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Shift from stochastic to spatially-
ordered expression of serine-
glycine synthesis enzymes in 3D 
microtumors
Manjulata Singh1, Katsuhiko Warita2, Tomoko Warita2, James R. Faeder3, Robin E. C. Lee  3, 
Shilpa Sant  1,4 & Zoltán N. Oltvai2,3

Cell-to-cell differences in protein expression in normal tissues and tumors are a common phenomenon, 
but the underlying principles that govern this heterogeneity are largely unknown. Here, we show that 
in monolayer cancer cell-line cultures, the expression of the five metabolic enzymes of serine-glycine 
synthesis (SGS), including its rate-limiting enzyme, phosphoglycerate dehydrogenase (PHGDH), 
displays stochastic cell-to-cell variation. By contrast, in cancer cell line-derived three-dimensional 
(3D) microtumors PHGDH expression is restricted to the outermost part of the microtumors’ outer 
proliferative cell layer, while the four other SGS enzymes display near uniform expression throughout 
the microtumor. A mathematical model suggests that metabolic stress in the microtumor core 
activates factors that restrict PHGDH expression. Thus, intracellular enzyme expression in growing 
cell ecosystems can shift to spatially ordered patterns in 3D structured environments due to emergent 
cell-cell communication, with potential implications for the design of effective anti-metabolic cancer 
therapies.

In nature, most cells exist as part of a cellular ecosystem, whether it is bacterial biofilms, tissue and tumor ecosys-
tems, or highly organized tissue architectures. Cells of the same type, but in different positions in their ecosystem, 
may have different metabolism and function due to signals from neighboring cells and from the local microen-
vironment. Indeed, tissue culture studies have demonstrated widespread protein expression heterogeneity in 
two-dimensional (2D) monoclonal cell cultures1–3, indicating phenotypic variability in cell function4. Similarly, 
the human protein atlas reveals that most metabolic enzymes display spatially variable expression in most tumor 
types5,6. The observed enzyme expression heterogeneity may reflect the tumor cells’ response to signals from 
their local environment both, due to nutrient- and/or oxygen gradients or due to autocrine- or non-cell auton-
omous paracrine effects from other tumor cells or non-tumor cell types7. The influence of these factors on the 
system-level organization of cell function, including cell metabolism remains only partially understood.

Metabolic models suggest that above a threshold ATP and/or biomass production (cell division) rate, cells 
switch from oxidative phosphorylation (OxPhos) to overflow metabolism (i.e., mixed OxPhos/fermentation)8–10, 
which could explain the observed differences between rapidly proliferating and slowly dividing sectors of a grow-
ing tumor. This metabolic reorganization is predicted to involve upregulation of the serine-glycine synthesis and 
one-carbon metabolism (SGOC) pathways11 (Fig. 1A). Experimental data indicate the enhanced activity of these 
pathways in rapidly proliferating tumors, embryonic stem cells and cancer cell lines12–16, which support both 
anabolic and catabolic processes.

Three-dimensional (3D) culture systems are physiologically more relevant and often show differential gene 
expression and drug responses as compared to 2D cell monolayers17,18. Moreover, various pre-clinical studies 
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suggest that 2D monolayer cultures sometimes fail to predict in vivo drug responses19. We have recently developed 
a hydrogel microwell platform to generate hundreds of uniform, discrete-sized, 3D in vitro microtumors using a 
variety of cancer cell lines (breast, head and neck cancer, and lung) and primary patient-derived cells (breast can-
cer, mesothelioma)18,20. Precise control of microtumor size is expected to create spatial oxygen/nutrient diffusion 
gradients leading to controlled yet reproducible local microenvironments. Indeed, without any external stimulus, 
microtumors derived from select cancer cell lines develop three key hallmarks of tumor progression observed in 
vivo: increasing microtumor size drives hypoxia and metabolic stress; heterogeneous tumor cells expressing dif-
ferent levels of E-cadherin (epithelial marker) and vimentin (mesenchymal marker) spontaneously emerge; and 
peripheral cells begin to migrate from the parent tumor. A tangible advantage of our microtumor platform is the 

Figure 1. Average expression levels of serine-glycine synthesis enzymes in cancer cell lines. (A) Schematic 
representation of pathways of serine-glycine synthesis and one-carbon metabolism. The enzymes examined 
in this study are highlighted with pink boxes, while cellular compartments are highlighted with green boxes. 
(B) Immunoblots of serine-glycine synthesis pathway enzymes in the indicated fourteen human cancer cell 
lines derived from seven human tissues are shown. Βeta-actin was used as loading control. The grouping of 
immunoblots were obtained from cropped blots obtained from different gels and are delineated by white space 
between them.
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ability to study precisely and reproducibly how the emergent microenvironment induces tumor cell heterogeneity 
in isolation from non-tumor cells present in vivo, providing a unique opportunity to define tumor-intrinsic mech-
anisms of emergence of intratumoral heterogeneity in expression levels of different proteins.

