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Hydroclimatic changes of Lake 
Bosten in Northwest China during 
the last decades
Junqiang Yao   1,2, Yaning Chen2, Yong Zhao3 & Xiaojing Yu1

Bosten Lake, the largest inland freshwater lake in China, has experienced drastic change over the past 
five decades. Based on the lake water balance model and climate elasticity method, we identify annual 
changes in the lake’s water components during 1961–2016 and investigate its water balance. We find 
a complex pattern in the lake’s water: a decrease (1961–1987), a rapid increase (1988–2002), a drastic 
decrease (2003–2012), and a recent drastic increase (2013–2016). We also estimated the lake’s water 
balance, finding that the drastic changes are caused by a climate-driven regime shift coupled with 
human disturbance. The changes in the lake accelerated after 1987, which may have been driven by 
regional climate wetting. During 2003 to 2012, implementation of the ecological water conveyance 
project (EWCP) significantly increased the lake’s outflow, while a decreased precipitation led to an 
increased drought frequency. The glacier retreating trend accelerated by warming, and caused large 
variations in the observed lake’s changes in recent years. Furthermore, wastewater emissions may give 
rise to water degradation, human activity is completely changing the natural water cycle system in the 
Bosten Lake. Indeed, the future of Bosten Lake is largely dependent on mankind.

As an important component of the hydrological cycle, lakes influence many aspects of the environment, includ-
ing its ecology, biodiversity, economy, wildlife and human welfare1–3. Lakes remain highly sensitive to climate 
change and human activities, so it can serve as an important proxy of regional climate change and anthropogenic 
impact4–7. Freshwater lakes in arid regions play a special role, not only because of their valuable, yet limited, water 
resources, but they also have regional ecological and environmental functions8. For example, alpine lakes provide 
a link between the hydrosphere, atmosphere, cryosphere, biosphere, and anthroposphere.

The Tianshan Mountains are regarded as a main water tower in Central Asia, where the lakes are major surface 
water resources9. Changes in lake water quantity will in turn cause fluctuations in their levels10. The decline of 
lake levels directly leads to wetlands losses, vegetation degradation, biodiversity damage, and fishery losses, while 
extremely high levels can also lead to increased flood risks, soil salinization, and agricultural losses2,10. Hence, 
scientific investigation of lake change is of great significance to understand their water balance, and provide clues 
on how to regulate these vital water resources.

Many studies about lake level changes had been reported, for example, at Sambhar Lake11, Victoria Lake12, 
the Great Lakes13, Neusiedl Lake14, Qinghai Lake15, Poyang Lake16, Ebinur Lake17, and Nam Co Lake18. However, 
most of these studies focused on lakes in humid regions where lake variations were relatively few. In contrast 
inland lakes in Central Asia are numerous, however some lakes are drying up, and even some have disappeared. 
For example, the lake levels of many important water sources have steadily decreased since the 1960s: the Aral 
Sea has declined by 23 m1,19,20, while Manas Lake, and Taitema Lake had disappeared completely since the 1950s 
and 1970s, respectively21. The cause of these lake shrinkages has been attributed to ecological damages and envi-
ronmental crises22.

These endorheic lakes are highly responsive to climate change23. Drought indices are an important indicator 
to reveal the drought and wetness variability of regional climates. Among these, the standardized precipitation 
index (SPI) and the Palmer drought severity index (PDSI) have been widely used to monitor drought severity24–26. 
The SPI only considers precipitation data without using an evaporative factor, while the PDSI lacks multi-scale 
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characteristics27–30. More recently, standardized precipitation evapotranspiration index (SPEI) combines the 
multi-scalar character of the SPI and the sensitivity of PDSI to changes in evaporative demand31. Under the effects 
of global warming, SPEI has become an effective tool to monitor and study recent climates. For example, Yao et al.32  
suggested an obvious trend towards aggravated drought in Xinjiang based on the SPEI from 1961–2015. Li et al.33 
also found a drying trend over the Central Asia based on the PDSI during the past decade (2000–2014).

In this study, we used the SPEI to analyze an important water source in Central Asia: Bosten Lake, which 
is the largest inland freshwater lake in China. Recently, the climate and environment of the Bosten Lake Basin 
experienced significant changes, especially intensified human activities. For example, increasing irrigation and 
consumption, dam construction, and land desertification caused dramatic changes in the lake’s levels22,34. The dra-
matic change in the lake is not an unusual phenomenon; indeed the same has occurred in the Aral Sea, Balkhash 
Lake and Ebinur Lake1,20. More specifically, the Bosten Lake level has experienced a drastic change, for example, 
fluctuations as much as 3.7 m occurred during 1988–2003 in this large-scale natural lake10. This is different to 
changes seen in other regions of China and the Tibetan Plateau35–38. The cause of these drastic changes is uncer-
tain, but may be attributed, at least in part, to changes in precipitation, evaporation, glacier, river discharge, lake 
inflow, outflow, and water diversion. However, our knowledge of its water balance and driving components is 
very limited. In addition, the quantitative fraction of lake water balance change has not yet been assessed. To this 
end, we conducted a study of the changes of Bosten Lake’s levels, mainly its area and storage, from 1961–2015, to 
reveal the main driving components in different periods. We present a quantitative analyzes of water balance for 
this lake.

Geographical Setting
Bosten Lake is located in the south of Xinjiang, in an extremely arid region in northwest China (Fig. 1). Bosten 
Lake is the largest inland freshwater lake in China. The lake area is more than 1,000 km2, with a length and width 
of 55 and 25 km, respectively39. The mean lake water depth is 8.2 m with a maximum depth of 17 m39. Water feeds 
into the lake from the Kaidu, Huangshuigou, and Qingshui rivers. Moreover, the Ushatara River flows into the 
Kongque River, which mainly comes from the Kaidu River, which originates from the Tianshan Mountain region, 
and contributes about 95% of the total water inflow40,41. Lake kept natural outflow states at all times in history 
until an artificial construction pumping station was built in 1983. Since then, the lake water has been pumped to 
recharge the Kongque River via a channel40. The Bosten Lake basin has an area of 56,000 km2, and it belongs to 
an arid climate zone. The multi-year mean air temperature of the lake area is about 6.3 °C, and the mean annual 
precipitation is only about 70 mm, while the evaporation is as high as 2000 mm42. The lake provides valuable but 
sparse water resources for irrigation, economic development, and human beings43,44. In addition, it also provides 
an opportunity to divert water to the lower Tarim River45.

