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Predictive Modeling of the 
Progression of Alzheimer’s Disease 
with Recurrent Neural Networks
Tingyan Wang1,2, Robin G. Qiu2 & Ming Yu1

The number of service visits of Alzheimer’s disease (AD) patients is different from each other and their 
visit time intervals are non-uniform. Although the literature has revealed many approaches in disease 
progression modeling, they fail to leverage these time-relevant part of patients’ medical records in 
predicting disease’s future status. This paper investigates how to predict the AD progression for a 
patient’s next medical visit through leveraging heterogeneous medical data. Data provided by the 
National Alzheimer’s Coordinating Center includes 5432 patients with probable AD from August 31, 
2005 to May 25, 2017. Long short-term memory recurrent neural networks (RNN) are adopted. The 
approach relies on an enhanced “many-to-one” RNN architecture to support the shift of time steps. 
Hence, the approach can deal with patients’ various numbers of visits and uneven time intervals. The 
results show that the proposed approach can be utilized to predict patients’ AD progressions on their 
next visits with over 99% accuracy, significantly outperforming classic baseline methods. This study 
confirms that RNN can effectively solve the AD progression prediction problem by fully leveraging the 
inherent temporal and medical patterns derived from patients’ historical visits. More promisingly, the 
approach can be customarily applied to other chronic disease progression problems.

Significance of predicting dementia progression. As of 2017, approximately 5.4 million Americans 
in the US live with Alzheimer’s disease (AD), which is the most common form of dementia. According to the US 
National Alzheimer’s Coordinating Center (NACC), AD is one of leading causes of death in the US. Moreover, 
for a patient with AD, his or her AD condition will chronically and progressively deteriorate over a long period 
of time. However, as of April of 2018 there exists no effective cure for AD. In other words, AD cannot be reversed 
or cured with today’s medicines and treatments. Unless a method of prevention or treatment will be discovered, 
the estimated total cost of care of people with Alzheimer’s and other dementias in the US will grow to about $1 
trillion in 2050 from an estimated $226 billion in 20151. It is known that the social and psychological burden on 
individuals and families will be even more daunting than the costs of care.

While waiting for significant progress of developing AD cure medicines, many researchers have been looking 
for alternative, viable, and cost-effective solutions that help fill in the gap of the needed care and treatment for 
AD patients2–8. A very promising approach has been widely explored, focusing on early prediction and positive 
intervention at the personalized and comfortable level, which inherently and truly varies with patients and keeps 
changing over time. An appropriate and positive intervention includes ways of facilitating AD patients with right 
and effective levels of lifestyle changes and brain training. Therefore, understanding and predicting how AD 
develops on an individual patient basis over time is the key to the success of enabling early intervention of AD and 
accordingly providing personalized healthcare services in an effective manner1,2.

Studies relevant to modeling disease progression. Traditional time series methods and machine 
learning algorithms have been widely applied to AD progression modeling and severity classification problems. 
Sukkar et al.3 applied hidden Markov chains to model AD progression; Zhou et al.4 proposed a convex fused 
sparse group Lasso formulation to predict AD patients’ cognitive scores at different time points; Zhou et al.5 then 
used a multi-task regression model to predict Mini Mental State Examination score and AD Assessment Scale 
Cognitive subscale score; Liu et al.6 identified the transitional patterns of AD using a series of joint random-effects 
transition models; Huang et al.7 proposed a nonlinear regression-based random forest model to predict 
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longitudinal AD clinical scores; Gavidia-Bovadilla et al.8 proposed aging-based null models for early diagnosis 
of AD; Hou et al.9 proposed a model to predict AD longitudinal scores by estimating clinical scores from MRI 
data at multiple time points; O’Kelly10 used supervised machine learning algorithms to classify the statuses of AD 
patients; Qiu et al.2 applied decision tree algorithms to classify the progression statuses of AD patients. Note that 
many researchers have also focused on other diseases progression modeling11–19.

Although the above-mentioned researchers have made promising progress in studies related to diseases pro-
gression modeling2–19, many modeling challenging issues still remain20. For example, it is difficult for traditional 
time series methods to handle high-dimensional longitudinal data. Rather than predicting disease’s future sta-
tus, the literature largely focuses on disease progression modeling using hidden Markov models and multi-task 
regression models, which predict the progression statuses of diseases at known time points based on the collected 
information relevant to those time points, or explores classifying progression stages only within a narrow obser-
vation window2–19.