Here, we examine the expression of the five metabolic enzymes of serine-glycine synthesis (SGS) (Fig. 1A) 
in two different cell ecosystems derived from the same monoclonal tumor cell line. We show that in 2D cell 
cultures, PHGDH expression is stochastic and does not strictly correlate with cell proliferation, as indicated by 
the Ki-67 expression status of cells. By contrast, in DU-145 cancer cell line-derived 3D microtumors, PHGDH 
expression is restricted to the outermost part of the Ki-67+ proliferative outer layer of the microtumors in direct 
contact with the culture medium, while expression levels for the other four SGS enzymes are distributed more 
uniformly throughout. A mathematical model suggests that emergent metabolic stress in the core of the growing 
microtumor regulates factor(s) that restrict the expression of PHGDH. Thus, intracellular enzyme expression in 
monoclonal cell ecosystems can shift from stochastic to a spatially organized pattern when cells encounter 3D 
structured microenvironments, in which tight regulation of spatial expression may be limited to rate-limiting 
enzymes of the metabolic pathways.

Results
Metabolic enzymes of the serine-glycine synthesis pathway display variable average expression  
in 2D cell monolayer cultures. Variability of serine and glycine uptake between tumor cell lines21,22 indi-
cate that cell lines may synthesize amino acids with different rates, and suggest that expression levels of their 
SGOC pathway enzymes, including those of serine-glycine synthesis (SGS) may also differ. To test this hypothe-
sis, we selected a panel of fourteen human cancer cell lines from the NCI-60 cancer cell line panel23 representing 
seven different human tumor types that possess various average cell volumes, cell protein amount and protein 
concentrations per cell22 or position on the epithelial-to-mesenchymal transition spectrum24. We then deter-
mined the average cellular expression levels of the SGS enzymes, phosphoglycerate dehydrogenase (PHGDH), 
phosphoserine aminotransferase (PSAT), phosphoserine phosphatase (PSPH) and serine hydroxymethyltrans-
ferases 1 and 2 (SHMT1, SHMT2) (Fig. 1A) when these cells were propagated in serine and glycine-containing 
(complete) growth medium. Using immunoblotting, we found that the average enzyme expression levels vary sig-
nificantly among these cell lines; Several cancer cell lines expressed PHGDH at high levels, while other cell lines 
displayed low to minimal PHGDH expression (Fig. 1B). We observed similar variations in average PSAT, PSPH, 
SHMT1 and SHMT2 expression levels (Fig. 1B) that did not show strong correlations with the doubling times of 
these cell lines (Fig. S1). Thus, when grown as 2D monolayers, tumor cell lines display variable average expression 
levels of SGS enzymes that do not trivially correlate with their cell proliferation rate.

Stochastic expression of serine-glycine synthesis enzymes in tumor cell monolayers. Expression  
levels of proteins are often highly heterogeneous even among cells of isogenic and phenotypically uniform cell 
lines25,26. To determine if cell-cell expression variability also exists for SGS enzymes, we first studied the expres-
sion characteristics of PHGDH, the first enzyme of the serine synthesis pathway (Fig. 1A). Under standard 2D 
monolayer growth conditions, and employing immunocytochemistry-based testing, we have found that cytoplas-
mic PHGDH expression varies randomly among cells of all fourteen cell lines, some cells expressing PHGDH at 
high level while others do so at substantially lower levels (or not at all) (Fig. 2). As PHGDH is the rate-limiting 
enzyme of serine synthesis, this finding implies substantial cell-to-cell variability in the level of de novo serine 
biosynthesis from the glycolytic intermediate, 3-phosphoglycerate (3PG) (Fig. 1A) in each cancer cell line when 
grown in complete growth medium.

To examine further the characteristics of PHGDH expression, we created limiting dilutions of two of the 
cell lines, the DU-145 and PC-3 prostate cancer-derived cell lines. Single cell-derived clones of these cell lines 
displayed nearly homogeneous PHGDH expression (ON) or minimal expression (OFF) (Fig. S2), suggesting 
that stochastic PHGDH ON/OFF expression is maintained in the individual clones for several generations. Such 
stochastic protein expression pattern may be common for many proteins in cells of 2D monolayers.