Results
Bosten Lake climatic variability in the past five decades.  The PDSI, the SPI and the SPEI are used 
extensively to assess drought and wetness variability. These indices are formulated by climatic water supply (pre-
cipitation) alone or water supply and demand (evaporation)30,33. Although drought and wetness variability is pri-
mary determined by precipitation, drought severity can be aggravated by higher atmospheric evaporative demand 
as a consequence of global warming46. Calculating the evaporative demand is very critical to monitor drought 

Figure 1.  The geophysical location of Bosten Lake, China. TSD is Tashidian hydrological station and BLSM 
is Baolangsumu hydrological station. The map was created using ESRI ArcGIS 10.2, http://www.esri.com/
software/arcgis/arcgis-for-desktop.
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and wetness variability. The FAO-endorsed Penman–Monteith equation (P–M), is the most popular and physi-
cal-based one, employed for the calculation of the potential evaporation (PET)33.

To quantify the recent changes in drought and wetness conditions over the Bosten Lake basin, Fig. 2a shows 
a time series of the SPEI, SPI and sc_PDSI indices, and Fig. 2b compares the frequency based on the SPEI for the 
three epochs. As shown in Fig. 2a, the SPEI is a good match with sc_PDSI and SPI. The SPEI had a positive cor-
relation with SPI (R = 0.58, p < 0.01) and sc_PDSI (R = 0.47, p < 0.01) of the Bosten Lake basin. Furthermore, it 
illustrates that the three major periods are 1961–1987, 1988–2002 and 2003–2016. The epoch from 1988 to 2002 
can be qualified as exhibiting high wetness conditions, while the other two remained at a drought level (Fig. 2a). 
Despite the smaller overall trend (−0.007 ~ 0.025 per year, p > 0.05) in the drought indices from 1961–2016, 
there was a switch from 1988 onwards to a significantly decreasing trend (−0.023, −0.064 and −0.063 per year 
at the 0.01 significance level, correspond to SPEI, SPI and sc_PDSI, respectively). SPI-based drought severity 
has become significantly aggravated relative to that based on the SPEI, which is independent of the effect of the 
decreased precipitation.

In comparison to the epoch from 1961–1987, intensified wet conditions can be concluded from the wetness 
category frequency during 1988–2002, where the number of wet months increased from 9.3 to 37.1 months per 
decade (Fig. 2b). For the period 2003–2016, the drought frequency also increased by a factor of several relative to 
the period 1988–2002. On average, the drought frequency increased from 6.1 to 14.7 events per decade, and the 
extreme drought frequency rose rapidly to 1.3 times per decade during 2003–2016 from only 0.3 times per decade 
during 1988–2002 (Fig. 2b).

Bosten Lake level, area and storage changes.  Figure 3 displays a time series of the mean annual lake 
level, area, and storage changes in Bosten Lake between 1961 and 2016. The multi-year average of the lake level 
is 1046.86 ± 1.0 m. The smallest value in the annual mean level was 1045.0 m in 1987 and 2013, while the largest 
value was 1049.39 m in 2002 (Fig. 3a). In tandem with these changes, the level changes were divided into four 
epochs: 1961–1987, 1988–2002, 2003–2012, and 2013–2016. Overall, there was a decreasing trend (−0.024 m per 
year) (Fig. 3a). The lake level presents a decrease between 1961 and 1987, thereafter it shows a dramatic increase, 
and then a continuous decrease, but a dramatic increase of lake level is mapped in recent years. The average rate of 
change in the lake levels is −0.083 m per year during 1961–1987, 0.263 m per year during 1988–2002, −0.309 m 
per year during 2003–2012, and 0.575 m per year during 2013–2016.

The lake area experienced a similar change from 1961 to 2016 (Fig. 3b). The multi-year average of lake 
area was 1054.46 ± 93.1 km2. The rate of change of the surface area in was −7.720 km2 per year during 1961–
1987, 24.575 km2 per year during 1988–2002, −28.898 km2 per year during 2003–2012 and 53.779 km2 per 
year during 2013–2016 (Fig. 3b). The lake level changes derived from the Landsat data show a high expansion 
rate of 19.98 km2 per year during 1988–2002, and a shrinkage rate of −14.49 km2 per year during 2003–2014 
(Fig. 3b). These changes derived from the MODIS data in 2003–2014 show an overall decrease, with a rate of 
−16.79 km2 per year (Fig. 3b).

Figure 2.  (a) Bosten Lake drought and wetness variability based on the SPI, SPEI and sc_PDSI indices 
between 1961 and 2016 (b). Frequency of drought and wetness variability based on the SPEI for the epochs of 
1961–1987, 1988–2002 and 2003–2016. The map was created using Matlab 2012a, http://cn.mathworks.com/
products/matlab/.

http://cn.mathworks.com/products/matlab/
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In addition, the multi-year average of lake storage was 7.22 ± 1.06 km3. The rate of change in the water storage 
in Bosten Lake was −0.088 km3 per year during 1961–1987, 0.279 km3 per year during 1988–2002, −0.309 km3 
per year during 2003–2012 and 0.610 km3 per year during 2013–2015, respectively (Fig. 3c).

Overall, Bosten lake’s levels, area and storage changes varied in four stages: a decrease (1961–1987), a rapid 
increase (1988–2002), a drastic decrease (2003–2012) and a recent drastic increase (2013–2016). The drastic 
changes in the lake levels and area after 1987 accelerated, which could be a driven regime shift arising from 
regional climate changes47,48. Observations from the CMA stations in the lake catchment indicate that temper-
ature and precipitation exhibited a dramatic change during 1961–2015 (Fig. 3d). Temperatures experienced a 
sharp increase in 1997, and since then remained highly volatile. Precipitation exhibited a sharp increase in 1987, 
and since then the increasing trend has diminished during the past two decades (Fig. 3d). These changes are 

Figure 3.  Lake level, area and storage changes in the Bosten Lake between 1961 and 2016; (a) A and C 
represents the minimum level in 1987 and 2013, and B represent the maximum level in 2002 (b). Black solid line 
shows observed lake area, red solid line shows Landsat- derived areas, and blue solid line shows MODIS-derived 
areas; (c) The changes of lake storage between 1960 and 2016. (d) Variation of the temperature and precipitation 
in the lake area from 1960 to 2016. (e) Variation of the total dissolved solids (TDS) of the Bosten lake from 1960 
to 2012. The map was created using Matlab 2012a, http://cn.mathworks.com/products/matlab/.

http://cn.mathworks.com/products/matlab/
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consistent with the previous research in the arid regions of China49–51. The drought severity was aggravated by 
a greater evaporative demand caused by the significant temperature rise32,46. Dramatic changes in the climatic 
conditions may bring some adverse effects, and the drought and wetness variability could have played a leading 
role in altering the lake.