Unlike the problem of disease progression modeling covered by the existing literature, we aim to use AD 
patients’ medical information at historical time points to predict their disease progression stages at a future time 
point. In general, it is extremely challenging to capture and derive temporal patterns to help predict accurately 
the future progressions of AD patients due to the fact that AD patients’ data are highly heterogeneous2,21. Indeed, 
regarding longitudinal electronic health records (EHR) describing the length of progression staging and the pro-
gressive rate at different AD stages over the years, each patient’ EHR is unique22. Moreover, time intervals between 
two consecutive visits are often irregular or uneven. However, for the future progression prediction problem 
under study, traditional machine learning algorithms predict diseases’ staging simply by aggregating longitudinal 
features rather than leveraging their longitudinal temporal patterns. As a result, modeling accuracies suffer to 
some extent. Therefore, it is necessary to explore a new approach for the future disease progression predictive 
problems.

Predictive modeling with RNN in healthcare. RNN is naturally good at capturing longitudinal tem-
poral patterns23,24. Recently, RNN models have shown great potential in healthcare applications: predicting the 
diagnosis and medications of the subsequent visit for a patient with gated recurrent units (GRU) RNN25, pre-
dicting kidney transplantation endpoints within the future six or twelve months using different RNN variants26, 
early detecting heart failure onsets using GRU models27, predicting the onsets of multiple conditions using Long 
Short-Term Memory (LSTM) models28, classifying diagnoses for pediatric intensive care unit (PICU) patients 
using LSTM networks29, predicting PICU’s mortality with LSTM networks30, predicting risk of mortality, phys-
iologic decline, length of stay, and phenotype simultaneously with a Multitask LSTM model31, learning patients’ 
similarities for patients with Parkinson’s disease using a 2-D GRU model32. These studies applied various RNN 
models for medical prediction tasks through effectively leveraging the temporal relations among longitudinal 
patient data. As of April of 2018, however, RNN has not been well adopted in the AD future progression predic-
tive modeling.

Objective
To address this above-mentioned interesting, challenging, while long-overdue problem, we investigate whether 
RNN can predict the future progression of AD through fully leveraging inherent longitudinal temporal informa-
tion of patients’ historical visits. Particularly, we aim to predict the AD progression stage of the next hospital visit 
in the future for a patient only based on the information of his/her historical visits. The Global Staging Clinical 
Dementia Rating (CDR) score is a clinical comprehensive metric to assess the dementia levels, which has been 
well adopted to define Dementia (including AD) progression stages7,33. Note that the Global CDR score is derived 
from the rating scores of six cognitive elements defined as the standard CDR scale according to clinical scoring 
rules. The standard CDR scale was primarily developed by Washington University School of Medicine for staging 
the dementia severity of AD34. A patient who is clinically diagnosed with dementia can be at five different stages 
with respect to the Global CDR score: 0 (no impairment), 0.5 (questionable impairment), 1 (mild impairment), 
2 (moderate impairment), and 3 (severe impairment)34. Hence, the Global CDR score (i.e., CDRGLOB define in 
the NACC database) is utilized to define the AD progression stages in this study. Note that the proposed model 
is neutral to etiologic diagnoses, which implies that other metrics defining AD progression stages can be used to 
replace the Global CDR score if necessary.

Materials and Methods
Data description, analysis and preprocessing. Data description and analysis. The patient data-
set used in this study was provided by NACC. The data includes patients’ demographics, health history, 
physical information, elements of the CDR scale34,35, Geriatric Depression Scale (GDS)36–40, and Functional 
Activities Questionnaire (FAQ)41–43. The detailed information about these feature categories is provided in the 
Supplementary Table S1.

To focus on the future progression predictive modeling of AD, patients who were marked with probable AD 
and had more than three visits were chosen from the original dataset. As a result, 5432 patients with probable 
AD between August 31, 2005 and May 25, 2017 as a subset of the NACC dataset are included in this study. The 
number of visits still varies with patients in the subset, with an average of 4.98 visits for a patient while the max-
imal number reaches as high as 12. In addition, the time intervals between patients’ two consecutive visits are 
quite different too. As illustrated in Fig. 1, although about 46% of time intervals are about 12 months, other time 
intervals span from 5 months to as far as 5 years.
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Table 1 shows the likelihood that a patient changing from one Global CDR score to another between two con-
secutive visits in the dataset under study. ytn

 denotes the global CDR score of a patient in its nth visit and 
+

ytn 1
 

denotes the global CDR score of a patient in its n( 1)th+  visit.
With about 60% of visits, the global CDR score of a patient had no change at a given stage, except for the fifth 

stage ( =y 3tn
). With about 40% of visits, a patient got worsen by one stage, and with about 4% of visits, a patient 

got worsen by two stages. By contrast, with about 4% of visits, a patient got better by one stage with respect to the 
global CDR score. In short, Table 1 clearly shows that AD progresses slowly over time. Therefore, to help an AD 
patient with effective healthcare guidance, it is critical to identify if the patient will have pejorative progression in 
his/her next visit.