Heterogeneous PHGDH expression suggests that the two other serine synthesis enzymes may also display 
similar cell-to-cell variability in their expression level. Therefore, we next performed dual immunofluorescence 
staining to determine the paired expression of PHGDH and PSAT, or PHGDH and PSPH in tumor cell monolay-
ers. Single cells in monolayers of DU-145 and PC-3 cell lines displayed variable levels of expression for PHGDH, 
PSAT and PSPH, having either high, intermediate or low/very low amounts of each enzyme. We also find substan-
tial variability in the relative expression ratios of PHGDH to PSAT and PHGDH to PSPH within individual cells 
with some cells having relatively high PSAT/PHGDH and PSPH/PHGDH ratios, while other cells displayed the 
opposite pattern (Fig. S3). These findings indicate that in 2D monolayer cultures, these enzymes display substan-
tial cell-cell variability in their expression and relative expression ratios in individual cells.

In contrast, DU-145 and PC-3 cell monolayers display less cell-to-cell heterogeneity in the expression of cyto-
plasmic SHMT1 and mitochondrial SHMT2 (Figs. S4 and S5). These findings indicate that in 2D monolayer 
cultures, these cell lines display less variability in the expression of serine-glycine interconversion enzymes than 
for the enzymes of glucose-derived serine synthesis.

PHGDH expression does not strongly correlate with Ki-67 expression in monolayer cultures.  
Previous metabolic modeling results have suggested that above a threshold growth rate, cells switch from oxi-
dative phosphorylation (OxPhos) to overflow metabolism (i.e., to mixed Oxphos/ aerobic fermentation)8–10. 
The predicted metabolic reorganization involves upregulation of the serine-glycine synthesis and one-carbon 
metabolism (SGOC) pathways11 (Fig. 1A). Recent experimental data indicate the activity of this pathway in rap-
idly proliferating tumors, embryonic stem cells and cancer cell lines that support both anabolic and catabolic 
processes13,15,27. We therefore, next examined if PHGDH expression correlates with cell proliferation. To this 
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end, we co-immunostained cells for their PHGDH expression and for the expression of the cell proliferation 
marker, Ki-67, which shows nuclear expression throughout the cell cycle (Fig. 3A). Dual staining for PHGDH 
and Ki-67 revealed cell-to-cell variability in their expression levels and only partial overlap (Fig. 3A, right panels) 
and limited correlation in the cellular expression of the two proteins (Fig. 3B,C), some cells expressing only one 
of the proteins while some expressing both (Fig. 3A, right panels). Assuming that PHGDH expression indicates 
cell-autonomous serine synthesis, then cell-autonomous serine synthesis is not uniformly required for cancer cell 
proliferation in 2D monolayer cultures in complete growth medium.

Spatially organized heterogeneity of PHGDH expression in 3D microtumors. Cell-to-cell heter-
ogeneity in the expression of serine synthesis enzymes in 2D monolayer cultures may indicate a population-level 
“bet hedging” mechanism28–30, a strategy that ensures at least a sub-population of cells will respond appropriately 
to environmental challenges. In the context of a 3D tumor, we hypothesized that the spatial organization of cells 
can influence local environmental signals or heterotypic interactions between cells within different regions of 
the tumor, and thereby constrain the amount of expression variability. For example, the central region of a tumor 
mass is often deprived of oxygen and, consequently, expression of SHMT2 is essential to maintain proper redox 
balance in hypoxic regions of the tumor31.

To test this hypothesis and to examine whether expression patterns for metabolic enzymes are affected by 
microtumor size, we established 3D microtumors from DU-145 cells using a previously described hydrogel 
array18,20 (Fig. S6). We chose to use two different size of microtumors; small, relatively non-hypoxic, 150 µm 

Figure 2. PHGDH expression in monolayer cultures of fourteen NCI-60 cell lines. PHGDH immunoreactivity 
of colon cancer (HCT-116 and KM-12), ovarian cancer (IGROV1 and OVCAR3), breast cancer (HS-578T and 
T47D), lung cancer (HOP-92 and NCI-H322M), prostate cancer (PC-3 and DU-145), melanoma (SK-MEL-5 
and MDA-MB-435), and brain cancer (SF-295 and SF-539) derived cell lines from the NCI-60 collection is 
observed in tumor cell with various expression levels and immunoreactive areas. 3,3′-diaminobenzidine was 
used for visualization.
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in diameter and hypoxic 600 µm in diameter (Fig. S7), which are henceforth referred to as mt150 and mt600, 
respectively. (We also attempted to culture PC-3 cells in the same way; However, due to their highly mesenchy-
mal nature24 and rapid migration out of the wells (not shown) we could not establish compact 3D microtumors 
for this cell line.) We then analyzed the expression levels for SGS enzymes in mt150 and mt600 DU-145 cell 
line-derived microtumors. We have found that in mt150 and mt600 microtumors PHGDH expression is highly 
spatially organized and is restricted to the periphery of the microtumor mass irrespective of their size (Figs. 4, S8).  
By contrast, the second enzyme of the pathway, PSAT displayed a more uniform expression that was at times 
stronger on the periphery of the tumor mass in both mt150 and mt600 microtumors compared to central core 
(Figs. 4, S9A). Finally, the third enzyme of the pathway, PSPH, displayed uniform expression in both mt150 and 

