the end of tracking, and the red point is the two-
dimensional centroid of the cabbage butterfly. (a1) Trajectory results in side-view in the centre of the wind 
tunnel. (a2) Trajectory results in top-view in the middle of the wind tunnel. (b1) Trajectory results in side-view 
in the obscured target case. (b2) Trajectory results in top-view for the obscured target situation. (c1) Trajectory 
results in side-view in the target at the edge of the wind tunnel case. (c2) Trajectory results in top-view in the 
target at the edge of the wind tunnel case.
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3.2 GHz dominant frequency, 8 GB memory and a 500 G byte hard drive, was used to process video data. All tests 
were conducted using the MATLAB 2014a environment.

Cabbage butterfly target tracking. To obtain a 3D trajectory, it was first necessary to track the cab-
bage butterfly targets. In this study, the frame rates of the two cameras reached 60 fps to prevent the target dis-
placement between frames from becoming too large when cabbage butterfly flying at maximum speed, and this 
improved the tracking accuracy. Henriques et al.35 proposed the KCF tracking algorithm in 2015, which is a new 
type of high-speed tracking algorithm. By constructing a classifier between the target and the background to 
determine the target, the achieved algorithm works at high speed with fast training and fast detection. Therefore, 
in applications to fast-moving target tracking, the KCF tracking algorithm has broad prospects. Tracking exper-
iments using the KCF algorithm found that when the target was lost, the method was unable to re-detect and 
recognize the target. The background subtraction (BS) method is an effective motion detection algorithm, for 

Figure 6. 3D trajectory of the moving target. (a) 3D trajectory of the moving target in the middle of the wind 
tunnel. (b) 3D trajectory of moving target in the obscured target case. (c) 3D trajectory of moving target in the 
edge of wind tunnel case.

Number
Calculated/
mm

Actual 
value/mm

Error/
mm

Relative 
error/% Number

Calculated/
mm

Actual 
value/mm

Error/
mm

Relative 
error/%

1–2 301 291 10 3.44 2–4 409 403 6 1.49

1–3 452 445 7 1.57 2–5 511 491 20 2.04

1–4 345 340 5 1.47 3–4 310 302 8 2.65

1–5 275 269 6 1.56 3–5 545 529 16 3.02

2–3 260 256 4 1.56 4–5 266 260 6 2.31

Table 4. Comparison of calculated and actual distance between balls.
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Figure 7. 3D trajectory error of actual distance error (cm) vs. time (frame) for three algorithms in the wind 
tunnel centre case. (a) 3D trajectory error of actual distance error (cm) vs. time (frame) for the KCF-BS 
algorithm. (b) 3D trajectory error of actual distance error (cm) vs. time (frame) for the CT algorithm. (c) 3D 
trajectory error of actual distance error (cm) vs. time (frame) for STC algorithm.

Figure 8. Cabbage butterfly used in the experiment.
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which the motion area was detected by comparing the current frame with the background image difference36, and 
BS was used to regain the goal in this paper. Therefore, the KCF algorithm and BS method were combined in this 
paper to track cabbage butterfly targets. The principle of this method was to manually select the first frame target 
and to use the KCF-BS algorithm to achieve automatic target tracking. The main steps of the tracking algorithm 
for the cabbage butterfly target were as follows35:

 (1) Obtaining the cabbage butterfly base sample a and building a circulant matrix.
In the original frames of the video, the rectangular area containing the butterfly and some surrounding 
environmental information were manually selected as the base sample a, which represents the character-
istic information of the cabbage butterfly target. For the grey characteristic, with a as the two-dimensional 
matrix, the sample a was cyclically shifted to obtain the circulant matrix:
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where Ri is the bias matrix circularly moving i places to the right; and Dj is the bias matrix circularly mov-
ing j places downward.

 (2) Diagonalization of the Fourier space of the circulant matrix and the search for a simplified linear regres-
sion function.
The sample training process for butterfly target tracking was a ridge regression, which aimed to create a lin-
ear regression function f(c) = wTc, to make f(ai) = wTai = bi, and to find a w that minimizes errors in sample 
ai and the desired output bi

37:

∑ λ− +f a b wmin ( ( ) )
(2)w i

i i
2 2

λ= + −w A A I A b( ) (3)H H1

where w is a regression coefficient; λ is a regularization parameter; AH is the conjugate transpose of A; I is 
the unit matrix; and bi is the desired output.
The essential feature of a circulant matrix is the diagonalization with DFT, irrespective of the values 
generated37:

= ˆA F diag a F( ) (4)H

where F is a discrete Fourier transform matrix; FH is the conjugate transpose of F; â is the Fourier transform 
of a; and diag is the vector diagonalization.
Substituting eq. (4) into eq. (3):

λ
=

+
�
�

�
ˆ
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^
w a b
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Figure 9. Video acquisition system. 1. Support plate 2. CCD1 3. Connecting pieces 4. Aluminium alloy 
extrusions 5. Trigger connecting port 6. Trigger 7. Net access 8. CCD2 9. Support plate 10. PC.
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where ŵ is the Fourier transform of w; and b̂ is the Fourier transform of b.
 (3) Building the kernel ridge regression classifier

Segmentation of the cabbage butterfly target from the background is a nonlinear problem, so it was trans-
formed into a linear problem, and the solution was then determined. Here, a kernel function was used for 
the nonlinear transformation of the target tracking algorithm. A nonlinear mapping function ψ(c) trans-
formed the sample characteristic space into a higher dimensional space so that the nonlinear regression 
became linearly separable38. Thus, the regression coefficient w and the regression function change to

∑α ψ=w a( )
(6)i

i i

ψ α κ= =f c w c c( ) ( ) ( ) (7)T T

where κ(c) is a kernel function, κ(c) = ψ(c) · ψ(ai) mainly including Gaussian, polynomial and linear ker-
nels; and α is a new regression parameter (the solution parameter is changed from w to α).
From eq. (7), we can see that f(c) is a nonlinear function of c, but the linear function on κ(c) uses the opti-
mization method of the linear function to solve α, with the result that:

α λ= + −K I b( ) (8)1

α
λ

=
+

ˆ
ˆ

ˆ
b

k (9)

where K is the kernel function matrix (circulant matrix), Kij = κ(ci, aj); and k is the first row of the constitu-
ent elements of K.

 (4) Fast-tracking of cabbage butterfly targets
After designing a classifier, the next frame image was sampled in the predicted area and the sample was cy-
clically shifted to obtain a new circulant matrix as the sample set for detection. The sample with the largest 
response f(ci) was selected as the detected new butterfly target area, and the target displacement was judged 
from the relative displacement from the predicted area.

 (5) Re-detecting the target when it was lost When a target was lost, in the tracking process, the position of the 
tracking box was substantially unchanged (Fig. 2b1–d1). Thus, threshold T and distance S between the 
target centroid of the current frame and the target centroid of the previous frame were set for comparison 
to determine whether the target was lost. If S was less than T, the target was considered lost, and the new 
target centroid was obtained using the background subtraction method to serve as the target centroid of 
the current frame. The schematic diagram for reacquiring the target is shown in Fig. 10.

By repeating these steps frame-by-frame, we were able to achieve reliable target tracking. The time from frame 
acquisition to insect position was approximately 1.3 s.

Acquisition of 3D trajectory parameters. The key to obtaining a 3D trajectory is to detect the coordi-
nates of the target centroid of the butterfly. In this paper, two cameras were arranged orthogonally. Therefore, 
the 3-dimensional coordinates can be obtained only using the calibrated camera internal parameters and the 
orthogonal relationship between the two cameras. The coordinates x, y and z corresponded to the directions of 
the wind-tunnel length, depth and height, respectively. The top left of the wind tunnel was the coordinate origin. 
The parameters of the 3D trajectory were obtained as follows:

 (1) Side-view and top-view videos were tracked frame-by-frame using the algorithms described above. The 
centre coordinates of the rectangular box obtained were used as the two-dimensional centroid coordinates 
(xn, zn) and (xn, yn) of the butterfly in the corresponding side-view and top-view videos. The horizontal axis 
of the two image sequences was the same. There may be a deviation, but the average can be used instead of 

Figure 10. Schematic diagram for reacquiring the target. Circles represent the target positions. Green circles 
are the actual position of the target in the an+1 frame, and the red circle is the wrong position when the target is 
lost. In this case, S < T, the target is redetected by BS, to obtain the correct target position in the an+1 frame.
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the abscissa, yn corresponds to the y coordinate of 3D, and zn corresponds to the z coordinate of 3D, so the 
3D spatial coordinates are (xn, yn, zn).

 (2) The internal parameters of the cameras obtained during calibration were used to convert the 3D coordi-
nates in pixel units to spatial coordinates in physical units, and the 3D coordinates of the target in each 
image frame were saved as.txt files for subsequent processing.
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