Quantifying the effects of the hydro-climatic components to runoff changes.  Lake inflow is 
dominated by components that supply the lake with water and regulate changes in its level. Approximately 95% 
of the total lake inflow to the Bosten Lake comes from the Kaidu River40,41. The runoff from Kaidu River is mainly 
supplied by mountainous precipitation and melting glacier water, which accounts for 61.5% and 38.5%, respec-
tively51. Therefore, the runoff change experienced by the Kaidu River is dominated by changes in mountainous 
precipitation, glacier melting water and evaporation.

The climate elasticity method was used to quantify the effects of the above components to river runoff for the 
Kaidu River. The values of the climate elasticity coefficient of annual runoff to precipitation ∂

∂( )R
P

, evaporation 
∂

∂( )R
ET0

 and glacier melting water ∂
∂( )R

G
 are 0.78 ± 0.005, −0.05 ± 0.01 and 0.27 ± 0.01, respectively. This means 

that a 10% increase in precipitation (glacier melting water) will result in a 7.8% (2.7%) increase in runoff, and that 
a 10% increase in evaporation will result in a 0.5% decrease in runoff. This illustrates that the change of lake water 
inflow from the Kaidu River is more sensitive to changes in precipitation and glacier mass loss than to changes of 
evaporation.

Bosten Lake Water Balance.  The Bosten Lake water balance was estimated based on observations of sev-
eral components, including precipitation (land and lake surface), evaporation (land and lake surface), glacier 
melting water, and lake input and output. The lake exhibited drastic changes in two phases (1988−2002 and 
2003−2015). Variations in the components of the water balance in both phases are listed in Fig. 4 and Table 1. 
The annual mean and trends of precipitation and evaporation were spatially different in the basin. The aver-
age annual precipitation on land surfaces was 287.5 mm and 290.9 mm in both phase (Fig. 4a), while the pre-
cipitation on lake surfaces was 91.2 mm and 70.2 mm, respectively (Fig. 4a,b). Precipitation on land surfaces 
increased significantly in both phases, while the precipitation on lake surfaces decreased. The rate of change in 
the average annual precipitation on land surfaces was 52.9 mm per year and 13.9 mm per year for the two epochs, 

Figure 4.  Variation of precipitation, evaporation, lake inputs and outputs during 1961 to 2015 in the Bosten 
Lake basin. The map was created using Matlab 2012a, http://cn.mathworks.com/products/matlab/.
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respectively, (Fig. 4a), and precipitation on lake surfaces was −11.1 mm per year and −23.5 mm per year, respec-
tively (Fig. 4b). The average annual evaporation on land surfaces was 96.6 mm and 100.3 mm in both phases, 
respectively, (Fig. 4c), while evaporation from lake surfaces was 1018.2 mm and 841 mm, respectively (Fig. 4d). 
Evaporation from land surfaces increased during both phases, while evaporation from lake surfaces decreased 
significantly during 1988–2002, and then weakly increased during 2003–2015 (Fig. 4c,d). The average annual lake 
input was 2.7 km3 and 2.1 km3 in both phases, respectively, (Fig. 4e), while the output was 1.5 km3 and 1.8 km3, 
respectively (Fig. 4f). The inputs increased significantly at a rate of 0.14 km3 per year and 0.05 km3 per year in the 
two phases, respectively, while the outputs increased significantly from 1988–2002, and then weakly decreased 
during 2003–2015 (Fig. 4e,f). The glaciers’ mass change calculated by the ensemble models decreased at a rate 
of −0.63 ± 0.31 × 103 kg/m2 per year during 1961 to 2015, and −0.68 ± 0.43 × 103 kg/m2 per year based on the 
ICESat data from 2003–200952.

Lake water balance components for the Bosten Lake in three phases (1960–1987, 1988–2002 and 2003–2015) 
were listed in Fig. 5. The mean annual precipitation over the lake was 0.29, 0.29 and 0.31 km3 in three phases (sim-
ilarly hereinafter), respectively, surface runoff water input generated by precipitation was 1.93, 2.71 and 2.18 km3, 
glacier melting water into the lake was 0.52, 0.73 and 0.59 km3, evaporation from the lake was 1.03, 1.07 and 
0.88 km3, water outflow from the lake was 1.15, 1.55 and 1.83 km3, groundwater inflow and error was −0.67, 
−0.82 and −0.85 km3, and the change in lake storage was −0.12, 0.31 and −0.48 km3. This means that lake water 
increased due to the increased water input (Rin and G) higher than water output (EL and Rout) for the 1988–2002. 
In 2003–2015, the lake water decreased was caused by the decreased runoff (Rin and G) and increased water out-
put (Rout).

Discussion
Climate-driven regime shift and their influence to lake changes.  Over the past 50 years, studies 
showed that the climate exhibited a dramatic change in northwestern China, which is becoming warmer and 
wetter47,48,53–55. Dramatic changes in the climatic conditions may bring some adverse effects32, where the dramatic 
fluctuations of Bosten Lake’s levels are a case in point. In this study, we compared the time series and frequency 
between the SPEI, SPI and sc_PDSI indices, and found that SPEI is a good match with sc_PDSI and SPI. Actually, 
SPEI is an effective tool to monitor recent climates under the global warming, due to it combines the multi-scalar 

Water balance components

1961–1987 1988–2002 2003–2015

Annual average 
(km3 yr−1) %

Annual average 
(km3 yr−1) %

Annual average 
(km3 yr-1) %

ΔL −0.12 0.31 −0.48

Lake water supply

PL 0.29 6 0.31 5 0.31 6

Rin 1.41 31 1.98 35 1.59 29

G 0.52 12 0.73 13 0.59 11

Loss of lake water
EL 1.05 −23 1.06 18 0.88 −16

Rout 1.15 −25 1.55 27 1.83 −33

Rg ± ε −0.13 −3 −0.1 2 −0.26 −5

Table 1.  Lake water balance in Bosten Lake from the 1961 to the 2015. The lake water balance components 
include changes in the lake water storage (ΔL), lake precipitation (PL), runoff generated by precipitation (Rin), 
melting glacier water (G), lake evaporation (EL), lake outflow (Rout), and groundwater exchange and errors 
(Rg ± ε).

Figure 5.  Water balance in three phases over the Bosten Lake. The lake water balance components include lake 
precipitation (PL), runoff generated by precipitation (Rin), glacier melting water (G), lake evaporation (EL), lake 
Outflow (Rout), groundwater exchange and errors (Rg ± ε) and average change in lake storage (ΔL). The map 
was created using Matlab 2012a, http://cn.mathworks.com/products/matlab/.

http://cn.mathworks.com/products/matlab/
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character of the SPI and the sensitivity of PDSI to changes in evaporative demand31. The lake level change is 
highly similar to the SPEI time series, lake level rose rapidly from 1988, and the SPEI increased at the same time 
(Fig. 6). SPEI exhibited a sharp increase in 1988, and since then the increasing trend decreased during the past 
two decades. Meanwhile, the drought severity was aggravated by a significant rise in temperature coupled with an 
insignificant increase in precipitation32. Undoubtedly, while climate-driven regime shifts contribute a part of the 
lake level changes, and there are also other factors including ecological water conveyance, agricultural irrigation 
and water consumption.