Figure 3. Expression of PHGDH and Ki-67 in DU-145 and PC-3 cell line monolayers. (A) Cytoplasmic 
PHGDH (green channel), and nuclear Ki-67 (red channel) immunoreactivity are shown in DU-145 and PC-3 
prostate cancer cell lines. Hoechst counterstain (blue color) indicates cell nuclei. Scatter plots for fluorescence 
of nuclear Ki67 versus cellular PHGDH quantified from images of single cells shown in for (B) DU-145 and (C) 
PC-3 cells.

Figure 4. Spatial localization of serine-glycine synthesis enzymes expression in 3D microtumors. Spatial 
localization of the indicated enzymes in mt150 (top panels) and mt600 (bottom panels) DU-145-derived 
3D-microtumors. Confocal images are centered on the middle plane of the microtumor. Bar = 100 μm.
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mt600 microtumors (Figs. 4, S9B). As PHGDH is the rate limiting enzyme of 3-phosphoglycerate-derived serine 
synthesis, these data indicate that in isogenic DU-145 cell-derived microtumors, in complete growth medium 
3PG-derived serine synthesis (Fig. 1A) is restricted to the periphery of the microtumors’ mass.

Reversible conversion of serine to glycine is achieved through the activity of cytoplasmic SHMT1 and mito-
chondrial SHMT2 activities (Fig. 1A). We found that in DU-145 cell line-derived mt150 and mt600 microtum-
ors, SHMT1 displayed a wide, doughnut-shaped cytoplasmic enzyme expression pattern with weaker expression 
in their cores (Fig. 4). By contrast, SHMT2 expression was uniform throughout in both microtumor types 
(Fig. 4) and co-localized with a mitochondrial marker protein, TOM-20 (Fig. S10), confirming its mitochondrial 
localization.

PHGDH expression partially overlaps with the zone of cell proliferation in 3D microtum-
ors. Empirical data indicate that the serine synthesis pathway is upregulated in rapidly proliferating cells12–16. 
Therefore, we analyzed the expression of PHGDH in relation to the proliferation marker, Ki-67. In mt600 micro-
tumors the expression of both Ki-67 and PHGDH proved highly spatially organized, proliferating Ki-67+ cells 
forming a broad outer layer of the growing microtumor (Fig. 5A). In contrast, PHGDH expression proved more 
restricted to the outermost cell layers (Fig. 5A), in which normoxia is evident (Fig. S7). Radial linescans (Fig. 5B) 
have identified varied levels of average Ki-67 and PHGDH fluorescence intensity in each of the microtumor com-
partments (Fig. 5C). These data demonstrate the existence of two separate layers of proliferating cells, a PHGDH 
positive outermost layer (O) and a PHGDH low positive inner layer (I) of proliferating cells. The two proliferative 
layers in turn encompass a non-proliferating (PHGDH negative/ Ki-67 low expression) microtumor core (C) 
(Fig. 5A–C). Thus, in serine-containing growth medium, glucose-derived de novo serine synthesis appears to be 
required for cell growth and proliferation in the outermost cell layers of the microtumors.

Emergent gradients of nutrients and stress signals emanating from the microtumor’s core 
may regulate spatial protein expression in 3D microtumors. To gain insight into mechanism(s) that 
may spatially restrict PHGDH and Ki-67 expression in 3D microtumors, we developed a multi-compartment 
mathematical model. The model assumes that nutrients diffuse from the growth medium (i.e., extracellular com-
partment) towards the core of the microtumor through two intervening layers (Fig. 6A). Available nutrients in 
each layer of the microtumor are either consumed for production of biomass, including PHGDH and prolifera-
tive factors that contribute to Ki-67+ status (referred to as ‘Ki67′ in simulations), or transported between layers 
(Fig. 6B). PHGDH expressed in each layer also contributes to the pool of available nutrients through de novo 
amino acid biosynthesis. In all simulations, the abundance of nutrients formed a decreasing gradient from the 
nutrient-rich outer layer towards the nutrient-starved core (Fig. 6C). Because the production of proliferative 
factors and PHGDH are both dependent on nutrient availability only, the abundance of ‘Ki67′ and PHGDH 
relative to the outer layer are exactly correlated throughout the microtumor (Fig. 6C, top). Although simulation 
results from our model (M1) that assumes only a decreasing nutrient gradient toward the microtumors’ core are 
consistent with the pattern of Ki-67 from immunofluorescence images of 3D microtumors, they contrast with the 
pattern of expression observed for PHGDH (Fig. 5A–C).