Figure 2 shows the distribution of demented patients at different progression stages with respect to their first 
visits and their last visits in the selected subset. 47.7% and 34.9% patients as the majority are at the second and 
third stages respectively on their first visits, which indicates that most patients began to visit AD related healthcare 

Figure 1. The distribution of time intervals of two successive medical visits.

Global CDR score =
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y 0tn 1
y 0 5tn 1
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y 1tn 1
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y 2tn 1
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y 3tn 1

=y 0tn
0.5286 0.4320 0.0384 0.0010 0

y 0 5tn
= . 0.0201 0.6304 0.3151 0.0299 0.0045

y 1tn
= 0.0004 0.0488 0.6134 0.2982 0.0392

y 2tn
= 0 0.0023 0.0454 0.6165 0.3358

=y 3tn
0 0 0.0019 0.0254 0.9727

Table 1. Ratios of Global CDR scores that are changed between two consecutive visits.

Figure 2. The distribution of patients at different stages with respect to their first visits and last visits.
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service centers when they were at either questionable impairment or mild impairment stages. However, 30.8% 
and 29.3% patients had progressed to or remained at the fourth and fifth stages respectively on their last visits. In 
fact, when we simply look at Fig. 2 and compare bars of their first and last visits, those AD patients under study 
had become more severe as time passed. Therefore, it is important and promising to explore how and predict the 
disease of an AD patient progresses over time.

In total, there are 78 features/predictors (including time interval) and a label (Global CDR score) in the created 
data subset. The variable time interval is derived from two successive visit dates, which is measured in months. 
Detailed descriptions of other variables are listed in the Supplementary Table S1. There are different data types 
in this data subset, such as continuous variables, ordinal variables, and nominal variables (including dummy 
variables). Most variables have different percentages of missing data, and the distributions of those missing data 
are given in Table 2. Thus, it needs to perform data imputations to obtain quality data for predictive modeling.

Data preprocessing. Two steps of data preprocessing were adopted: (a) we first take advantage of some simple 
and fast imputation techniques to impute the missing data to obtain high quality data, (b) we then apply normal-
ization or encoding on the imputed data to get appropriate inputs for the adopted deep learning model.

In general, we can apply mean imputation to continuous variables, median imputation to ordinal variables, 
and mode imputation to nominal variables. Nevertheless, in this study we also applied customized imputation 
schemes to certain variables by taking their feature characteristics into consideration as shown in Table 3.

Then normalization or encoding was performed on the imputed data. For the continuous variables, we nor-
malized the variables with their corresponding mean and variance. For the categorical variables (including 
ordinal and nominal variables), one-hot encoding was performed on each of those variables. For example, if a 
categorical variable had five classes, we used five-dimension one-hot vectors to represent the variable. After the 
completion of one-hot encoding for the categorical variables, the dimension of the input features for the proposed 
model was increased to 234.

RNN model for AD progression stage prediction. Long short-term memory (LSTM) RNN model. We 
applied RNN to the AD progression modeling in this study. Different from traditional neural networks, RNN 
models allow temporal information to be passed from one time step to the next time step in the network23. The 
proposed RNN model is structured with one input layer, two hidden layers (Fig. 3), and one output layer. The 
input layer can accommodate well the needed information of all historical visits and irregular visit time intervals 
for patients.

Formally, given that there are N visits (time points or steps) for a patient, the input at time tn, n N1, 2, ,= , 
includes patient’s features xtn

 and time interval t t tn n n1∆ = −+ . More specifically, xtn
 is a row vector with Q

dimensions where Q indicates the number of input features. Note that a feature can be continuous, ordinal or 
nominal. If the Nth visit represents the current visit of a patient, then the N( 1) th+  visit represents the next visit 
of the patient. The prediction model proposed in our study can be written as:

ˆ ( )y f x x x t t t, , , ; , , , (1)t t t t N1 2N N1 1 2
= … ∆ ∆ ∆

+

where the output ˆ
+

ytN 1
 is the AD stage of the next visit of the patient (Fig. 3) and the function f(·) represents the 

proposed model. When the prediction model is applied in the real world, ∆tN  can be set according to a user’s 
need, which means the future prediction time point can be customized as needed. As mentioned earlier, demented 

Ratio of missing data Number of Variables

< = 5% 29

5% < and < = 10% 21

10% < and < = 15% 4

15% < and < = 20% 6

20% < and < = 25% 6

25% < and < = 30% 13

Table 2. Missing data analysis.

