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Highly-efficient three-dimensional 
waveguide couplers using 
impedance-tunable transformation 
optics
Jun Cao1,2, Fenghua Qi2, Senlin Yan2 & Lifa Zhang1

There is growing interest in designing waveguide couplers with low reflections. Using impedance-
tunable transformation optics, we propose a coordinate transformation technique in the design of 
compact three-dimensional waveguide couplers. To transmit electromagnetic waves between two 
coaxial waveguides with different inner and outer radii in the microwave range, a suitable impedance 
function is derived to reduce the impedance mismatch at the boundary, which make the fabrication 
process being simplified due to the reduced set of transformation media(dielectric response materials 
only). A larger refractive index is set to raise the coupling performance in the low frequency range. Next 
we apply impedance-tunable transformation optics to the design of dielectric waveguide couplers, 
where only the core region be contained in the transformed space; by selecting a tunable impedance 
function, waves can transmit efficiently through waveguides with quite different cross sections 
and background media. The proposed impedance-tunable three-dimensional waveguide couplers 
are confirmed by the 3-dimensional numerical simulation with good performances, which can have 
potential applications in fiber-to-chip coupling.

Based on the invariance of Maxwell’s equations with coordinate transformations, the theory of transformation 
optics, was proposed by Pendry1 and Leonhardt2, which has become a powerful method in the design of optical 
components to manipulate electromagnetic (EM) waves3–12. The coordinate transformation method can also be 
extended in the manipulation of other types of waves, such as matter waves13,14, sound waves15–17, and has also 
been applied to the manipulation of heat flow18–20.

Electromagnetic couplers are important devices, which reduce mode mismatch and enable efficient transfer 
of EM waves between waveguides with different cross sections and background media. To reduce any coupling 
losses, couplers with different mechanisms have been proposed in the past. These include grating couplers21–24, 
parabolic reflectors25, and luneburg lens26. However, the reported coupling efficiencies with these conventional 
methods remain very low. In other words, efficient coupling of EM waves in waveguides is still needed. Recently 
gradient index metamaterials (GIMs) have been applied to the guiding of EM waves based on the mechanism of 
propagating waves to surface waves converting27, and some meaningful applications have been proposed due to 
its easier realization of the needed isotropic materials, such as the waveguide bends, splitters, and the different 
modes coupling28. But for coupling waves efficiently from different cross section of waveguides, especially for 
3D couplers, it is still unknown whether the above method can be applied. Much effort has been made in the 
coupler design by using the coordinate transformation technique29–31. For two dimensional coupling, however, 
the impedance mismatch at the waveguide boundaries is unavoidable due to unequal coordinate stretching in 
two dimensions. As a result, reflections limit its practical applications in many cases. Three-dimensional coordi-
nate transformation was already proposed by Emiroglu32 to obtain an impedance-matched compressor/expander. 
This approach can be applied to some special cases, where the expansion/compression rates are identical in two 
orthogonal directions, and the connected media are identical too. Quasi-conformal mappings (QCMs) have been 
presented to minimize the anisotropy of the transformation medium in many cases, which can be realized by 
inhomogeneous isotropic medium, and has been applied on the 2D EM coupler design33,34; but the method can 

1Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing, 210023, China. 
2Department of Electronics Engineering, Nanjing Xiaozhuang University, Nanjing, 211171, China. Correspondence 
and requests for materials should be addressed to L.Z. (email: phyzlf@njnu.edu.cn)

Received: 21 November 2017

Accepted: 10 May 2018

Published: xx xx xxxx

OPEN

mailto:phyzlf@njnu.edu.cn


www.nature.com/scientificreports/

2Scientific Reports |  (2018) 8:9091  | DOI:10.1038/s41598-018-27300-9

hardly be extended to the 3D coupler design. To achieve easier realization materials, photonic crystal realiza-
tion also have been proposed in the transformation-optical design of 2D coupler35. To remove the impedance 
mismatch at the boundary and obtain reduced parameter materials at the same time, a generalized theory of 
impedance-tunable transformation optics was proposed for the geometrical optics limit36, which provides more 
flexibilities to the controlling and guiding of EM waves, and enables us more opportunities in realizing the trans-
formation media.