Retreating glaciers and dramatic lake changes.  The river runoff from the Tianshan Mountains heavily 
depends on glaciers (snow), hence glacier meltwater occupies an important role in the total amount of river dis-
charge50. Glacier melt and their retreat in northwest China has been accelerated by global warming, where 82.2% 
of glaciers are retreating, and their total area has decreased by 4.5%56. The retreating trends have been exacerbated 
since the 1990s57, and the Bosten Lake Basin is no exception.

From the climate elasticity method and lake water balance estimate in Bosten Lake, glaciers are a key factor 
for lake expansion/retreat. Indeed, glaciers show a retreating trend in the Bosten Lake Basin during 1963 to 
2000. The decrease in glacier area is 38.5 km2, and the decrease rate was 0.31%/a56. Table 2 provides an overview 
of the glacier area and volume changes in the Bosten Lake Basin. The glacier area and volume changes rate are 
−15.3% and −19.5% during the 1960s to 2000s, respectively. Most of the glaciers in the basin are small-scale 
ones, which account for 72% of the total number of glaciers58. There is an obvious retreat for small-sized gla-
ciers (glacier area <1 km2), where the glacier area and volume changes rate were 23.9% and 31.4% during 
1963 to 2004, respectively58. Figure 7 shows the average glacier mass change rates in the Bosten Lake Basin 
during 1961 to 2012 as calculated with the ensemble of models. The average glacier mass change rate was 
−0.63 ± 0.31 × 103 kg m−2 yr−1 during 1961 to 2012. In the period 2003−2009, the average glacier mass change 
rates was −0.69 ± 0.28 × 103 kg m−2 yr−1 and −0.68 ± 0.43 × 103 kg m−2 yr−1 as calculated from the models and 
the ICESat data, respectively52. From the analyses of glacier changes, the lake area dramatically expanded from 
1988 to 2002, and dramatically shrank from 2003 to 2015, while showing an overall decrease in the total glacier 
area and mass from 1961 to 2012. Therefore, the dramatic changes of the lake, and the continuous glacier retreat 
are not coupled in the Bosten Lake Basin. It was also suggested that the changes experienced by Bosten Lake were 
dramatic and caused primarily by variations in the precipitation in the basin, and secondarily by the accelerated 
rate of melting glaciers. Similar results were found in the Yamzhog Yumco Basin, Tibetan Plateau59.

Glacier recession rates were obviously larger in the 2000s than in previous epochs, which results from the 
continuously rising temperatures. From 1961 to 2016, the annual mean temperature, maximum temperature and 
minimum temperature all experienced a significant increasing trend in the Tianshan Mountains, with rates of 
0.34 °C/10a, 0.19 °C/10a and 0.56 °C/10a, respectively. Meanwhile, substantial glacier mass loss in the Tianshan 
Mountains was reported over the past 50 years52. A study suggested that the temperature increase had a large 
effect on the melting of small scale glaciers60. Thus, the rising temperatures clearly accelerated the rate of melting 
glaciers due to the dominance of small-sized ones.

Lake changes and water balance estimates.  According to the above analyses, precipitation and glacier 
melting water are the main sources of recharge for lake water input, and influence whether a lake expands or 
retreats.

Table 1 lists the average values of the Bosten Lake water balance components and their proportions between 
1961 and 2015. Lake precipitation, inputs generated by precipitation, and glacier melting water accounted for 

Figure 6.  Lake level and SPEI variability in the Bosten Lake between 1961 and 2016. The map was created using 
Matlab 2012a, http://cn.mathworks.com/products/matlab/.

Name Study period
Glacier 
number

Glacier area change Glacier volume change

Sourcekm2 /% km3 /%

Kaidu River 1963–2000 853 −38.5 −15.9 — — Liu et al.56

Albin mountains 1963–2000 70 −6.84 −12.5 — — Li et al.76

5Y692 1963–2004 92 −14.17 −17.4 −0.99 −19.5 Gao et al.58

Table 2.  Overview of the data used for quantifying glacier area and volume changes in the Bosten Lake Basin.

http://cn.mathworks.com/products/matlab/
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10.27%, 65.56% and 24.17% of the total lake water supply during 1988−2002, and 12.45%, 63.86% and 23.69% 
during 2003−2010, respectively. Therefore, precipitation is the dominant factor for supplying the lake, which 
reached 75.83% and 76.31% during 1988−2002 and 2003−2015, respectively. However, our analysis also shows 
that the precipitation increased by 0.48%, while the glacier melting water decreased between the two phases. 
Evaporation and output accounted for 35.43% and 51.32% of the lake water loss during 1988−2002, and 35.34% 
and 73.49% during 2003−2015, respectively. Therefore, the slight change in evaporation during both phases was 
not able to reduce the lake water as the increased input of lake water was much more than the increased loss aris-
ing from evaporation.

The average lake water supply increased by 0.8 km3 per year during 1988 to 2002 in comparison with that in 
1961−1987. The portion derived from precipitation (including lake surfaces and generated runoff) and glacier 
melting water contributed 73.75% and 26.25% of the total supply. Indeed 5% and 50% of water was lost due to an 
increase in evaporation and output, while 53.75% of them contributed to the lake enlargement. The average lake 
water storages decreased by 0.79 km3 per year during 2003 to 2015 in comparison with that in 1988–2002. Among 
the decreased supply, the amount of precipitation and glacier melting water was 0.39 km3 per year and 0.14 km3 
per year, respectively. Meanwhile, the lake water output had increased by 0.28 km3 per year, while the evaporation 
decreased by 0.19 km3 per year.

Irrigation and water conveyance exacerbated lake water shortage and degradation.  The 
annual runoff from the Kaidu River contributes about 95% of the total lake water input40,41. Figure 8a also shows 
has a clear positive correlation between the river runoff and lake inflow. However, water consumption in the 
Yanqi Oasis clearly influences the lake water inputs via agricultural irrigation, industrial and domestic water 
use. Figure 8(b) displays the variations of annual water consumption and river runoff during 1961 to 2010. The 
average annual river runoff totaled 3.51 km3, however, the average annual water consumption in the basin was 
1.31 km3, and water consumption accounted for 37.3% of the total river runoff. For the different periods, water 
consumption accounted for 40.4%, 30.2% and 42.5% of the total river runoff for the three periods mentioned 
above, respectively. The Bosten Lake Basin is an irrigation agricultural area, and is mostly composed of farmland. 
The area of the farmland was about 5.47 × 104 ha in 1990, and then it grew rapidly in recent years, reaching a value 
of 11.75 × 104 ha in 201051. Hence irrigation accounted for 90% of the total water consumption in the lake basin61. 
All these indicate that water consumption accounts for over one half of the total river runoff, implying that water 
consumption by irrigation has largely influenced the dramatic changes seen in the lake basin.