Characteristics of variables Continuous variables Ordinal variables Nominal variables

The variable would not change 
with different visits for a patient

Imputed with the mean 
value of first visits of all 
the patients

Imputed with the median 
value of first visits of all 
the patients

Imputed with the mode 
value of first visits of all 
the patients

The variable would change with 
different visits for a patient

Imputed with the mean 
value of all the visits of all 
the patients

Imputed with the median 
value of all the visits of all 
the patients

Imputed with the mode 
value of all the visits of all 
the patients

The variable would change with 
different visits for a patient and is 
only related to a specific patient

Imputed with the mean 
value of other visits of the 
same patient

Imputed with the median 
value of other visits of the 
same patient

Imputed with the mode 
value of other visits of the 
same patient

Table 3. Imputation schemes for missing data.
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patients will experience five stages with reference to CDRGLOB. Therefore, 
+

ŷtN 1
 is a one-hot vector with five 

dimensions, and each dimension indicates a corresponding AD stage. Since the proposed model has a time win-
dow shift between the input and the output, a pad with zero vectors for the (N + 1)th visit was performed on the 
input to create a “many-to-one” model24.

Each module in the proposed RNN architecture is a very special kind of RNN cell, called LSTM (Fig. 4)44,45. 
Ctn 1−

 is the cell state of the last time step of the same hidden layer, and htn 1−
 is the output of the last cell state of the 

same hidden layer. Ctn
 is the cell state of the current time step, and will connect to the next time step of the same 

hidden layer. htn
 is the output part of the current time step, which will pass information to both the next time step 

of the same hidden layer and the same time step of the next hidden layer, as shown in Fig. 3.
The equations of Fig. 4 are defined as follows23,24,45:

( )f W h x b, (2)t f t t fn n n1
σ= ⋅ 



 +

−

σ= ⋅ 



 +

−( )i W h x b, (3)t i t t in n n1

= ⋅ 



 +

∼
−( )C W h x btanh , (4)t C t t Cn n n1

C f C i C (5)t t t t tn n n n n1
= ∗ + ∗

∼
−

σ= ⋅ 



 +

−( )o W h x b, (6)t o t t on n n1

= ∗ ( )h o Ctanh (7)t t tn n n

There are three gates in an LSTM cell (Fig. 4): ftn
, itn

 and otn
 represents a forget gate, an input gate and an output 

gate, respectively. ∼Ctn
 represents the candidate value of a new cell. The new cell state, Ctn

, is derived from the cell 

Figure 3. The architecture of the proposed RNN model for AD stage prediction.

Figure 4. A LSTM module in the proposed RNN model.
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state of the last time step through the forget gate while the candidate value derived from the input gate. The output 
part of the current cell state, i.e., htn

, is obtained from a tanh (·) activation function.
The proposed RNN model has a chain of the same LSTM module in each hidden layer. Hence, to predict the 

AD stage of the +N( 1) th visit for a patient, we used a softmax function:

( )y hW bsoftmax (8)t t
(2)

N N1
= ⋅ +

+
ˆ

where ht
(2)
N

 represents the output of the Nth step of the second hidden layer.

Loss function with regularization. To avoid overfitting, regularization was applied. Formally, the loss function of 
the model becomes θ + λ ⋅ Ω ⋅J( ) ( ), where θ indicates the vector of parameters of the model (including weights 
and biases) and J( )θ  is the original loss function (before regularization). The regularization item, Ω(·), represents 
the model complexity while λ is the ratio of the cost of the model complexity and the total cost. In general, the 
complexity of a model depends on weights. So the regularization item can be simply computed based on weights, 
i.e., Ω W( ). There are two common kinds of regularization: L1 regularization, and L2 regularization46.

wWL1: ( )
(9)i

i∑Ω =

wWL2: ( )
(10)i

i
2∑Ω =

Both L1 and L2 regularization techniques focus on limiting the weight values to avoid overfitting. L1 regu-
larization will make some weights zeroes in the training process, which is equivalently considered as conducting 
feature selections. While L2 regularization will not make some weights zeroes in the training process. When 
some weights have small values, their corresponding square values will become smaller, which is small enough 
to ignore. In this study, L2 regularization is used so that all features can be well considered. The cross-entropy 
function with regularization for M patients thus is defined as follows:

ˆ ˆ( )( ) ( )W y yL b log log wy y( , ) 1 1
(11)m

M

t
m

t
m

t
m

t
m

i
i

1

( ) ( ) ( ) ( ) 2
N N N N1 1 1 1

∑ ∑λ=− + − − + ⋅
=

+ + + +

where M is the total number of patients, 
+

yt
m( )

N 1
 indicates the true AD stage of the mth patient, 

+
ŷt

m( )
N 1

 is the value pre-
dicted by the model, λ is a hyperparameter that controls the L2 regularization, and wi denotes a weight in the built 
network.

Model evaluation. Our goal is to predict the AD progress of a patient at the time he/she visits in the future. 
Hence, accuracy that defines the percentage of correct predictions can be used as the basic metric to evaluate the 
performance of a multi-class prediction model. To a patient, he/she might be more concerned with the correct 
prediction of his/her AD progression with respect to CDRGLOB. In practice, an accurate prediction of disease 
progression provides a significant value to the patient, doctors, and caregivers.

