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Simulating polaron biophysics with 
Rydberg atoms
Marcin Płodzień1,2, Tomasz Sowiński  2 & Servaas Kokkelmans1

Transport of excitations along proteins can be formulated in a quantum physics context, based on the 
periodicity and vibrational modes of the structures. Numerically exact solutions of the corresponding 
equations are very challenging to obtain on classical computers. Approximate solutions based on 
the Davydov ansatz have demonstrated the possibility of stabilized solitonic excitations along the 
protein, however, experimentally these solutions have never been directly observed. Here we propose 
an alternative study of biophysical transport phenomena based on a quantum simulator composed 
of a chain of ultracold dressed Rydberg atoms, which allows for a direct observation of the Davydov 
phenomena. We show that there is an experimentally accessible range of parameters where the system 
directly mimics the Davydov equations and their solutions. Moreover, we show that such a quantum 
simulator has access to the regime in between the small and large polaron regimes, which cannot be 
described perturbatively.

The understanding of molecular structures provides life sciences with tools to explain complex cell-biology phe-
nomena. Biological complexity of mesoscopic objects along with the quantum behavior of their basic elements 
leads to interesting unsolved questions awaiting comprehensive answers1. The interdisciplinary field of “quantum 
biology” is the natural area for combining quantum physical methods and tools to investigate, model and simulate 
biological systems on a mesoscopic level2–4.

Many biological processes are powered by the energy released from the hydrolysis of adenosine triphos-
phate (ATP). On a physical level, it can be viewed as a vibrational bound state of the ATP molecule to a protein 
with energy equal to 0.49 eV. In the 1970’s Davydov proposed a mechanism for the localization and transport of 
the associated vibrational energy in the α-helix region of a protein by means of a so-called Davydov soliton5–8. 
Although this model has been used for a theoretical description of experimentally observed unconventional 
absorption bands in proteins9,10, direct experimental evidence for existence of this soliton is still missing.

The Davydov soliton is a subclass of richer polaron phenomena, i.e., excitations mediated by phonons orig-
inally introduced by Landau11. Polarons have been broadly studied theoretically as well as experimentally in a 
condensed matter context12 and recently in different areas of ultracold physics: ultracold ions13–19, polar mol-
ecules20–24, ultracold Rydberg gases25–30, and strongly-interacting ultracold Bose and Fermi gases31–38. In this 
paper we show that the Davydov soliton can be created and observed in a suitably prepared system of ultra-
cold atoms, confined in an optical lattice and off-resonantly coupled to a Rydberg state39–42. Such a system can 
be regarded as a dedicated quantum simulator within the broader class of the Holstein-Su-Schrieffer-Heeger 
(HSSH) Hamiltonian43,44. First, we investigate dynamical properties of the system within the semi-classical 
Davydov approach assuming an infinite number of phonons. Second, we use an exact evolution approach to study 
the dynamics of the system in the non-classical few-phonons regime. In a particular, experimentally accessible 
parameter regime, both approaches confirm the existence of soliton solutions. This also indicates that with this 
Rydberg quantum simulator it is possible to study the regime in between the so-called small and large polaron 
regimes of the HSSH model, which cannot be described by perturbative theoretical methods.

The simulator
We mimic the behavior of the above-mentioned bio-molecules with a system of ultracold atoms confined in a 
very deep one-dimensional optical lattice potential V x V x R( ) sin (2 / )0

2
0π=  where each lattice site is occupied 

exactly by one atom. We assume that the spatial dynamics of atoms is not completely frozen, i.e., atoms may oscil-
late in vicinities of local minima with frequency V mR2 /0 0

2
0
2ω π= . This motion is however quantized and there-

fore it is driven by a simple harmonic oscillator-like Hamiltonian:
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where u l b b( )/ 2i i i0ˆ ˆ ˆ†
= +  and ˆ ˆ ˆ†

p i b b l( )/( 2 )i i i 0= −  are the position and momenta operators related to i-th 
atom, while operator bî annihilates vibrational excitation of the i-th atom. Local motion defines a natural scale of 
length, l m/0 0ω= .