Bosten lake basin is a main source of the Tarim River, which is the longest inland river in China, and has 
undergone major ecological degeneration caused by unbridled utilization of water resources62,63. The Chinese 
government implemented the Ecological Water Conveyance Project (EWCP) in 2000 in order to recover the 
“Green Corridor” in the lower reaches of the Tarim River64,65. The EWCP transferred water from the Bosten Lake 
to the Daxihaizi Reservoir, and finally to the Taitema Lake64. The EWCP implementation significantly increased 
groundwater levels and effectively restored degraded vegetation66,67. However, water used by the EWCP was 
mainly provided by the Bosten Lake and irrigation saving water, which further exacerbated water scarcity in the 
Bosten Lake Basin. The total ecological water taken from Bosten Lake was 1.91 km3 during 2002 to 2010, and stop 
watering after 2010 due to low-flow years (Fig. 7c). The total dissolved solids (TDS), synonymous with the water 
salinity, is a key indicator of the water environment68. Its changes in Bosten Lake also experienced three stages: a 
rapid increase (1960–1987), a drastic decrease (1988–2002), and a recent increase (2003−2015), but it showed a 
clearly anti-phase with the lake level changes (Fig. 3e). This shows that the TDS decreased as lake levels increased. 
The smallest value of TDS was 0.6 g/L in 1960 while the largest value was 1.87 g/L in 1987 (Fig. 3e). The lake has 
experienced salinization due to the large-scale water reclamation in the source areas, excessive exploitation and 
utilization of water resources, reduction of inflow and increase of salt flux into the lake44. The TDS changes are 
significantly (negatively) correlated with changes in lake inflow, lake outflow and lake level, with correlation coef-
ficients of −0.51, −0.84 and −0.69 (p < 0.01), respectively. The TDS changes were dominated by the lake level, 
and the wastewater emissions is also an important factor affecting salinization of the lake. A correlation analysis 

Figure 7.  Glacier mass change rates in the Bosten Lake basin. Each coloured dot represents one glacier, the 
colour depicting the average mass change rate for the period 1961–2012 as calculated with the ensemble of 
models reported by the Farinotti et al.52. The map was created using ESRI ArcGIS 10.2, http://www.esri.com/
software/arcgis/arcgis-for-desktop.

http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.esri.com/software/arcgis/arcgis-for-desktop
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showed significant (positive) correlations between the TDS changes and total wastewater emissions and industrial 
wastewater, with correlation coefficients of 0.90 and 0.86 (p < 0.01), respectively42. Wastewater emissions were 
about 3.45 × 104 t in 2001, which then grew rapidly in recent years, reaching a value of 7.32 × 104 t in 201042. The 
industrial wastewater emissions exceeded more than 50% of the total wastewater emission in the lake basin42. The 
wastewater emissions lead to the increase of salt flux into the lake, expediting its salinization, and finally restrict-
ing the freshwater environment.

All these demonstrate that irrigation and water conveyance exacerbated the water shortages in the Bosten 
Lake Basin, and that wastewater emissions gave rise to water salinization. The intensity of human disturbances in 
the Bosten Lake Basin was 62~67.7% before 2000, and reaching more than 80.8% in the 21 century42. The water 
system is clearly fragile in the Bosten Lake Basin, and the uncertainty of volatile water resources is exacerbated by 
global warming. However, human activity is largely changing the natural water cycle system in the Bosten Lake 
basin. The future of Bosten Lake is largely dependent on human activities.

Conclusions
Bosten Lake, the largest inland freshwater lake in China, has experienced drastic change over the past five dec-
ades. This study aimed to identify annual changes in the lake’s water components and investigate water balance 
of the lake from 1961 to 2016. The multi-year average of the lake level is 1046.86 ± 1.0 m. The lake level presents 
a decrease between 1961 and 1987 (−0.083 m), thereafter it shows a dramatic increase (0.263 m/a during 1988–
2002), and then a continuous decrease (−0.309 m/a during 2003–2012), but a dramatic increase of lake level is 
mapped in recent years (0.575 m/a during 2013–2016). The lake area and storage experienced a similar change 
from 1961 to 2016. Lake water balance and climate elasticity method estimated that the lake precipitation, inputs 
generated by precipitation, and glacier melting water accounted for 10.27%, 65.56% and 24.17% of the total lake 
water supply during 1988−2002, and 12.45%, 63.86% and 23.69% during 2003−2010, respectively. Evaporation 
and output accounted for 35.43% and 51.32% of the lake water loss during 1988−2002, and 35.34% and 73.49% 
during 2003−2015, respectively. Climate-driven regime shifts contribute a part of the lake level changes, and 
there are also other factors including ecological water conveyance, agricultural irrigation and water consumption. 
During 2003 to 2012, implementation of the ecological water conveyance project (EWCP) significantly increased 
the lake’s outflow, while a decreased precipitation led to an increased drought frequency. Furthermore, wastewa-
ter emissions may give rise to water degradation, human activity is completely changing the natural water cycle 
system in the Bosten Lake.

Figure 8.  (a) The relationship between annual runoff (DSK) and lake inflow (BLSM) from 1961 to 2015. (b) 
Variation of annual runoff (DSK) and water consumption (WC) in Yanqi Oasis during 1961 to 2015. (c) Water 
diversion from Bosten lake to the lower reaches of the Tarim River from 2000 to 2015. The map was created 
using Matlab 2012a, http://cn.mathworks.com/products/matlab/.

http://cn.mathworks.com/products/matlab/
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Methods
Lake Water Balance.  The Bosten Lake is an open lake with several outlets; therefore any changes in the 
lake’s overall water level (ΔL) includes precipitation over the lake’s surface (PL), surface runoff inflow to the lake 
(Rin), glacier melting water (G), evaporation from the lake surface (EL), water outflow from the lake (Rout), and the 
groundwater inflow and its error (Rg ± ε). The lake water balance model can be expressed as:

Δ ε= + + − − + ±L P R G E R R (1)in L out g

Climate Elasticity Method.  For a given catchment, the change of river discharge (R) for different phases 
can be expressed as:

Δ = Δ + ΔR R R (2)C H

where ΔRC and ΔRH are changes in R arising from climatic variability and human disturbances, respectively.
The Kaidu River basin is in an uninhabited natural system because human disturbance is very slight42,69. 

