
1SCiENTifiC REPoRTS |  (2018) 8:8954  | DOI:10.1038/s41598-018-27343-y

www.nature.com/scientificreports

Boron accumulation by Lemna 
minor L. under salt stress
Chunguang Liu1,2, Wancong Gu1, Zheng Dai1, Jia Li1, Hongru Jiang1 & Qian Zhang1

Excess boron (B) is toxic to aquatic organisms and humans. Boron is often present in water with high 
salinity. To evaluate the potential of duckweed (Lemna minor L.) for removing B from water under salt 
stress, we cultured duckweed in water with 2 mg/L of B and sodium chloride (NaCl) concentrations ranging 
from 0 to 200 mM for 4 days. The results show that with increasing salinity, the capacity of L. minor to 
accumulate B initially decreased and then increased. L. minor used different mechanisms to accumulate 
boron at lower and higher levels of salt stress. The growth and chlorophyll synthesis of L. minor were 
significantly inhibited when the concentration of NaCl reached 100 mM. Our results suggest that L. minor 
is suitable for the accumulation of B when NaCl salinity is below 100 mM.

Boron (B), an essential element for plant growth, is often present in excessive concentrations in industrial waste-
water, mine effluent, and irrigation water1–3. High concentrations of B in water may exert a negative impact 
on aquatic organisms and can pose a potential health hazard to humans and animals4,5. B removal efficiency is 
poor in conventional water treatment systems6, leading to the development of various specific B removal tech-
niques, including precipitation-coagulation, ion exchange, solvent extraction, ultrafiltration, and adsorption with 
B-selective resins7. Unfortunately, most of these methods are associated with high operation and maintenance 
costs, as well as the overuse of chemicals8. Thus, it is necessary to explore simple, inexpensive, and environmen-
tally friendly technologies for removing B from water.

Duckweed is a small, free-floating aquatic angiosperm that grows throughout much of the world9, and it has 
been considered as a potential candidate for B removal3,4,10. Previous studies have shown the ability of duck-
weed to tolerate and remove B under different conditions. For example, Lemna minor, a widespread species of 
duckweed, was shown to tolerate and accumulate B differently under various conditions11. Spirodela polyrrhiza, 
another species of duckweed (also called greater duckweed), reportedly had different growth responses to B tox-
icity at different initial B concentrations12. Lemna gibba, also a widespread variety of duckweed, was observed to 
efficiently remove B at concentrations below 2 mg/L8. In another study, however, L. gibba was found to be suitable 
for remediating B-contaminated water at B concentrations of 10 and 25 mg/L1.

Boron is often found at high concentrations in association with other salts in saline irrigation water13,14. Excess 
salt in water can decrease the osmotic potential of water, resulting in oxidative stress on plants15. Sodium chlo-
ride (NaCl) is recognized as the most common salt16. Sodium is not essential for plants but is toxic and often 
induces cellular damage that inhibits plant growth and development17. Growth inhibition from salt stress has 
been reported for several species of duckweeds including S. polyrhiza, L. minor, and L. gibba18. The removal of 
pollutants (e.g., technetium, nickel, and cadmium) by duckweed was observed to decrease under salt stress19–21. 
However, the influence of salt stress on the ability of duckweed to remove B is still unknown.

The purpose of the present work is to evaluate the performance of the duckweed species L. minor in B removal 
under salt stress. To this end, we cultivated L. minor in water with 2 mg/L of B and NaCl ranging from 0 to 
200 mM. We tested the changes in B concentration in the water, the accumulation of B, Na, and K in plant tissue, 
and the growth and chlorophyll synthesis of L. minor. On the basis of this research, we evaluated the potential of 
duckweed as a candidate for removing B from water under salt stress.

Materials and Methods
Plant cultivation. L. minor colonies were isolated from a lake in Xiqing District of Tianjin, China and 
were cultured aseptically in half-Hoagland’s solution. The plant was acclimated for one week prior to the formal 
experiment.
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Batch experiment. The acclimated L. minor colonies were transferred to a polypropylene container 
(15 × 10.5 × 7.5 cm3) filled with 750 ml of half-Hoagland’s solution. Two grams (fresh weight) of duckweed was 
cultivated in each container. The boron concentration was set at 2 mg/L by adding boric acid (H3BO3) with a con-
centration of 0.25 mg/L as B into half-Hoagland’s solution. NaCl was added to the B-laden solution to generate 
five concentrations: 0, 50, 100, 150, and 200 mM. One container was filled with 750 ml of half-Hoagland’s solu-
tion (with 2 mg/L of B and without NaCl) and left unplanted to serve as a control. Each treatment was replicated 
four times. The plant was cultivated in a culture room with a photoperiod of 16:8 and light intensity of 72 µmol/
m2/s. During the experiment, the air temperature ranged from 19 to 26 °C. The experiment lasted for four days. 
Water loss by evapotranspiration was monitored and corrected by weighing the containers each day and adding 
deionized water.