Based on the definition of CDRGLOB, if the value of a patient’s CDRGLOB from the Nth visit to the (N + 1)th 
visit increases by 0.5, 1, 2 or 3, we consider that the patient’s AD has developed or made pejorative progress. 
Otherwise, we simply consider that the patient’s condition has been stable or not deteriorated. In theory, if the 
value of CDRGLOB of the patient changes by any negative number, the patient would have got better. We know 
this wouldn’t happen until an effective drug or treatment is discovered. Thus, the pejorative progression identifi-
cation accuracy (PPIA) is a meaningful and important metric for now.

In addition, patients can be divided into two different groups with respect to CDRGLOB. One group consists 
of the patients whose CDRGLOB values are 0, 0.5, or 1 on their last visits; the other group includes the patients 
whose CDRGLOB values are 2 or 3 on their last visits. Obviously, the second group includes severe AD patients, 
while the first group is considered as a non-severe one. Thus, the prediction accuracy of the second group can be 
denoted as severe patient identification accuracy (SPIA), which is another performance metric for the proposed 
model that users may also have interest.

Model training and comparisons. Baseline models for performance comparisons. For the progression 
prediction problem under study, one may wonder if classical time series methods might be applied to solve the 
problem. That is, one might use the information of the target variable (i.e., AD stage) of historical visits to predict 
its future values, i.e., ψ= …

+
ŷ y y y( , , , )t t t tN N1 1 2

, where ( )ψ ⋅  represents a classical time series method. 
Unfortunately, as mentioned earlier, the number of visits has an average of 4.98 visits for a patient and the target 
variable is an ordinal variable. As a result, traditional time series methods fail to capture the AD progression pat-
terns. In other words, traditional time series methods can’t be well applied to the problem under study. Therefore, 
four machine-learning algorithms were chosen as baselines in this study. These four baseline models include 
logistic regression (LR), support vector machine (SVM), decision tree (DT), and random forest (RF), which will 
be used to be compared with the proposed RNN model in terms of their performances. Since these baseline mod-
els cannot handle various lengths of longitudinal temporal data, three training approaches are adopted for each of 
the baseline models to predict AD patients’ future progression stages.
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Approach 1: we can train the baseline models with aggregated features of all patients’ historical visits, which 
is a common method for longitudinal data in predictive modeling27. The aggregated features’ values from all the 
historical visits can be defined as:





=x x x x( , , , ) (12)t t Q, , 1 2N1

where xt t, , N1 

is a vector with Q dimensions, and the aggregated value of the qth dimension ( = q Q1, 2, , ) is 
defined as follows:

•	 If the qth feature is a continuous type variable, then the aggregated value xq is the mean of the feature values of 
all the historical visits.

•	 If the qth feature is an ordinal type variable, then the aggregated value xq is the median of the feature values of 
all the historical visits.

•	 If the qth feature is a nominal type variable, then the aggregated value xq is the mode value of the feature values 
of all the historical visits.

Based on the aggregated features’ values, the baseline models used to predict the future progression stage can 
be defined as follows:

( )y xf (13)t t t1 , ,N N1 1 

ˆ =
+

where ⋅f ( )1  represents a baseline model.
Approach 2: similar to time series methods, the baseline models can also be implemented with the informa-

tion of the most recent r visits among historical visits. We merge the feature values of most recent r visits into one 
feature vector, i.e.,

= …
− + − + − +

� �x x x x( , , , ) (14)t t t t t, ,N r N N r N r N1 1 2

where � �− +
xt t, ,N r N1

 is a merged vector with r*Q dimensions, note that 
− +

xtN r 1
, …

− +
x x, ,t tN r N2

 are feature vectors 
with Q dimensions at the N r( 1) th− + , the N r( 2) th− + , …, and the Nth visit, respectively.

Based on the merged feature vector, the baseline models used to predict the future progression stage can be 
then defined as follows:

ˆ � �( )y xf (15)t t t2 , ,N N r N1 1
=

+ − +

where ⋅f ( )2  represents a baseline model and r should be smaller than the minimum number of visits of patients. 
Note that the minimal number of visits among patients is 3 in the dataset under study, and in this study r is there-
fore set to 2 in order to evaluate the prediction performance of built models. That is, one visit was left for each 
patient that was used to evaluate the prediction performance of the models.

Approach 3: the baseline models can be easily implemented with the feature information at the Nth visit, i.e.,

y xf ( ) (16)t t3N N1
=

+
ˆ

where f ( )3 ⋅  represents a baseline model.
Regarding the above training approaches, Approach 3 is essentially a special case of Approach 2. As mentioned 

above, r is set to 2 for Approach 2 in this study, which makes Approach 2 and Approach 3 very similar. It is worth 
mentioning that when the minimum number of visits of patients increases, r can be set to other higher values.