Runoff is mainly supplied by mountainous precipitation and melting glacier water42. Therefore, the change in R is 
dominated by climatic variability (ΔRC), which can be approximately estimated as:
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Trend analysis.  We used the nonparametric Mann–Kendall method (M–K) recommended by the WMO71–73 
to investigate the trends of the hydro-meteorological factors in Bosten Lake from 1960 to 2016. The Pearson 
correlation coefficient was used to establish the statistical significance of relationships between any two factors.

Data analysis.  The Bosten lake level data from 1960–2016 were collected from the Xinjiang Environmental 
Protection Academy of Science in China (http://www.xjaeps.com/). The annual lake level averaged from monthly 
data. The lake area (storage) data from 1960–2016 were estimated by the water level-water area (water level–water 
storage) curve based on on-spot observations obtained in 200021. The Landsat- and MODIS-derived areas data 
from 1988–2014 and 2000–2014 were obtained from the work of Sun et al.74. The quality of the Landsat- and 
MODIS- data was assessed against available observations74. The total dissolved solids (TDS) of Bosten Lake from 
1960–2012 were collected from the Xinjiang Environmental Protection Academy of Science in China (http://
www.xjaeps.com/).

The monthly meteorological data were providing by the China Meteorological Data Service Center (http://
data.cma.cn/) for five ground-based meteorological stations (Korla, Yanqi, Hejing, Heshuo and Bohu station) 
for the periods of 1961–2015. Mean data from the 5 stations were used for the basin-scale analysis. The original 
monthly data includes the air temperature, precipitation, maximum temperature, minimum temperature, pres-
sure, and relative humidity. To guarantee consistency, the monthly data were checked to ensure that they met the 
expected standards. The standard requires strict quality control processes including extreme inspection, time 
consistency check, and others before releasing these data. The annual observed data of the river’s discharge, lake 
inflow and outflow series (1961–2015) were collected from the Dashankou (DSK), Baolangsumu (BLSM) and 
Tashidian (TSD) controlling sites from the Xinjiang Tarim River Basin Management Bureau in China (http://
www.tahe.gov.cn/Category_1/Index.aspx). The pan evaporation measurements were taken from the Yanqi mete-
orological station collected from Xinjiang Meteorological Bureau, whose measurements ended in 2009. These 
data were used to represent the evaporative demands of the atmosphere instead of actual evaporation from the 
lake’s surface. Traditionally, the actual amount of evaporation was determined using the pan evaporation multi-
plied by a conversion coefficient, which was set to 0.47 for Bosten Lake21.

http://www.xjaeps.com/
http://www.xjaeps.com/
http://data.cma.cn/
http://data.cma.cn/
http://www.tahe.gov.cn/Category_1/Index.aspx
http://www.tahe.gov.cn/Category_1/Index.aspx
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In this paper, we used the PDSI24,75, the SPI25 and the SPEI26 to assess the drought and wetness variability. 
The potential evaporation (PET) is a key factor when calculating the PDSI and SPEI values. To calculate the PET 
based on the Penman–Monteith model, we collected measurements of the air temperature, maximum tempera-
ture, minimum temperature, pressure, relative humidity from the meteorological stations in the lake basin. The 
meteorological data in this study are providing by the China Meteorological Data Service Center (http://data.cma.
cn/). The self-calibrating PDSI (sc_PDSI) was reported by the Dai et al.75, with the spatial resolution of 0.5 degree 
(https://www.esrl.noaa.gov/psd/data/gridded/data.pdsi.html). We used the regional average sc_PDSI value in the 
lake basin region (40.5°N-42°N, 85°E-88°E). More detailed information on the calculation of the three drought 
indices are presented by Vicente-Serrano et al.46, Dai et al.75 and McKee et al.25.

References
	 1.	 Ma, M., Wang, X., Veroustraete, F. & Dong, L. Change in area of Ebinur Lake during the 1998–2005 period. Int J Remote Sens. 28, 

5523–5533 (2007).
	 2.	 Bai, J., Chen, X., Li, J., Yang, L. & Fang, H. Changes in the area of inland, lakes in arid regions of central Asia during the past 30 years. 

Environ Monit Assess. 178, 247–256 (2011).
	 3.	 Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol. 296, 1–22 (2004).
	 4.	 Mason, I. M., Guzkowska, M. A. J. & Rapley, C. G. The response of lake levels and areas to climatic change. Clim. Change. 27, 

161–197 (1994).
	 5.	 Li, Y. & Morrill, C. Lake levels in Asia at the Last Glacial Maximum as indicators of hydrologic sensitivity to greenhouse gas 

concentrations. Quat Sci Rev. 60, 1–12 (2013).
	 6.	 Gibson, J., Prowse, T. & Peters, D. Partitioning impacts of climate and regulation on water level variability in Great Slave Lake. J 

Hydrol. 329, 196–206 (2006).
	 7.	 Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).
	 8.	 Williamson, C. E. et al. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr. 54, 

2273–2282 (2009).
	 9.	 Chen, Y., Li, W., Deng, H., Fang, G. & Li, Z. Changes in Central Asia’s Water Tower: Past, Present and Future. Sci. Rep-UK 6, 35458 

(2016).
	10.	 Guo, M., Wu, W., Zhou, X., Chen, Y. & Li, J. Investigation of the dramatic changes in lake level of the Bosten Lake in northwestern 

China. Theor appl climatol. 119(1-2), 341–351 (2015).
	11.	 Williams, W. D. S. A major threat to water resources in the arid and semi-arid regions of the world. Lakes & Reservoirs: Res. Manage. 

4(3–4), 85–91 (1999).
	12.	 Swenson, S. & Wahr, J. Monitoring the water balance of Lake Victoria, East Africa, from space. J Hydrol. 370, 163–176 (2009).
	13.	 Quinn, F. H. Secular changes in Great Lakes water level seasonal cycles. J Gt Lakes Res. 28, 451–465 (2002).
	14.	 Soja, G., Züger, J., Knoflacher, M., Kinner, P. & Soja, A. M. Climate impacts on water balance of a shallow steppe lake in Eastern 

Austria (Lake Neusiedl). J Hydrol. 480, 115–124 (2013).
	15.	 Li, X. Y., Xu, H. Y., Sun, Y. L., Zhang, D. S. & Yang, Z. P. Lake-level change and water balance analysis at Lake Qinghai, west China 

during recent decades. Water Resour Manag. 21(9), 1505 (2007).
	16.	 Liu, Y., Wu, G. & Zhao, X. Recent declines in China’s largest freshwater lake: trend or regime shift? Environ Res Lett. 8(1), 014010 

(2013).
	17.	 Feng, Q. & Cheng, G. D. Current situation, problems and rational utilization of water resources in arid northwestern China. J. Arid 

Environ. 40, 373–382 (1998).
	18.	 Zhu, L. P., Xie, M. P. & Wu, Y. H. Quantitative analysis of lake area variations and the in fluence factors from 1971 to 2004 in the Nam 

Co basin of the Tibetan Plateau. Chin. Sci. Bull. 55(13), 1294–1303 (2010).
	19.	 Kezer, K. & Matsuyama, H. Decrease of river runoff in the Lake Balkhash basin in Central Asia. Hydrol Process. 20, 1407–1423 

(2006).
	20.	 Micklin, P. The Aral sea disaster. Annu Rev Earth Planet Sci. 35, 47–72 (2007).
	21.	 Xia, J., Zuo, Q., & Shao, M. Theory, method and practice on water resources sustainable utilization in Bosten Lake. 1–100 (Chinese 

Science and Technology Press, 2003).
	22.	 Lioubimtseva, E. & Henebry, G. M. Climate and environmental change in arid Central Asia: impacts, vulnerability, and adaptations. 