Water and plant sampling and analysis. Five millilitres of water was collected from each container at 
time periods of 1, 2, and 4 days for measurement of B. The water samples for B determination were filtered 
through a 0.45-µm membrane and then stored in a centrifuge tube at 4 °C.

At the end of the cultivation experiment, the plants were harvested and rinsed with deionized water. Residual 
water on the duckweed was removed using tissue paper. Each container of duckweed was weighed to determine 
the fresh weight (FW), and 0.1 g of the fresh sample was subsequently transferred to a centrifuge tube for chlo-
rophyll determination. The remainder of each sample was dried at 80 °C for 48 h to obtain the dry weight (DW).

For chlorophyll determination, 0.1 g of fresh duckweed sample was extracted with 10 ml of 95% ethanol 
(v/v) for 72 h at room temperature in the dark. The extract was then centrifuged at 2790 × g for 10 min, and the 
absorbance of the supernatant was determined at 663 and 645 nm using a spectrophotometer (T6, Persee General, 
Beijing, China), using the method described by Huang et al.22. Chlorophyll was calculated using the following 
equations:

= . − .C A A12 72 2 69 (1)a 663 645

= . − .C A A22 90 4 68 (2)b 645 663

C C C (3)chl a b= +

where Ca, Cb, and Cchl represent the contents of chlorophyll a, chlorophyll b, and total chlorophyll, respectively; 
A663 and A645 are the absorbances at 663 and 645 nm, respectively.

Each dried sample was separately ground into powder using a mortar and pestle. The ground duckweed sam-
ples were digested using a graphite digester (SH220N, Hanon Instruments, Jinan, China) according to Kaur et al.23  
and Liu et al.24 with minor modifications. Aliquots (0.100 g) of ground samples were digested with 5 ml of 
nitric acid (HNO3) and 1 ml of 30% hydrogen peroxide (H2O2) at 90 °C for 4 h. The digested solution was fil-
tered through a 0.45-µm membrane and then diluted to 25 ml with deionized water. Boron concentrations of the 
digested solutions and the water samples were determined using inductively coupled plasma-optical emission 
spectrometry (ICP-OES) (PS-I, Teledyne Leeman Labs, Hudson, NH, USA).

The B mass balance analysis was performed for the treatment system as follows:

= + +B B B B (4)t s p o

where Bt is the total B (mg) in the cultivation system; Bs is the water-soluble B (mg); Bp is the plant-accumulated 
B (mg); and Bo is other forms of B (mg).

B C Q (5)t i i= ×

where Ci is the initial B concentration (mg/L) of the water and Qi is the initial water volume (L).

= ×B C W (6)p p d

where Cp is the B concentration (mg/g) of the plant tissue and Wd is the dry weight (g) of duckweed.

= ×B C Q (7)s fw

where Cw is the final B concentration (mg/L) of the water and Qf is the final water volume (L). Thus,

B B B B (8)o t s p= − −

Statistics. Four independent replications were used for each treatment, and the error bars are presented as 
the mean ± standard deviation. Data were analysed using a one-way ANOVA followed by Duncan’s multiple 
range test (p < 0.05).

Results and Discussion
Growth of duckweed. The growth of L. minor was inhibited by NaCl, and visible damage appeared in the 
fronds at high NaCl concentrations. At the end of the experiment, a normal green colour was observed on the 
fronds of L. minor grown at NaCl concentrations between 0 and 50 mM (Fig. 1). Four fronds were observed on 
most duckweed plants grown at NaCl concentrations between 0 and 50 mM. In the 100 mM NaCl treatment, only 
two fronds with slight chlorosis were observed on most plants. In the 150 mM NaCl experiment, two fronds and 
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a green-yellow colour were recorded for most plants. In the 200 mM NaCl treatment, most plants had only one 
frond and were severely chlorotic and even bleached. In the 100, 150, and 200 mM NaCl treatment, the duckweed 
roots became very fragile and easily dropped from the fronds. These results are consistent with the previous stud-
ies on duckweed under salt stress16,25. The chlorosis is mainly attributed to the salt-induced oxidative damage, 
which degrades chloroplasts in the duckweed fronds26. The plasma membrane of duckweed can be damaged by 
severe salt stress, resulting in fragile stipes and fallen fronds27.