In this paper, we propose a three-dimensional coordinate transformation scheme for the design of waveguide 
couplers using impedance-tunable transformation optics. First we apply the scheme to the coaxial waveguide cou-
pler design in the microwave range, where different outer/inner radii ratios can be used for different configura-
tions. By setting suitable impedance functions to match the impedance at the boundary, highly-efficient couplers 
can be designed, where the reduced set of transformation media will make the fabrication process be simplified. 
Then we study the dielectric waveguide coupler design for coupling light efficiently from large size waveguide of 
low index to small size waveguide of high index, by setting appropriate impedance function the EM waves can be 
efficiently transmitted between different cross sections and background media.

Methods
Theoretical design.  Within the theory of impedance-tunable transformation optics36, the relative permit-
tivity ε ′ ′i j  and the permeability μ ′ ′i j  of the transformation medium, for a given coordinate transformation 
x′ = x′(x), can be expressed as
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Here, the impedance coefficient k is a spatial continuous function.
In this study, we generalize the theory of impedance-tunable transformation optics to the design of waveguide 

couplers such that the refractive index in the original space can also be tunable. and the relative permittivity and 
permeability in the original space are reset to be εij = pδij/k and μij = pkδij. It means that the relative permittivity 
and permeability of the transformation medium are changed to be ε ′ ′p i j  and μ ′ ′p i j . The constant refractive index 
p cannot change the light rays compared to the conventional transformation (p = 1). The large p can expand the 
application of the geometrical-optics approximation and improve the performance of the coupler at low 
frequencies.

Numerical calculation.  The numerical simulation was conducted using the software COMSOL 
Multiphysics.

Results
Coaxial waveguide coupler.  Using three-dimensional coordinate transformation, a coaxial waveguide 
coupler to connect coaxial waveguides with different outer and inner radii is designed. The proposed structure 
is shown in Fig. 1(a), where the waveguides WG1 and WG2 with their respective outer and inner radii a, b and 
c, d are connected via a linear taper structure, with the length l. To couple waves efficiently between WG1 and 
WG2 in the +z direction, tapers are embedded within a transformation medium, Fig. 1(b) shows the coordinate 
transformation between the transformed space (ρ′, θ′, z′) and the original space (ρ, θ, z). We define the following 
transformation:
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where e = b + c − a − d and f = ad − bc.
Based on the above equation, the Jacobian matrix for the transformation A = ∂(ρ′, θ′, z′)/∂(ρ, θ, z), expressed 
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 is the determinant value. Using standard calculations, both relative permittivity ε 

and permeability μ of the transformation medium can be obtained as
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Different incident mode waves correspond to different k functions if the reflections at the boundary are 
avoided. This requires different transformation media. In our design, we only focus on incident TEM mode. The 
TEM mode is the dominant mode in coaxial waveguides without cutoff frequencies. To suppress the transmission 
of high order modes in coaxial waveguides, i.e. only the TEM mode is allowed, the input frequency should be less 
than =

π +
f c

a bmax ( )
0 . Here, a and b are the outer and inner radii of the coaxial waveguide, c0 = 3 × 108 m.s−1 is the 

EM wave velocity in vacuum. For TEM mode waves in coaxial waveguides, the electric field is oriented in the 
radial direction, and the magnetic field is oriented in the tangential direction. Then, only μθθ, ερρ, ερz = εzρ and εzz 
enter the Maxwell equations. The electric input field can be set to → = →

ρ ρE eE0 , while the magnetic field is 
→

= →
ρ θH eH0 . The condition for no reflection is k = 1 at the boundary z′ = 0, where the transformation is continu-

ous. To eliminate the reflections at the boundary z′ = l, we need to calculate the reflection coefficient R of the 
waves at the boundary z′ = l and obtain the correct coefficient k. By applying the continuity of the total tangential 
electric and magnetic fields at the boundary z′ = l, we obtain = +

ρ ′ −
k 1 f

b a( )
. To satisfy the condition for no 

reflection at both boundaries simultaneously, and ensure the continuity of the transformation medium, the 
impedance coefficient k should be a continuous spatial function. It can be formulated as

ρ
= +

′
′ −

k z f
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1
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Figure 1.  Schematics of the coaxial waveguide coupler using impedance-tunable transformation optics. (a) 
Structure, where the outer and inner radius of WG1 and WG2 are (a–d) respectively. The length of the coupler is 
l. It is embedded within a transformation medium. (b) Illustration of the coordinate transformation.
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The impedance function k is not unique but it should be not so complicated that the transformation medium 
can be realized. The above function k can be chose to make the parameter for the relative permeability be μθθ = p, 
which means it is only a dielectric-response material thus can provide more opportunities to find realizable mate-
rials in the future. Note that for the special case of =a

b
c
d

 (i.e. coaxial waveguides with equal ratios between outer 
and inner radii), one can obtain k = 1, which is the standard transformation (the non-tunable impedance case for 
k = 1). Actually, the impedance-tunable transformation optics can be applied to coupling waves between arbitrary 
outer and inner radii to achieve high efficiency.