Besides spatial motion, each atom may exhibit changes of its internal state due to the long-range interactions 
between neighboring atoms via Rydberg dressing mechanism41,45–48. Following the work by Wüster et al.49 cou-
pling of the internal state of atoms with their spatial motion can be realized by the off-resonant coupling of two 
different but degenerated internal Zeeman levels in the different hyperfine states of the ground-state manifold of 
the atoms. The large hyperfine splitting will permit selective addressing of the levels |g〉 and |g′〉 to two precisely 
selected, highly excited Rydberg states |nS〉 or |nP〉 (via two- and single-photon transition, respectively) with 
principal quantum number n and angular momentum equal to 0 or ħ, respectively. A perturbation analysis shows 
that this coupling results in a quite small admixture of a Rydberg state to the atomic ground states and, as a con-
sequence, atom can be found in one of the two dressed states49:

g nS g nP0 , 1 , (2)s pα α| 〉 ≈ | 〉 + | 〉 | 〉 ≈ | ′〉 + | 〉

where amplitudes αl = Θl/2Δl (l ∈ {s, p}) are determined by a total Rabi frequency of a driving field Θl and a total 
laser detuning Δl. In this basis of dressed states the dipole-dipole interaction between neighboring atoms is 
C R/sp

3
3 (R is the spatial distance between the atoms), besides additional contribution to the energy gap between 

local states |0i〉 and |1i〉, may induce transitions (excitation hoppings) between internal states of neighboring 
atoms |0i〉|1i+1〉 ↔ |1i〉|0i+1〉. In consequence, the excitation |1〉 can be effectively transported across the lattice. 
This effect is driven by the following Hamiltonian of internal motion of all atoms:

∑ ∑= + ++ + +
ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †Wa a J a a a a( ),

(3)i
i i i

i
i i i i i iexc 1, 1 1

where an annihilation operator of an excitation aiˆ  can be viewed as a local transition operator |1i〉〈0i| between 
dressed Rydberg states. The spatial dependent parameters Wi and Ji,i+1 are related to the dipole-dipole forces 
induced by Rydberg dressing and are given by49:
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where κ Δ= R C R( ) ( / )/sp
3

3 and Δ = Δs + Δp. In a static situation, when all atom positions are frozen, the ener-
gies Wi and Ji+1,i are site-independent with values controlled by dipole-dipole interactions between neighboring 
atoms at fixed lattice spacing R0. However, due to the vibrational motion of atoms, these parameters are position 
dependent and they couple internal states of atoms with their motional degrees of freedom. In the lowest order of 
approximation they can be written as Wi = W0 + gW(ui+1 + ui−1), Ji+1,i = −J0 + gJ(ui+1 − ui), where gW and gJ are the 
appropriate Taylor expansion coefficients of (4) around R0. Moreover, since the vibrational motion is quantized, 
the parameters have an operator character when acting in the subspace of spatial motion of atoms. By inserting 
expanded Wi and Ji+1,i to the Hamiltonian (3) one obtains HHSH Hamiltonian

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † † ∑ ∑ ∑= − + . . + − + − + . .+ + − + +W a a J a a h c g u u a a g u u a a h c( ) ( ) ( )( )
(5)i

i i i i
i

W i i i i
i

J i i i i0 0 1 1 1 1 1

where the first term describes the excitation dynamics on the lattice, the second term describes the excitation- 
vibration coupling via the on-site energy, and the last term represents the off-site coupling via the excitation-vibration 
coupling through the hopping energy. Our implementation can be regarded as a dedicated quantum simulator 
to study excitation stabilization by vibrations related to the α-helix protein. For the Rydberg parameters that we 
consider, the second order terms in the Taylor expansion are significantly smaller than the first-order corrections, 
which justifies a linear approximation.