The core of 3D microtumors mimic several defining characteristics of tumors in vivo, including increased 
acidity and reduced concentrations of nutrients and oxygen that leads to remodeled expression of many met-
abolic and non-metabolic genes. We reasoned that metabolic stresses from the microtumor core may therefore 
provide additional regulatory signals that restrict PHGDH expression within microtumor compartments. To 
simulate the aggregate effects of stress-dependent factors on PHGDH expression, a second model (M2) included 
a hypothetical inhibitory molecule expressed in the microtumor core (Fig. 6C, bottom). An inhibition gradient 
with direction opposite to the nutrient gradient forms when the molecule can transport between compartments 
(Fig. 6B) or when the inner proliferative layer of the microtumor experiences the same metabolic stress as the 
core, but to a lesser extent. In results from M2, distributions for the abundance of nutrients and ‘Ki67′ were com-
parable to previous simulations; however, the relative abundance of PHGDH was strongly reduced in the inner 
layer and core compartments (Fig. 6C, bottom), as seen in the experiments. Together, our simulations suggest that 
localized stresses within a 3D microtumor may lead to emergent cell-cell communication and contribute to the 
spatial organization of metabolic enzyme expression.

Discussion
Tumors are complex ecosystems in which spatiotemporal interactions among malignant, stromal and immune 
cells and self-deposited extracellular matrix collectively define their biological behavior. Genomic heterogene-
ity is widespread in tumors32, and recent work also indicate substantial transcriptomic heterogeneity in various 
tumor types33,34. Molecular heterogeneity is evident on proteomic1–3 and metabolic levels35–37, as well, attributed 
in part to the tumors’ tissue of origin38,39 and to emergent signaling interactions among cancer- and infiltrating 
normal cells in expanding tumors7. However, the cacophony of interactions among these cells, the dynamically 
molded microenvironment in growing tumors and interactions with self-deposited extracellular matrices makes 
it challenging to uncover the underlying principles that govern this multi-hierarchical expression heterogeneity.

One approach to overcome these limitations is to create synthetic tumors with precise control over their size 
and local microenvironments in which the various hallmarks of cancer, such as altered cell metabolism can be 
systematically examined40–42. Here, we have used cancer cell line-derived 3D microtumors as the simplest form of 
such synthetic tumor ecosystems and compared their expression profiles of five metabolic enzymes that catalyze 
serine-glycine synthesis in human cells to those seen in 2D monolayers. We have shown that, while the expression 
of PHGDH, the rate-limiting enzyme of serine synthesis from glucose, is stochastic in 2D monolayer cultures 
(Figs. 2 and 3), its expression is spatially restricted to the outermost cell layers in both small and larger microtum-
ors (Figs. 4 and 5). This expression distribution partially overlaps with the Ki-67+ zone of active cell proliferation, 
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but the latter extends radially toward the center of the microtumor (Fig. 5). By contrast, the expression of the two 
other serine synthesis enzymes in 3D microtumors is near uniform (Fig. 4). The expression of SHMT-2 is also 
uniform, while SHMT1 shows only slightly reduced expression in the core of microtumors (Fig. 4) indicating 
full activity of the mitochondrial and cytoplasmic arms of one-carbon cycle (Figs. 1A, S11) and maintenance of 
NADPH production and redox balance31,43,44. This finding also hints at an unexpected regulatory hierarchy, in 
which the expression of rate-limiting enzymes such as PHGDH are strictly controlled, while the other enzymes of 
the pathways are likely only controlled post-translationally.