The dry weight of duckweed plants decreased gradually with increasing NaCl concentrations (Fig. 2(A)). 
Compared with the control, however, no significant decrease in the dry weight of duckweed was observed in 
the plants grown in 50 and 100 mM NaCl solutions. Significant decreases in dry weight were found in the plants 
grown in 150 and 200 mM NaCl. These results indicate that in terms of biomass accumulation, duckweed is able 
to tolerate 100 mM NaCl. A previous study reported that L. minor grew well in a 62.5 mM NaCl solution, but 
growth was inhibited in solutions with NaCl concentrations of 125 mM and higher28. We recently observed that 
the biomass of L. minor decreased significantly in solutions with NaCl concentrations of 50 mM and higher27. The 
higher tolerance of L. minor to NaCl can possibly be attributed to the presence of B, which is able to inhibit the 
uptake and accumulation of Cl−, a major toxic ion in plants14.

To further understand the effect of NaCl stress on the growth of L. minor, the content of chlorophyll was 
determined at the end of the cultivation. As shown in Fig. 2(B), there was no significant difference in the chlo-
rophyll content of the control and the plant grown in a 50 mM NaCl solution. Compared to the control, chloro-
phyll contents of the plants grown in the 100, 150, and 200 mM NaCl solutions decreased significantly. Excess 
NaCl can damage the chloroplast envelope and thylakoid through increased production of free radicals, result-
ing in the decrease of chlorophyll a and b production29. Chlorophyll in L. minor reportedly decreases gradually 
with increasing NaCl and significantly decreases when NaCl reaches 8 g/L (136.9 mM)25. In the present work, 
plants grown in solutions with NaCl concentrations of 100 mM and higher also showed a significant decrease in 
chlorophyll content, suggesting that the chloroplasts of L. minor were damaged by solutions with 100 mM NaCl 
concentrations.

Boron accumulation in duckweed. Boron concentrations in duckweed tissue were determined after 4 
days of cultivation (Table 1). Boron concentrations in duckweed tissue progressively decreased with increas-
ing NaCl concentrations in the 0 to 100 mM concentration range. However, when NaCl concentrations were 
increased to 150 and 200 mM, B concentrations in L. minor increased to the levels measured in the control. B 
uptake is a passive process via mass flow within the transpiration stream for most higher plants with adequate and 
excessive B supply30,31. Excess salt lowers the osmotic potential of water and inhibits transpiration, which reduces 
the absorption of B by the plant14. This mechanism explains the decrease in B uptake by L. minor in solutions with 
NaCl concentrations of 50 and 100 mM. At higher NaCl concentrations, the increase in B accumulation is attrib-
uted to damage of the cell membrane of L. minor induced by salt stress. The integrity of plant cell membranes 
is important for the plant to restrict the uptake of excess B32. Salt-induced loss of membrane integrity and an 

Figure 1. Morphological characteristics of L. minor at different concentrations of NaCl (Bar = 2 mm).

Figure 2. Effect of NaCl on dry weight (A) and chlorophyll content (B) of L. minor. Values shown are the 
average ± standard deviation of four replicates. Values with different letters are significantly different (p < 0.05).
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increase in membrane permeability were also found for duckweed examined in previous studies27,33. An increase 
in cell membrane permeability allows more B to enter the duckweed cell via passive diffusion34.

The bioconcentration factor (BCF) of B in L. minor was calculated and is shown in Table 1. The trend of BCF 
values with increasing NaCl concentrations were similar to B concentrations in duckweed tissue. At NaCl concen-
trations of 0 and 200 mM, there was no significant difference in the BCF values of L. minor, which reached 391.03 
and 424.13, respectively. These values are close to those in a previous study4, in which the BCF of B obtained for 
L. minor and L. gibba was ~350 and ~425 respectively, at 2 mg B/L. Two criteria, the BCF and the translocation 
factor (TF, shoot or leaf concentration/root concentration), have been used to identify the hyperaccumulation of 
an element35,36. When both BCF and TF exceed 1.0, hyperaccumulation is thought to occur37. Since duckweed 
absorbs nutrients through all surfaces including fronds and roots, TF is not suitable for evaluating the accumu-
lation capacity of duckweed. In the present study, the BCF values of B in duckweed are much greater than 1.0, 
indicating a strong capacity for B accumulation.