For the moment we comment on a special case of Hamiltonian (5) with zero off-site coupling gJ = 0, i.e. 
Holstein model. In this model the excitation is dressed by phonons forming a polaron quasiparticle. Two limiting 
cases have exact solutions: (i) For zero excitation-vibration coupling gW = 0 eigenstates are well described by 
product states in Fourier space i.e. a a b a b b0 , 0 , 0k k q q k q q q q| 〉 | 〉 | 〉− − − ′ ′ˆ ˆ ˆ ˆ ˆ ˆ† † † † † †

, etc. These states construct a good basis for 
perturbation expansions in the gW/J0 parameter for the weak coupling limit; (ii) a second limiting case, called the 
small polaron, corresponds to a zero hopping energy term J0 = 0 in which the Hamiltonian can be diagonalized in 
the dressed-polaron picture, i.e.
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where B b g /W0 0 0ω= +ˆ ˆ . The dressed-polaron eigenstates | 〉 ∏ | 〉≠ˆ ˆ ˆ† † †
a B b0 0ex i ph0 0 0

mi
 with eigenenergies 

E g n/n W
2

0 0 ω ω= − +  form a good basis for a perturbative description in the small gW/ħω0 parameter. A pertur-
bative calculation shows that the excitation-vibration coupling is given by a dressed hopping amplitude 

J e g
0

( / )W 0
2ω− 12, where for ω0 large enough, the hopping amplitude vanishes. For the HSSH model in the regime of 

parameters giving rise to a Davydov soliton, i.e. where all parameters are of the same order, a good small param-
eter for a perturbative description is lacking, and therefore a variational approach is preferred.

The Rydberg dressing is responsible for the coupling between vibrational degrees of freedom of neighboring 
atoms. The resulting dressed soft-core interaction is proportional to R R( )b

6 6 1+ − , with Rb the Rydberg blockade 
radius41, gives also rise to an additional energy shift. However, this shift is negligible compared to ħω0, and there-
fore we omit it. In the following, all energies are expressed in units of J0, and time is measured in units of ħ/J0, i.e. 
we set J0 = ħ = m = 1.v

Dynamical properties of the system
An important question related to the dynamics of the HSSH Hamiltonian is whether the lattice vibrations are able 
to stabilize the excitation that is initially localized on a specific site K ˆ †Ψ| 〉 = aK0 |vac〉, or slightly delocalized on 
two neighboring sites ~ ⟩ ˆ ˆ† †Ψ| = + +a a( )K K0

1
2 1 |vac〉, where |vac〉 is the vacuum state of the system fulfilling the 

condition aiˆ |vac〉 = b̂i|vac〉 = 0 for any i. For certain parameters, a system prepared in these initial states evolves 
in such a way that the excitation does not spread across the protein. This is attributed to a specific ratio of the 
interactions of excitation and vibrational degrees of freedom, giving rise to a soliton. This spreading or 
non-spreading behavior can be extracted from information encoded in the time-dependent density profile 
ρ Ψ Ψ= 〈 | | 〉t t a a t( ) ( ) ( ) ,i i iˆ ˆ†  where the state of the system at given time t can be formally written as 

̂t i t( ) exp( ) iniΨ Ψ| 〉 = − | 〉, where |Ψini〉 is one of the considered initial states. Temporal spreading of the excitation 
is then given by an effective width of the spatial density profile σ ρ= ∑ .−t N t( ) ( [ ( )])i i

2 1  This quantity takes the value 
1/N for an excitation localized at exactly one lattice site and 1 when fully delocalized. In principle, by analyzing 
the time-dependence of σ(t) one can easily determine whether the excitation remains localized or whether it 
spreads across the system. Numerically exact solutions of the evolution problem are very challenging due to the 
strong non-linear quantum-mechanical coupling between excitation and vibrational degrees of freedom. 
Therefore generally the evolution of the system cannot be found exactly and some approximation methods have 
to be adopted.

The Davydov approach. We discuss here the two-step Davydov approach5, which results in a semiclassical 
description of the system. In the first step one assumes that the state of the system | Ψ(t)〉 can be well approxi-
mated by the product of two independent states |Ψ(t)〉 and |φ(t)〉 for excitation and vibrational degrees of free-
dom, respectively, |Ψ(t)〉 = |ψ(t)〉|φ(t)〉. Since the system is initially prepared in the state with precisely one 
excitation and the number of excitations is conserved, the state |Ψ(t)〉 can be decomposed in the single-particle 
subspace, t t a( ) ( )i i iψ ψ| 〉 = ∑ ˆ †|vac〉, where time-dependent functions ψi(t) play the role of probability ampli-
tudes for finding an excitation at site i. Consequently ρi(t) = |ψi(t)|2. The second step relays on a semi-classical 
treatment of the vibrational degrees of the system. In analogy to other quantum field theories, we assume that the 
state |φ(t)〉 has classical features, i.e., it can be well approximated by the product of independent coherent states: 