Different from the baseline models, we can train our proposed model with or without time intervals (TI) that 
are derived from two consecutive visits. Essentially, we aim to investigate whether the proposed RNN model can 
fully leverage irregular time intervals information to improve AD progression modeling performances.

Impact analysis of various feature categories. To get a better understanding of factors or variables impacting the 
cognitive declines of patients, we perform feature analysis based on different subsets of variables. More specifi-
cally, more experiments are conducted to investigate how each category of features would impact the prediction 
performance. In this study, the full dataset based model (or simply called the full model) contains 6 feature cate-
gories: Subject Demographics, Subject Health History, Physical information, CDR, GDS, and FAQ. Since the visit 
time intervals, demographical, health historical physical information and MMSE score are basic information for 
patients, we conduct various sub-models using different combinations of CDR, GDS and/or FAQ to analyze their 
impacts on corresponding modeling performances.

Data availability. The data that support the findings of this study are available from NACC but restrictions 
apply to the availability of these data, which were used under license for the current study, and so are not publicly 
available. Data are however available from the authors upon reasonable request and with permission of NACC.

Results
In this study, we implemented our RNN model of 2 hidden layers with 100 hidden units at each layer. The learning 
rate decay and moving average decay mechanism were applied in the training process. L2 regularization was added 
to the loss function, and Adam Optimizer was used in the loss function optimization47. We used 10-fold cross 
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validation in our experiments. Thus the results illustrated later are the average values of the 10-fold cross validation 
runs. The detailed implementation information for the proposed model is provided in the Supplementary File.

First, we conducted different experiments to train the proposed model with or without TIs. Then we compared 
the performances of the proposed models with the baseline models. The results are shown in Table 4.

As shown in Table 4, LSTM with TI performs better than LSTM w/o TI by about 0.6%, 1.0% and 0.6% regard-
ing the metrics - Accuracy, PPIA, and SPIA, respectively. In other words, a model of AD progression with irregu-
lar TI is better than one only with logical temporal information. This confirms that LSTM based RNN models can 
truly account for the longitudinal temporal patterns in the problem under study.

Note that the baseline models that are trained with the aggregated information of all the historical visits out-
perform the corresponding models based on these methods trained with the information of two most recent 
historical visits or the most recent historical visit. The proposed models based on LSTM (both LSTM with TI and 
LSTM w/o TI) are far superior to the baseline models as shown in Table 4. Specially, the accuracy of LSTM with 
TI is about 19.5%, 24.6%, 28.7% and 29.9% better than LR, SVM, DT and RF models trained with the aggregated 
information of all the historical visits, respectively. Moreover, the proposed models also perform far better than 
the baseline models with respect to other two metrics PPIA and SPIA.

In addition, to analyze the impact of various feature categories on the model performance, we conducted 
experiments of LSTM with TI using different combinations of feature categories (Table 5).

As illustrated in Table 5, a model without GDS shows a slight negative impact on the model’s capability to 
predict, while a model without CDR or FAQ performs much worse than the full model, with accuracy being 
decreased by about 3.5% or 2.9% respectively. Note that the performance is considerably decreased when CDR 
and FAQ are not considered by the model at the same time. Therefore, when the model is applied in practice, it is 
very important to take into account CDR data and/or FAQ data, and if available, both CDR and FAQ should be 
included for better results.

To further show the effect of each specific feature in the CDR/FAQ category on the model performance, exper-
iments with variable control approaches have been conducted. A model only with the basic information (i.e., a 
model without CDR, FAQ, GDS) is defined as our basic model. There are 9 features in the CDR category and 10 
features in the FAQ category. Each time one specific feature of the CDR/FAQ category was incorporated into the 
basic model to investigate the impact of the specific feature on the model performance. Table 6 shows the model 
improvement by incorporating a specific feature of the CDR/FAQ category when compared with the basic model.

As shown in Table 6, the values of all the three metrics that had more than 10% improvements are marked 
in bold. It is clear that HOMEHOBB, COMMUN, ORIENT, JUDGMENT, and CDRSUM in the CDR category 
significantly contribute to the model performance improvement. Note that the feature CDRSUM is actually 
the sum of the scores of six features including MEMORY, ORIENT, JUDGMENT, COMMUN, HOMEHOBB, 
PERSCARE. Therefore, HOMEHOBB, COMMUN, ORIENT, and JUDGMENT as independent features are ones 
that substantially impact the model performance. By contrast, top contributed features in the FAQ category help 
improve the model performance by about 7% respectively, which are less significant when compared to top con-
tributed CDR features.