What drives the observed shift in PHGDH expression pattern in 3D microtumors? Our modeling indicates 
that this may be an emergent property from the opposing gradients of nutrient and oxygen limitation and of a 
signaling molecule produced by cells of the stressed microtumor core (Fig. 6). By contrast, in 2D monolayer cul-
tures cells do not encounter either of these gradients. The seemingly stochastic enzyme expressions seen in fixed 
cells of 2D cultures may mask unsynchronized oscillations (or more complex time-varying dynamics) in enzyme 

Figure 5. PHGDH and Ki-67 expression in 3D microtumors. (A) Spatial localization of Ki-67 (green), PHGDH 
(red), and their overlap in mt600 microtumors at low- (top panel), intermediate (middle panel) and high 
magnification (bottom panel). Confocal images are centered on the middle plane of the microtumor. In the 
overlay panels Hoechst counterstain (blue color) indicates cell nuclei. PHGDH expression is restricted to the 
outer layer of Ki-67+ cells. Concentric circles in the top right panel depict the outer layer (O), inner layer (I), 
and core (C) regions of the microtumor. (B) Average of nine radial linescans for Ki-67 (green) and PHGDH 
(red) fluorescence intensity. (C) Average of Ki-67 and PHGDH fluorescence intensity in each of the microtumor 
compartments.
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expression levels that become synchronized or stabilized and spatially restricted when cells are in an emergent 3D 
structure. A similar scenario was demonstrated during the periodic segmentation of the presomitic mesoderm 
(PSM) during embryonic development where synchronized expression in PSM cells become unsynchronized 
when they are dissociated from their 3D environment45.

The fact that metabolic pathway activities, such as de novo serine synthesis display a spatially restricted pattern 
in 3D microtumors is not unexpected. Similar results have been seen in growing bacterial colonies that also dis-
play a rapidly proliferating outer layer with spatially restricted acetate metabolism that is predicted to contribute 
to crosstalk among the various cell layers46. Therefore, we expect that enzymes of many other metabolic pathways 
will display similar divergence in their expression profiles when shifted from 2D monolayer to 3D microtumor 
growth environments, changes that potentially can be predicted by sophisticated metabolic models46.

A central aim of cancer metabolism research is to identify metabolic pathways selectively activated in tumor 
cells and thus, to uncover potential therapeutic targets. Hence, there are also potential practical consequences of 
our findings for the antimetabolic therapies of primary tumors and/or (micro)metastases. Previous experiments 
have shown that knockdown of PHGDH in breast cancer cells with amplified PHGDH copy numbers attenuates 
the proliferation of these cells without changes in intracellular serine levels and this effect cannot be rescued by 
exogenous serine15. Thus, PHGDH expression in the outer layer of growing microtumors may be required not 
for maintenance of serine levels but for maintaining this metabolic flux from a SGS pathway regulatory per-
spective that could affect the activity (and not the expression level) of other enzymes of the pathway. Indeed, 

Figure 6. Spatial organization in a compartmental model of 3D microtumors. (A) Compartments of a 3D 
microtumor model include an outer layer that separates an inner layer and core of tumor cells from the 
extracellular compartment. A decreasing gradient of nutrients in models 1 and 2 (M1 and M2, respectively) 
is formed through nutrient consumption and diffusion between the outer layer, inner layer, and core of the 
microtumor. M2 also considers a gradient of stress signals that are strongest at the microtumor core. (B) 
Schematic diagram of the transport of nutrients (n) and their consumption for the expression of proliferative 
genes associated with Ki-67+ status (‘Ki67’), the rate-limiting enzyme for serine biosynthesis (PHGDH), and 
a molecule that inhibits expression of PHGDH (Inh). Expression of Inh is omitted in M1. Extracellular, outer 
layer, inner layer, and core compartments are noted in subscripts (e, i, o, and c respectively). (C) The abundance 
of nutrients, ‘Ki67′, and PHGDH in each of the microtumor compartments for M1 (top) and M2 (bottom). Each 
quantity is normalized to its abundance in the outer layer compartment.
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PHGDH inhibitor compounds have been shown to reduce the incorporation of one-carbon units into nucleotides 
both from glucose and exogenous serine47 suggesting that glycolytic serine synthesis is required for coordinating 
the use of one carbon units from endogenous and exogenous serine in nucleotide synthesis. Given the highly 
restricted PHGDH expression in 3D microtumors, it may be that PHGDH inhibitors alone47–49 may have a more 
limited effect on delaying tumor growth in patients than in combination with other antimetabolic therapies.

Limitations of our study include the fact that we obtained only static enzyme expression data on mt150 and 
mt600 microtumors with only very limited information about the microenvironment that evolved within the 
growing microtumors. In other contexts, dynamics of protein expressions on a single-cell level have been exam-
ined, with or without concomitant tracing of transcriptome and secretory states50–52. Thus, in future studies, 
enzymes of the SGOC pathway and other metabolic pathways will need to be examined at high spatial and tem-
poral resolution, in both mt150 and mt600 microtumors. Similarly, the regulatory mechanisms responsible for 
the observed enzyme expression patterns will need to be uncovered. Given that tumor metabolic activities are 
influenced by the tumors’ tissues of origin38,39, these studies will need to be performed in microtumors derived 
from various tumor types, both in the presence and absence of other tumor and non-tumor cell types. Similarly, 
the metabolic behavior of microtumors comprised of strictly epithelial tumor cells mixed together with those 
that are fully or partially mesenchymal (and thus, competent for metastasis initiation), and/or in the presence of 
cancer associated- or non-tumorigenic stromal fibroblast will be of major interest.