Boron mass balance and distribution in the system. In duckweed treatment systems, pollutants may be 
removed by absorption, adsorption, or precipitation, and mass balance analyses are widely used to investigate the 
fate of the pollutants38. The mass balance of B was calculated and is shown in Table 2. It can be seen that only 7.9% 
to 15.5% of B was accumulated by L. minor, indicating that a limited proportion of B was removed by harvesting. 
The maximum accumulation (15.5%) was observed at a NaCl concentration of 0 mM, followed by a NaCl concen-
tration of 50 mM (9.7%). Under NaCl concentrations ranging from 100 to 200 mM, B accumulation was much 
lower. In 0 to 100 mM NaCl solutions, water-soluble B was not significantly modified by increased NaCl. In 150 and 
200 mM NaCl solutions, however, water-soluble B decreased dramatically. The insoluble forms of B increased grad-
ually with the increased NaCl concentration. It should be noted that the percentage of insoluble B even reached 
63.1% in the 200 mM NaCl solution, suggesting that a major proportion of B was transformed into insoluble forms.

Soluble B, adsorbed B, and duckweed accumulated B were considered to be the major forms of B in the system. 
Since soluble B was added to the system in the form of boric acid, soluble B was the main fraction in most treat-
ments. Under severe salt stress, some duckweed roots fell off, broke into pieces, and even decomposed to generate 
particles with a greater surface area for B adsorption. In addition, the living fronds and roots of L. minor also 
provided surfaces for adsorption. Under severe salt stress (e.g., 150 and 200 mM NaCl), duckweed suffered more 
damage and consequently dropped more roots and then formed more B-adsorbed particles. It was observed that 
the turbidity of the water with 150 and 200 mM NaCl increased, which was due to the decomposition of dropped 
duckweed tissue and the formation of organic colloids. These colloids adsorbed part of the soluble B and then 
reduced the water-soluble B in the system. Overall, mass balance and B distribution analyses indicate that with 
the increase in salt stress, more soluble B is converted to forms that are difficult to remove. As we did not investi-
gate B partitioning in insoluble parts, it is difficult to elucidate which process played a major role in B retention.

Conclusions
The growth and B accumulation of L. minor were significantly affected by salt stress. Salt stress inhibited the 
growth and chlorophyll synthesis of L. minor, especially in solutions with NaCl concentrations higher than 
100 mM. At lower salinities, L. minor accumulated B mainly by absorption, which was inhibited by salt stress. 
At higher salinities, L. minor accumulated B mainly by passive diffusion. Our findings suggest that L. minor is 
suitable for removing B from water with low salinity.

NaCl (mM) B in duckweed (mg/g) BCF

0 0.78 ± 0.11 ab 391.03 ± 55.31 ab

50 0.55 ± 0.05 c 273.94 ± 25.31 c

100 0.43 ± 0.08 d 213.44 ± 37.91 d

150 0.73 ± 0.04 b 367.22 ± 19.04 b

200 0.85 ± 0.06 a 424.13 ± 30.19 a

Table 1. Effect of NaCl on bioconcentration factor (BCF) of B in L. minor. Values shown are the average ±  
standard deviation of four replicates. Values with different letters are significantly different (p < 0.05).

NaCl (mM) Total B (mg) Accumulated B (mg) Soluble B (mg) Insoluble B (mg)

0 1.5 (100%) 0.233 ± 0.038 a (15.5%) 1.024 ± 0.039 ab (68.3%) 0.243 ± 0.033 c (16.2%)

50 1.5 (100%) 0.145 ± 0.021 b (9.7%) 1.082 ± 0.088 a (72.1%) 0.273 ± 0.069 c (18.2%)

100 1.5 (100%) 0.118 ± 0.022 b (7.9%) 1.085 ± 0.096 a (72.4%) 0.297 ± 0.106 c (19.8%)

150 1.5 (100%) 0.129 ± 0.019 b (8.6%) 0.887 ± 0.132 b (59.2%) 0.483 ± 0.150 b (32.2%)

200 1.5 (100%) 0.126 ± 0.022 b (8.4%) 0.427 ± 0.156 c (28.4%) 0.947 ± 0.148 a (63.1%)

Table 2. Mass balance of B in L. minor treatment system. The values except total B represent the mean of four 
replicates ± standard deviation. Means followed by the same letter in the same column do not differ significantly 
according to Duncan’s multiple comparison test at a p < 0.05 level. Numbers in brackets refer to the percentage 
of B in the entire system.
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