ˆ ˆφ| 〉 = − ∑ −t i u t p p t u( ) exp[ ( ( ) ( ) )]i i i i i |vac〉, where amplitudes ui(t) and pi(t) are expectation values of appropri-
ate operators in the state |φ(t)〉. Within these approximations, we calculate the expectation value of the 
many-body Hamiltonian on the system state and approximate the resulting equation of motion by the classical 
Hamilton equations50, we obtain set of coupled differential equations of the form:

⁎ ⁎ ⁎
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These are Davydov type equations5–8, which describe the dynamics of an excitation ψi coupled to a gradient of 
a classical phonon field ui forming an effective self-trapping potential. An alternative derivation provided by 
Kerr51 is based on the Heisenberg equations of phonon position and momentum operators. A complementary 
approach to the above Davydov equations, which are based on the Lagrangian variational principle, is one based 
on the Dirac-Frenkel-McLachan (DFM) variational principle. This approach is commonly used in quantum 
molecular dynamics52–58, in which equations of motion for the variational parameters are obtained from the 
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minimization of δφ ∂ φ〈 | − | 〉i t̂ , where δφ denotes possible variations of φ with respect to the variational 
parameters.

Phase diagram. We perform a semi-classical evolution of the system governed by eqn. (7), which allows us 
to observe spreading or non-spreading evolution of an effective width of the spatial density profile as a function 
of the parameters {ω0, gW, gJ}. The results can be visualized by the phase diagrams presented in Figs 1 and 2. These 
diagrams are obtained by plotting the maximal value of the σ(t) reached during the evolution up to maximal time 
Tmax = 10. In order to avoid interference effects during the evolution caused by the boundaries, all calculations are 
performed with a sufficiently large lattice of N = 50 lattice sites and with periodic boundary conditions. We 
checked that the numerical results are insensitive to enlarging N on the time-scales of study, and therefore the 
obtained results are also valid for infinitely large systems. Moreover, the chosen lattice size is similar to current 
experimental efforts in this direction. First, we focus on the case of a completely localized initial state |Ψ0〉 for 
gJ = 0 (Fig. 1). We qualitatively indicate five different regions on the phase diagram (left panel): (I) and (II) where 
the excitation is dressed by a cloud of vibrations and the excitation does spread; (III) where due to an exponential 
reduction of the hopping amplitude the excitation is localized in its initial position59; (IV) where the sum of vibra-
tion energy and exciton-vibration coupling is larger than the hopping energy, giving rise to Davydov-like soliton 
behavior; (V) where ωgW 0  corresponding to the Discrete Breathers-like behavior60,61. Distinct behavior of the 
system is also visible in these selected areas in the time evolution of σ(t) (right panel of Fig. 1). This picture can be 
generalized to non-vanishing coupling gJ, which we investigate for the the second initial state 0|Ψ 〉

∼  (Fig. 2). As can 
be seen, a slight delocalization of the initial state together with non-local coupling gJ dramatically enhance the 
non-spreading behavior of the wave packet. It is a direct consequence of the non-local terms in (7).

Numerically exact approach. The results obtained in the framework of the semi-classical Davydov 
approach can be supported by numerically exact dynamics governed by the many-body Hamiltonian (5). In this 

Figure 1. Left panel: Maximal value of an effective width of the spatial density profile max[σ(t)] as a function 
of ω0 and gW for vanishing coupling gJ = 0. A sharp crossover between non-spreading excitations (blue) and 
spreading excitation (dark red) is clearly visible. Different regions of the phase-diagram (bordered with white 
lines) correspond to a distinct nature of the exciton-vibration dynamics. Right panel: Evolution of the excitation 
width σ(t) for different points on the phase diagram (marked as white squares on the left panel).