Methods
2D monolayer cell cultures. Fourteen cancer cell lines from the NCI-60 panel23, including HCT-116, KM-12 
(colon cancer), IGROV1, OVCAR3 (ovarian cancer), HS-578T, T47D (breast cancer), HOP-92, NCI-H322M (lung 
cancer), PC-3, DU-145 (prostate cancer), SK-MEL-5, MDA-MB-435 (melanoma), and SF-295, SF-539 (brain 
cancer), were cultured as 2D monolayers in RPMI 1640 medium (Life Technologies, Grand Island, NY), which 
contains both the amino acids serine and glycine, supplemented with 10% heat-inactivated fetal bovine serum 
(HI-FBS, Life Technologies) and 1% penicillin/streptomycin (Life Technologies) at 37 °C with 5% CO2.

Western blotting. Western blot analysis was performed following our previously reported procedure24. The 
membranes were probed with monoclonal mouse antibodies, anti-PHGDH (1:50, Santa Cruz Biotechnology, 
Santa Cruz, CA) and anti-SHMT2 (1:500, Cell Signaling Technology, Beverly, MA) and monoclonal rabbit anti-
bodies, anti-PSPH (1:100, Santa Cruz Biotechnology), anti-PSAT (1:250, Novus Biologicals, Littleton, CO), and 
anti-SHMT1 (1:250, Novus). As a loading control, a monoclonal mouse antibody to β-actin (1:500, Abcam Inc., 
Cambridge, MA) was used.

Immunocytochemical analysis of 2D monolayers. For immunocytochemical analysis, cultured cells 
grown in a 12-well plate were fixed with 2% paraformaldehyde (Sigma-Aldrich, St. Louis, MO) for 30 min, washed 
in PBS and then treated with peroxidase block solution (DAKO, Carpinteria, CA) to inactivate endogenous 
peroxidase activity. Following a PBS wash, cells were permeabilized with 0.1% Triton-X-100 (Fisher Scientific, 
Pittsburgh, PA) and non-specific proteins were blocked in 2% BSA for 15 min at room temperature (RT). This step 
was followed by incubation in a humidified atmosphere at 37 °C for 1 hour with primary monoclonal mouse anti-
body to PHGDH (Santa Cruz Biotechnology) diluted 1:15 in PBS. After washing the cells with PBS, the immu-
nocytochemical analysis for PHGDH was conducted for 30 min at RT using DAKO EnVision + System-HRP. 
After washing the cells with PBS again, the immunoreactions were visualized with 3,3′-diaminobenzidine (DAB) 
solution (DAKO). Images were captured with the 40X objective lens on the TS100 microscope (Nikon, Tokyo, 
Japan). Negative controls, in which the primary antibodies were replaced with PBS and non-immune sera, did 
not show nonspecific staining.

Immunofluorescence staining and microscopy of 2D monolayers. Immunofluorescence staining 
was performed according to our previous protocol24. Briefly, the cells were incubated with primary antibodies: 
monoclonal mouse antibody to PHGDH (1:50, Santa Cruz Biotechnology) and SHMT2 (1:80, Abcam), and mon-
oclonal rabbit antibodies to PSPH (1:50, Santa Cruz Biotechnology), PSAT (1:100, Novus), SHMT1 (1:80, Novus), 
TOM20 (1:100, Abcam), and Ki-67 (1:400, Abcam) in a humidified atmosphere for 1 hour at 37 °C. As secondary 
antibodies, Alexa Fluor 488 goat anti-mouse IgG and Alexa Fluor 555 goat anti-rabbit IgG were used (both; 1:200, 
Abcam). Nuclei were stained with Hoechst (50 μg/ml). Images were captured with the 40X oil objective lens on 
the Olympus Provis fluorescence microscope (Olympus Optical, Tokyo, Japan).