Models Accuracy PPIA SPIA

LSTM with TI 0.9906 ± 0.0043 0.9894 ± 0.0074 0.9912 ± 0.0039

LSTM w/o TI 0.9843 ± 0.0057 0.9792 ± 0.0117 0.9849 ± 0.0053

LR with average aggregation 0.7955 ± 0.0216 0.7126 ± 0.0345 0.7986 ± 0.0211

LR with two most recent visits 0.6652 ± 0.0162 0.5057 ± 0.0409 0.6674 ± 0.0163

LR with the most recent visit 0.6803 ± 0.0243 0.5209 ± 0.0370 0.6825 ± 0.0243

SVM with average aggregation 0.7445 ± 0.0237 0.6465 ± 0.0516 0.7468 ± 0.0226

SVM with two most recent visits 0.6533 ± 0.0165 0.4825 ± 0.0445 0.6552 ± 0.0163

SVM with the most recent visit 0.6746 ± 0.0209 0.4931 ± 0.0245 0.6757 ± 0.0208

DT with average aggregation 0.7035 ± 0.0206 0.6223 ± 0.0267 0.7058 ± 0.0200

DT with two most recent visits 0.5810 ± 0.0199 0.4463 ± 0.0470 0.5829 ± 0.0196

DT with the most recent visit 0.5916 ± 0.0204 0.4705 ± 0.0458 0.5934 ± 0.0196

RF with average aggregation 0.6916 ± 0.0223 0.5786 ± 0.0487 0.6944 ± 0.0227

RF with two most recent visits 0.6373 ± 0.0181 0.4517 ± 0.0430 0.6399 ± 0.0179

RF with the most recent visit 0.6416 ± 0.0183 0.4570 ± 0.0422 0.6441 ± 0.0186

Table 4. The performance comparison of the proposed models and the baseline models. LSTM with TI and 
LSTM w/o TI are implemented based on the dataset of patients with more than 3 visits. Baseline models with 
average aggregation are trained with aggregated features derived from the longitudinal data. Baseline models 
with two most recent visits are trained directly with the information of the N( 1)th−  visit and the Nth visit 
among historical visits. Baseline models with the most visit are trained directly with the Nth visit. LSTM with TI 
model and all the baseline models are trained with time intervals, while LSTM w/o TI is trained without time 
intervals. Note that the results presented here are mean values and the standard deviation values of the 10-fold 
cross validation, and the performances of each fold are provided in the Supplementary Tables S2–S7.



www.nature.com/scientificreports/

9SCIEnTIfIC REPORTs |  (2018) 8:9161  | DOI:10.1038/s41598-018-27337-w

Discussion
As indicated in Table 4 the proposed LSTM RNN model when it is trained with irregular TIs performs better than 
one without accounting for TIs. Generally, the proposed model performs far better than models based on tradi-
tional machine learning methods such as LR, SVM, DT and RF. This mainly attributes to the fact that the proposed 
model can fully capture and leverage patients’ temporal information patterns along with their historical visits.

Interestingly, the results of the feature analysis show that CDR and FAQ play an important role in the AD pro-
gression prediction, while GDS contains less effective predictors when compared to CDR and FAQ. In fact, these 
findings are in line with the medical implications of these data categories:

•	 CDR includes six cognitive elements in the standard CDR scale version and two additional variables defining 
the language and the behavior-comportment and personality of a patient. Together they can comprehensively 
describe the clinical dementia status of patients35.

•	 FAQ is used to access a patient’s instrumental activities of daily living (IADLs), which is effective when used 
to monitor the functional change of the patient over time41–43. For an individual with AD, his/her func-
tional ability usually declines over time. Hence, FAQ has been well considered as risk prognosis for cognitive 
impairment48–50.

•	 GDS is a self-administered instrument, so when a person with mild dementia of the Alzheimer’s type, GDS 
is not an effective tool to identify depression37. Specially, when a patient is not able to complete a GDS test 
according to clinician’s best judgment, the corresponding GDS items will be marked as “did not answer”, 
which essentially become missing data in the archived database. Hence, GDS variables are not considered as 
effective predictors in the AD progression modeling.

Models Accuracy PPIA SPIA

Full Model 0.9906 ± 0.0043 0.9894 ± 0.0074 0.9912 ± 0.0039

Model without CDR 0.9557 ± 0.0121 0.9470 ± 0.0273 0.9565 ± 0.0125

Model without GDS 0.9900 ± 0.0057 0.9832 ± 0.0103 0.9906 ± 0.0054

Model without FAQ 0.9615 ± 0.0140 0.9429 ± 0.0262 0.9624 ± 0.0143

Model without CDR, GDS 0.9699 ± 0.0094 0.9637 ± 0.0154 0.9708 ± 0.0091

Model without CDR, FAQ 0.7191 ± 0.0282 0.6867 ± 0.0471 0.7207 ± 0.0278

Model without GDS, FAQ 0.9689 ± 0.0144 0.9620 ± 0.0229 0.9698 ± 0.0141

Model without CDR, GDS, FAQ 0.7148 ± 0.0355 0.6868 ± 0.0437 0.7147 ± 0.0353

Table 5. Results of the LSTM with TI model trained with different combinations of feature categories. Note that 
the results presented here are mean values and the standard deviation values of the metrics for the 10-fold cross 
validation, and the performances of each fold are provided in the Supplementary Tables S8–S14.