J Arid Environ. 73, 963–977 (2009).
	23.	 Friedrich, J. & Oberhänsli, H. Hydrochemical properties of the Aral Sea water in summer. J Marine Syst. 47, 77–88 (2004).
	24.	 Palmer, W. C. Meteorological Drought, U.S. Department of Commerce, Weather Bureau, Washington, D.C. 1–58 (1965).
	25.	 McKee, T. B., Doesken, N. J., & Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th 

Conference on Applied Climatology (17, 179–183). Boston, MA: American Meteorological Society (1993).
	26.	 Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized 

precipitation evapotranspiration index. J Clim. 23(7), 1696–1718 (2010).
	27.	 Vicente-Serrano, S. M. et al The NAO impact on droughts in the Mediterranean region. In Hydrological, socioeconomic and 

ecological impacts of the north Atlantic oscillation in the mediterranean region (pp. 23–40). Springer Netherlands (2011).
	28.	 Taylor, C. M., de Jeu, R. A., Guichard, F., Harris, P. P. & Dorigo, W. A. Afternoon rain more likely over drier soils. Nature. 489(7416), 

423–426 (2012).
	29.	 Zhang, Q., Sun, P., Li, J., Xiao, M. & Singh, V. P. Assessment of drought vulnerability of the Tarim River basin, Xinjiang, China. Theor 

appl climatol. 121(1-2), 337–347 (2015).
	30.	 Xu, K. et al. Spatio-temporal variation of drought in China during 1961–2012: A climatic perspective. J Hydrol. 526, 253–264 (2015).
	31.	 Wang, H., Chen, Y. & Pan, Y. Characteristics of drought in the arid region of northwestern China. Clim Res. 62(2), 99–113 (2015).
	32.	 Yao, J. Q., Zhao, Y., Yu, X. J., Mao, W. & Yang, Q. Understanding and Evaluating Drought in Xinjiang, Northwestern China. Hydrol 

Process, Reviewed (2017).
	33.	 Li, Z., Chen, Y. N., Fang, G. H. & Li, Y. P. Multivariate assessment and attribution of droughts in CentralAsia. Sci. Rep-UK. 7, 1316 

(2017).
	34.	 Gregory, K. The human role in changing river channels. Geomorphology. 79, 172–191 (2006).
	35.	 Ma, R. et al. A half-century of changes in China’ s lakes: Global warming or human influence? Geophys. Res. Lett. 37, L24106 (2010).
	36.	 Donchyts, G. et al. Earth’ s surface water change over the past 30 years. Nat. Clim. Change. 6(9), 810–813 (2016).
	37.	 Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. 

Nature. 540, 418–422 (2016).
	38.	 Zhang, G., et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys. Res. Lett. 44, https://

doi.org/10.1002/2017GL073773. (2017).
	39.	 Cheng, Q. Research on Bosten Lake 50–80 (Hehai University Press, 1995).
	40.	 Gao, H. & Yao, Y. Quantitative effect of human activities on water level change of Bosten Lake in recent 50 years. Sci Geogr Sin. 25, 

305–309 (2005).

http://data.cma.cn/
http://data.cma.cn/
https://www.esrl.noaa.gov/psd/data/gridded/data.pdsi.html
http://dx.doi.org/10.1002/2017GL073773.
http://dx.doi.org/10.1002/2017GL073773.


www.nature.com/scientificreports/

1 2Scientific Reports |  (2018) 8:9118  | DOI:10.1038/s41598-018-27466-2

	41.	 Liu, L. M., Zhao, J. F. & Zhang, J. Q. Water balance of Lake Bosten using annual water-budget method for the past 50 years. Arid Land 
Geogr. 36, 33–40 (2013).

	42.	 Chen, Y. N. Water resource sustainable utilization of Bosten Lake Basin. (Science Press, 2013).
	43.	 Huang, X., Chen, F., Fan, Y. & Yang, M. Dry late-glacial and early Holocene climate in arid central Asia indicated by lithological and 

palynological evidence from Bosten Lake, China. Quat Int. 194, 19–27 (2009).
	44.	 Zuo, Q., Dou, M., Chen, X. & Zhou, K. Physically-based model for studying the salinization of Bosten Lake in China. Hydrol Sci J. 

51, 432–449 (2006).
	45.	 Ye, Z., Chen, Y., Li, W. & Yan, Y. Effect of the ecological water conveyance project on environment in the Lower Tarim River, 

Xinjiang, China. Environ Monit Assess. 149(1–4), 9–17 (2009).
	46.	 Vicente-Serrano, S. M. et al. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ Res 

Lett. 9(4), 044001 (2014).
	47.	 Shi, Y. F. et al. Discussion on the present climate change from warm-dry to warm-wet in northwest China. Quat Sci. 23(2), 152–164 

(2003).
	48.	 Shi, Y. et al. Recent and future climate change in northwest China. Clim. Change. 80(3), 379–393 (2007).
	49.	 Yao, J. Q et al. Response of vegetation NDVI to climatic extremes in the arid region of Central Asia: a case study in Xinjiang, China. 

Theor appl climatol, https://doi.org/10.1007/s00704-017-2058-0. (2017).
	50.	 Chen, Y. N. et al. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environ. Res. 

139, 11–19 (2015).
	51.	 Chen, Y. Water resources research in Northwest China. (Springer, 2014).
	52.	 Farinotti, D. et al. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat. Geosci. 8, 716–722 (2015).
	53.	 Zhao, Y., Yu, Z. & Chen, F. Spatial and temporal patterns of Holocene vegetation and climate changes in arid and semi-arid China. 