3D culture and microtumor fabrication. Microtumors of DU-145 cells were fabricated using 
non-adhesive hydrogel arrays with 150 and 600 µm size microwells18,20. Briefly, hydrogel microwell arrays were 
prepared in-house using polyethylene glycol dimethacrylate (PEGDMA, 1000 Da, Sigma-Aldrich) and polydime-
thyl siloxane (PDMS, Dow) molds. Microwells of sizes 150 and 600 µm patterned on silicon masters were used 
to generate defined size PDMS posts. PDMS molds with posts were first fabricated, as described earlier18,20, and 
thereafter, were used for making hydrogel microwell devices. PDMS posts were then placed on PEGDMA solu-
tion mixed with photo-initiator (Irgacure-1959, 1% w/w, Ciba AG, Basel, Switzerland) and photo-crosslinked 
using the OmniCure S2000 curing station (EXFO, Mississauga, Canada). PDMS stamp was then peeled from the 
substrate to obtain hydrogel microwell devices.

The metastatic prostate cancer-derived DU-145 cell line was used to generate mt150 and mt600 microtumors. 
The DU-145 cell line was maintained in RPMI containing 10% FBS and 0.1% penicillin/streptomycin. Cells were 
grown to attain confluency of 40‒60% and used for 3D microtumor fabrication. Fifty microliter of cell suspen-
sion (1 × 106 cells/device) was seeded on the 1 cm2 hydrogel microwell device. Cells were allowed to settle in the 
microwells by gravity. Undocked cells were washed gently with PBS 2‒3 times and cultured in a humidified 5% 
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CO2 incubator at 37 °C. Uniform size microtumors were cultured in their respective media and harvested on day 
4 and processed further for immunostaining.

Immunostaining and confocal microscopy of 3D microtumors. Microtumors were fixed with 4% 
paraformaldehyde (Sigma-Aldrich) for 30 min at RT. Subsequently, they were washed with phosphate buffered 
saline with Tween 20 (PBST) to remove residual PFA and again fixed with 95% methanol on ice for 15 min at 
−20 °C. Permeabilization was done with 0.1% Triton X-100 for 90 min followed by further blocking with 3% BSA 
to avoid non-specific binding. Microtumors were incubated with primary antibodies for SHMT1 (1:100), SHMT2 
(1:100), PHGDH (1:100), PSAT (1:100), PSPH (1:100), TOM-20 (1:100) and Ki-67 (1:100) diluted in blocking 
buffer overnight at 4 °C in a humidified chamber along with a negative control (without primary antibody). After 
washing thrice with PBST, microtumors were incubated with fluorescently labeled secondary antibodies over-
night at 4 °C. Nuclei were stained by incubating with Hoechst (1:500) at 4 °C overnight. Stained microtumors 
were kept in glycerol at 4 °C until confocal imaging. Images were acquired on a confocal microscope Olympus 
Fluoview (Olympus Optical) as z-stack containing a series of 5 µm slices using 20X or 40X objectives. The images 
are presented as 2D projection of maximum intensity.

Compartmental model and simulations. Using the BioNetGen language53 we developed a mathematical 
model that describes protein expression, nutrient abundance, and transport of molecules between compartments 
of a 3D microtumor. The simulated microtumor consists of four compartments: a core with 300 µ radius, an inner 
layer shell between 300–450 µ, an outer layer shell of 450–600 µ radius, in addition to an extracellular compart-
ment (Fig. 6A). The model was simulated deterministically, using ordinary differential equations derived from 
the rules of the model described below. Simulations were run for 600,000 time units, which was sufficient for the 
system to reach steady-state values for molecule numbers in each compartment. The input file for the model is 
provided in the supplementary data file (MicrotumorModel.BNGL).

The complete set of molecular interactions and other processes in the model were represented through 26 
reaction rules and 31 reaction rate constants (summarized in table S1). The reaction network consists of four mol-
ecule types that include nutrients (NU), a class of genes associated with proliferation (‘Ki67′), the rate-limiting 
enzyme in serine biosynthesis (PHGDH), and a hypothetical inhibitor (Inh) that behaves as the aggregate of 
stress-inducible factors that limit the expression of PHGDH. The model assumes that growth medium in the 
extracellular compartment provides a constant source of NU, which can diffuse into the outer layer and through-
out the microtumor (Fig. 6B). Rate constants for flux of NU diffusion between the core and inner layer compart-
ments were adjusted to account for differences in their respective surface areas. Nutrients are consumed in each 
compartment by the production of ‘Ki67′, Inh, in addition to PHGDH. In each compartment, NU is also pro-
duced through the action of PHGDH to model de novo biosynthesis. ‘Ki67′ and PHGDH are confined to the com-
partment in which they are expressed, but Inh could transport between microtumor compartments. Expression 
of Inh is omitted in model M1, and in model M2 Inh was produced at a constant rate in the core (see table S1 for 
details). Seed concentrations within the three microtumor compartments were set to 0 for all molecule types.

Data availability. All data generated or analysed during this study are included in this published article (and 
its Supplementary Information files)
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