Category Incorporated Feature  ΔAccuracy ΔPPIA ΔSPIA

CDR HOMEHOBB 0.1145 0.1269 0.1124

CDR COMMUN 0.1110 0.1201 0.1119

CDR ORIENT 0.1106 0.1192 0.1106

CDR JUDGMENT 0.1098 0.1135 0.1097

CDR CDRSUM 0.1040 0.1101 0.1026

CDR MEMORY 0.0905 0.1083 0.0920

FAQ GAMES 0.0844 0.1017 0.0825

CDR PERSCARE 0.0817 0.1001 0.0820

FAQ BILLS 0.0776 0.0990 0.0756

FAQ REMDATES 0.0764 0.0929 0.0728

FAQ MEALPREP 0.0731 0.0918 0.0723

FAQ TAXES 0.0729 0.0914 0.0717

FAQ STOVE 0.0717 0.0881 0.0679

FAQ TRAVEL 0.0686 0.0825 0.0647

FAQ SHOPPING 0.0631 0.0773 0.0621

FAQ PAYATTN 0.0497 0.0650 0.0548

CDR COMPORT 0.0350 0.0476 0.0329

FAQ EVENTS 0.0311 0.0472 0.0321

CDR CDRLANG 0.0225 0.0366 0.0147

Table 6. Improvement by incorporating a specific feature of CDR/FAQ category compared with the basic 
model. Note that the results presented here are the mean differences from their 10-fold cross-validation 
runs. The mean values and the standard deviations for the 10-fold cross-validation runs are provided in the 
slementary Table S15.
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The feature analysis mentioned earlier in fact provides sufficient evidences that are aligned well with the inten-
tions or implications of these data categories.

To the best of our knowledge, we are the first group to apply RNN to the AD progression predictive modeling. 
The contributions of this study can be summarized as follows:

•	 First, unlike classification modeling, without a patient’s next visit feature information the proposed LSTM 
RNN model can predict his/her next visit’s AD progression stage. This is attributed to the adopted RNN 
with an enhanced structure. Because we have successfully incorporated the shift of time steps into the pro-
posed model, the longitudinal medical patterns of his/her previous visits on record can be well captured and 
leveraged.

•	 Secondly, because the “many-to-one” RNN structure is applied, the prediction can also be executed without 
target variables (i.e., AD stages in this study) in the time steps that are marked as preceding visits from the 
very last one. In other words, only the values of the target variable in the last time step are needed in a devel-
oped model based on the adopted RNN structure. Therefore, the adopted RNN structure for this kind of 
study works well for the target variables that are partially or totally missing for the preceding time steps except 
the very last ones of patients in the dataset.

•	 Thirdly, the proposed progression prediction model can be very adaptive over time since it allows irregu-
lar visit TIs and various numbers of visits. Note that TIs are always irregular or uneven, which frequently 
depends on the patient’s preference or need. It is worth mentioning that the prediction time interval between 
the current visit and the next visit is part of the input information of a model, which can be chosen by users 
according to their prediction requirements.

•	 Finally, other metrics defining AD progression stages can be used to replace the Global CDR score if neces-
sary. The severity stages of AD progressions can be adjusted for a variety of metrics with different granularity 
levels. Furthermore, the proposed model can be applied to other chronic disease progression modeling.

In the near future, we will develop models that can account for deeper and more granular details in patients’ 
information, for example different deteriorating rates among patients. If possible, more accurate classification 
schemes (e.g., biomarker indicators) will be taken into account. Furthermore, we will extend the proposed 
approach to broader studies with a focus on early disease stage predictions, such as exploring how patients pro-
gress from non-demented to demented stages.

Conclusion
This paper proposed a disease progression model based on a deep RNN with LSTM cells. A “many-to-one” archi-
tecture with enhancements in support of time step shifts was fully leveraged in this study. As a result, the pro-
posed model can accurately predict the AD stage of the next visit of a patient when the information of the patient’s 
previous visits becomes available. By relying on the real-world dataset, i.e., the NACC dataset for patients with 
AD, we tested and validated the developed model to confirm its applicability in practice, and also compared its 
performance with four classic approaches. We also explored several sub-models using different combinations of 
feature categories to analyze their impacts on the model’s performances. In overall, the results of this project show 
that the proposed LSTM RNN model can effectively predict the future statuses of AD patients. Most promisingly, 
we can easily apply the proposed model to other chronic disease progression predictive modeling.
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