Quaternary I Quat Int. 194(1), 6–18 (2009).
	54.	 Li, B. F., Chen, Y. N. & Shi, X. Why does the temperature rise faster in the arid region of northwest China? J Geophys Res. 117, 

D16115 (2012).
	55.	 Fang, S. et al. Climate change and the ecological responses in Xinjiang, China: Model simulations and data analyses. Quat Int. 311, 

108–116 (2013).
	56.	 Liu, S. et al. Glacier retreat as a result of climate warming and increased precipitation in the Tarim river basin, northwest China. Ann 

Glaciol. 43(1), 91–96 (2006).
	57.	 Li., Z., Li, K. & Wang, L. Study on recent glacier changes and their impact on water resources in Xinjiang, Northwestern China. Quat 

Sci. 30(1), 96–106 (2010).
	58.	 Gao, W. Y. Study on glacier changes of south and north aspect in the middle of Tianshan Mountains. (Northwest Normal University, 

2011).
	59.	 Ye, Q. et al Glacier and lake variations in the Yamzhog Yumco basin, southern Tibetan Plateau, from 1980 to 2000 using remote-

sensing and GIS technologies. J Glaciol. 53(183), 673–676 (2007).
	60.	 Dyurgerov, M. B. & Meier, M. F. Twentieth century climate change: Evidence from small glaciers. P Natl Acad Sci USA 97, 1406–1411 

(2000).
	61.	 Guo, B. Analysis and prediction of water balance between supply and demand in the Kaidu-kongqi River Basin. (Chinese Academy 

of Sciences, 2013).
	62.	 Zu, R., Gao, Q., Qu, J. & Qiang, M. Environmental changes of oasis at southern margin of Tarim Basin, China. Environ Geol. 44, 

639–644 (2003).
	63.	 Feng, Q., Liu, W., Si, J., Su, Y. & Zhang, Y. Environmental effects of water resource development and use in the Tarim River basin of 

northwestern China. Environ Geol. 48, 202–210 (2005).
	64.	 Xu, H., Ye, M., Song, Y. & Chen, Y. The natural vegetation responses to the groundwater change resulting from ecological water 

conveyances to the lower Tarim River. Environ Monit Assess. 131(1–3), 37–48 (2007).
	65.	 Hao, X. & Li, W. Impacts of ecological water conveyance on groundwater dynamics and vegetation recovery in the lower reaches of 

the Tarim River in northwest China. Environ Monit Assess. 186(11), 7605–7616 (2014).
	66.	 Liu, Y. & Chen, Y. Saving the “Green Corridor”: recharging groundwater to restore riparian forest along the lower Tarim River, 

China. Ecological Restoration. 25(2), 112–117 (2007).
	67.	 Chen, Y. et al. Effects of ecological water conveyance on groundwater dynamics and riparian vegetation in the lower reaches of Tarim 

River, China. Hydrol Process. 24(2), 170–177 (2010).
	68.	 Kharaka, Y. K. & Hanor, J. S. Deep fluids in the continents: I. Sedimentary basins. Treatise on geochemistry 5, 605 (2003).
	69.	 Xu, J., Chen, Y., Ji, M. & Lu, F. Climate change and its effects on runoff of Kaidu River, Xinjiang, China: a multiple time-scale analysis. 

Chin Geogr Sci. 18, 331–339 (2008).
	70.	 Budyko, M. I. The effect of solar radiation variations on the climate of the earth. Tellus. 21, 611–619 (1969).
	71.	 Mann, H. B. Non-parametric tests against trend. Econometrica. 13, 245–259 (1945).
	72.	 Kendall, M. G. Rank-correlation measures, Charles Griffin, London (1975).
	73.	 Sneyers, R. On statistical analysis of series of observations, WMO Technical note No. 143, WMO No. 415. Geneva, Switzerland, 192 

pp (1990).
	74.	 Sun, A. M. et al. Bosten Lake surface area changes analysis using long temporal Landsat image series. Journal of Image and Graphics. 

20(8), 1122–1132 (2015).
	75.	 Dai, A. G. Drought under global warming: a review. Wiley Interdiscip. Rev.: Clim. Change. 2(1), 45–65 (2011).
	76.	 Li, B. et al. Glacier change over the past four decades in the middle Chinese Tien Shan. J Glaciol. 52(178), 425–438 (2006).

Acknowledgements
This work is supported by the Open Found of State Key Laboratory of Desert and Oasis Ecology, Xinjiang 
Institute of Ecology and Geography, CAS (G2018-02-02), National Key Research and Development Program 
of China (2018YFA0606403), National Natural Science Foundation of China (41605067, 41375101, 41505025), 
Basic Research Operating Expenses of the Central level Non-profit Research Institutes (IDM201506), and China 
Postdoctoral Science Foundation (2016M592915XB).

Author Contributions
Dr. Junqiang Yao and Prof. Yaning Chen conceived and wrote the main manuscript text, Dr. Yong Zhao and 
Xiaojin Yu helped to design the methods and wrote the Introduction and Discussion parts. All authors reviewed 
the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.

http://dx.doi.org/10.1007/s00704-017-2058-0.


www.nature.com/scientificreports/

13Scientific Reports |  (2018) 8:9118  | DOI:10.1038/s41598-018-27466-2

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Hydroclimatic changes of Lake Bosten in Northwest China during the last decades

	Geographical Setting

	Results

	Bosten Lake climatic variability in the past five decades. 
	Bosten Lake level, area and storage changes. 
	Quantifying the effects of the hydro-climatic components to runoff changes. 
	Bosten Lake Water Balance. 

	Discussion

	Climate-driven regime shift and their influence to lake changes. 
	Retreating glaciers and dramatic lake changes. 
	Lake changes and water balance estimates. 
	Irrigation and water conveyance exacerbated lake water shortage and degradation. 

	Conclusions

	Methods

	Lake Water Balance. 
	Climate Elasticity Method. 
	Trend analysis. 
	Data analysis. 

	Acknowledgements

	Figure 1 The geophysical location of Bosten Lake, China.
	Figure 2 (a) Bosten Lake drought and wetness variability based on the SPI, SPEI and sc_PDSI indices between 1961 and 2016 (b).
	Figure 3 Lake level, area and storage changes in the Bosten Lake between 1961 and 2016 (a) A and C represents the minimum level in 1987 and 2013, and B represent the maximum level in 2002 (b).
	Figure 4 Variation of precipitation, evaporation, lake inputs and outputs during 1961 to 2015 in the Bosten Lake basin.
	Figure 5 Water balance in three phases over the Bosten Lake.
	Figure 6 Lake level and SPEI variability in the Bosten Lake between 1961 and 2016.
	Figure 7 Glacier mass change rates in the Bosten Lake basin.
	Figure 8 (a) The relationship between annual runoff (DSK) and lake inflow (BLSM) from 1961 to 2015.
	Table 1 Lake water balance in Bosten Lake from the 1961 to the 2015.
	Table 2 Overview of the data used for quantifying glacier area and volume changes in the Bosten Lake Basin.