To measure the performance of the designed EM wave coupler, embedded within an impedance-tunable 
transformation medium, we conducted three-dimensional numerical simulations using COMSOL Multiphysics. 
In the simulations, TEM waves were coupled from WG1 with minimum transmission loss(the outer/inner radii 
ratio is 3.59) to WG2 with maximum power capacity(the outer/inner radii ratio is 1.65). We let the sum of the 
inner and outer radii of the two waveguides be identical. Without loss of general validity, the length of the cou-
pler can be set to l = 0.04 m, and the outer and inner radii of WG1 and WG2 are set to a = 0.0359 m, b = 0.01, and 
c = 0.0286 m, d = 0.0173 m, respectively. Here, the waves couple from annular cross sections with a large outer 
radius and a small inner radius to annular cross section with a small outer radius but big inner radius. In addi-
tion, the working frequency of the fundamental TEM mode should be less than fmax = 2.08 GHz. Both the inner 
and outer boundaries of the coaxial waveguides and connected coupler are assumed perfect electric conductors 
(PECs).

TEM mode waves are excited on the left port of WG1, with an incident frequency f = 1 GHz. Figure 2 shows 
the electric field simulation results, where inset (a) is the electric field of the input mode profile, and insets (b–e) 
relate to the output-mode profile on the right port of WG2. Figure 2(b) shows a conventional design example 
without transformation medium in the coupler. Here, the coupling efficiency η = W2/W1 is 84.6% due to the 
unavoidable reflections at the boundary. W1 and W2 are the coupler input and output powers, respectively. If 
a standard transformation medium is embedded in the coupler (the non-tunable impedance case for k = 1), 
even stronger reflections occur at the exit boundary– see Fig. 2(c). These take place despite good preservation 
of the mode profile, The resulting simulated coupling efficiency is only 80.9%. For the impedance-tunable trans-
formation medium embedded in the coupler with p, the coupling efficiency increases to 85.1% - see Fig. 2(d). 
However, compared to direct coupling without transformation, the coupling efficiency is no higher than it due to 
the geometrical optics limit of the method. To overcome these shortcomings and achieve a higher coupling effi-
ciency, a larger refractive index coefficient (p = 3) was selected – see Fig. 2(e). As a result, the coupling efficiency 
improved to 98.2%, which means there is almost no reflection. The input field value for the radial distribution 

Figure 2.  The normalized radial electric-field distribution of a coaxial waveguide-coupler. (a) Profile of the 
input-mode; (b) profile of the output mode i.e. the conventional approach without transformation; (c) output 
mode profile, i.e., the non-tunable impedance transformation approach; (d and e) are output mode profiles for 
impedance-tunable transformations with p = 1 and p = 3, respectively.
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curve is shown in Fig. 3(a). The calculated output field values of the radial distribution curve for the four coupling 
cases are shown in Fig. 3(b). Using impedance-tunable transformation optics and setting a larger refractive index, 
we can obtain the near ideal output field distribution with high efficiency.

We now investigate the coupling efficiency for a frequency range, especially for lower frequencies. Figure 4 
shows the coupling efficiency of TEM modes for couplers with and without impedance-tuning, and a conven-
tional coupler (i.e. without transformation) between 0.1 GHz to 2 GHz. the standard transformation optics 
does not exhibit enough competitive advantages compared to the traditional case without transformation, and 
thus limits its applications in many cases. By introducing a tunable impedance, the coupling efficiency can be 
improved. However, the coupling efficiency is still not very high, especially for the low-frequency region, and dos 
not demonstrate any advantage to the direct coupling without transformation. The inevitable imperfect perfor-
mance due to the geometric optics limit can be improved through setting large refractive index coefficient p, the 
cost is that the relative permittivity of the transformation medium is not 1 and extreme larger parameters of p 
will increase the difficulty of realization of designed transformation medium. Nevertheless, we still can increase 
p to improve the performance at low frequencies while it is not difficult to be realized with the designed medium.

Three-dimensional dielectric waveguide coupler.  Efficient dielectric waveguide couplers are very 
important in optical design. Using the impedance-tunable transformation optics method, a three-dimensional 
compact dielectric waveguide coupler can be designed with high efficiency and less space occupation. For a 

Figure 3.  The radial electric-field intensity of the coaxial waveguide coupler. (a) Input, (b) output.

Figure 4.  Coupling efficiency of the coaxial waveguide coupler for the TEM mode as a function of frequency.
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dielectric waveguide, distribution of the EM field can be divided into two regions: a concentrated dielectric core 
and an evanescent air cladding. Therefore to couple waves with a high efficiency, the transformed space can also 
be divided into an inner space (major contribution) and an outer space (minor contribution). For the total trans-
formation the embedded medium can be obtained through setting different original spaces and tuning different 
impedance coefficients for inner and outer parts.

For high frequencies or in high-index-contrast waveguide, a simple method is acceptable to omit evanescent 
energy and only focus on the core energy coupling between different core media and cross section. A simple 
coupler was designed as shown in Fig. 5(a), Here, the length l of the coupler is connected with the core areas 1 
and 2. The relative permittivity and permeability of the media in areas 1 and 2 are ε1, μ1 and ε2, μ2 respectively. To 
couple waves from WG1 to WG2 in the +z direction efficiently, the coupler is embedded within a transformation 
medium. Figure 5(b) shows the used coordinate transformation. The three-dimensional coordinate transforma-
tion equation can be rewritten as

ρ ρ γ θ θ′ =

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where γ is the compression coefficient. Expansion or compression occurs, depending if γ is within γ > 1, or γ < 1, 
respectively.

Unlike the reports in ref.32, where the background of transformation media are the same, arbitrary back-
ground media ε1, μ1 and ε2, μ2 are discussed here. By setting the material parameters in the original space to cal-
culate the correct impedance function k, we are able to remove the impedance mismatch at the boundary. The 
permittivity and permeability of the original space can be set to ε1/k and kμ1. In addition, no unique function of 
k can be selected. A normal incident plane-wave is discussed for the geometrical optics limit. Similar to the deri-
vation in ref.36, the function k can be set to + ′
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To investigate the performance of the EM wave coupler embedded within an impedance-tunable transforma-
tion medium, we performed three-dimensional numerical simulations using COMSOL Multiphysics for inci-
dent plane-waves. In our simulations, we used, without loss of generality, the compression coefficient γ = 0.5. 
The length of the coupler is l = 0.4 m, and the connected background media properties were set to ε1 = 2.25, 
μ1 = 1, and ε2 = 12.25, μ2 = 1 respectively. Plane waves are excited from the left of core area 1, with an incident 
frequency f = 2 GHz. Figure 6 shows the simulation results for the electric field distribution, where the inset (a) 

Figure 5.  Schematic diagram of a three-dimensional dielectric waveguide coupler using impedance-tunable 
transformation optics. (a) The structure, where the relative permittivity and permeability of the core areas 1 
and 2 are ε1, μ1 and ε2, μ2 respectively. The length of the coupler is l, and embedded within  a transformation 
medium. (b) The used coordinate transformation.
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shows the electric field of the input cross section, while insets (b)-(c) show the output cross sections, and inset 
(d) depicts the profile for y = 0 plane. For a standard transformation-medium embedded in the coupler (imped-
ance non-tunable case for k = 1), as shown in Fig. 6(b), despite good preservation of the wave profile, the coupling 
efficiency η is 85% due to the significant reflections. When the impedance-tunable transformation medium is 
embedded in the coupler, we obtain a good performance with a coupling efficiency near 98%, which means it is 
almost reflectionless – see Fig. 6(c). Figure 6(d) shows the total electric-field distribution in the y = 0 plane. The 
performance can also be enhanced by choosing a large refractive index coefficient p- similar to the design process 
for coaxial waveguide coupling.

Summary
In conclusion, three-dimensional coordinate transformations was proposed for the design of highly-efficient 
waveguide couplers based on impedance-tunable transformation optics. By selecting the appropriate impedance 
function, the waves can be effectively transmitted through couplers between different cross-sections and back-
ground media, and the resulted reduced set of transformation media can provide more opportunities for fabri-
cation in the future. A larger refractive index can be set to raise the coupling performance in the low frequency 
range.
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