Figure 2. Maximal value of the wave packet width max[σ(t)] for different initial states |Ψ0〉 and Ψ| 〉
∼

0  (top and 
bottom row, respectively) and different non-local interactions gJ = {0, 3, 5} (appropriate columns from left to 
right). Note that strong enhancement of the non-spreading behavior takes place for stronger gJ and for a 
smeared out initial state.
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approach we represent Hamiltonian H as a matrix in the Fock basis spanned by many-body states 
ˆ ˆ ˆ† † †

| 〉| … 〉 = i m m a b b, , ( ) ( )N i
m

N
m

1 1
N1 |vac〉, i.e., states with an excitation located exactly at site i and with selected 

vibrational states mi for all sites. An arbitrary state of the system can be expressed as an appropriate superposition 
of the basis states. Since the operator of a total number of vibrations in the system b bi i ivib

ˆ ˆ ˆ†
= ∑  does not com-

mute with the Hamiltonian (5), therefore an exact evolution is obtained only in the limit where all Fock states are 
taken into account. In practice, for numerical purposes, we assume that the total number of excitations cannot be 
larger than some well defined cut-off M. Then the results are treated as exact if increasing M does not change the 
outcome noticeably62,63. Therefore, for a given M, one can perform calculations only for a small range of parame-
ters for which creations of vibrations is limited. It is worth noticing that numerical complexity grows exponen-
tially with the cut-off M. For our parameters, N = 50 and M = 3 the size of the corresponding Hilbert space 
exceeds 1.1 million. Other approaches based on quazi-exact dynamics are presented in64,65. As already expected 
from Fig. (2), the numerically exact approach confirms that the on-site coupling (gW ≠ 0) plays a dominant role in 
the excitation stabilization process. Therefore, without loss of generality, we consider now the minimal-coupling 
scenario with gJ = 0 In Fig. 3 we show the time evolution of an initially localized excitation for ω0 = 3 and for three 
different values of the local coupling parameter gW = {0.1, 0.75, 1.5}. It is clearly visible that for larger gW the wave 
packet of the excitation becomes more stable and spreads less. This effect is directly reflected in the number of 
vibrational modes created, which can be seen in the bottom row of Fig. 3. One can observe that increasing fluctu-
ations of the total vibrations in the system stabilize excitation. Since we reached the limits of our computational 
method with this size of the Hilbert space, we cannot increase the coupling parameter further. From Fig. 3 it can 
be seen that the total number of vibrations for gW = 2 is close to the limiting cut-off. At the same time, however, 
this is a strong argument for employing a quantum simulator, such as proposed in this letter, to validate the pre-
dictions of the semi-classical approach.

Experimental parameters
The numerical predictions for the model described by the Hamiltonian (5) are quite general. For a quantum sim-
ulator we consider 87Rb atoms confined in an optical lattice determined by lattice spacing R0 = 1 μm and 
V0 = 100 ER (recoil energy π=E mR2 /R

2 2
0
2 )45, i.e., the local trap frequency is equal to 6.2 kHz. We assume 

Rydberg states with principal quantum number n = 50 for which C sp
3  = 3.224 GHz μm3 66. We choose the dressing 

parameters as α = 0.015 and Δ/2 = Δs = Δp = 2.5 GHz. With these values, the system mimics the Hamiltonian (5) 
with dimensionless parameters ω0 = 4.7, gW = 5.6, and gJ = 5.6. These parameters can be easily tuned since they 
strongly depend on the lattice spacing R0 and on the set of laser detunings. In this way, a large and interesting area 
of the phase diagrams presented in Fig. 2 can be covered. The estimated lifetime of Rydberg atoms excited to states 
with n = 50 is τS = 65 μs and τP = 86 μs67. The effective lifetime of a Rydberg dressed state is scaled by a factor α−2 
and is sufficiently long to observe the non-spreading excitation behavior. It is worth noting that also other exper-
imental realizations, based for example on Rydberg microtrap arrays68, can be considered as proper candidates for 
simulating this system.

Figure 3. Exact evolution of the effective width of the spatial density profile governed by the Hamiltonian (5) 
for the initial state |Ψ0〉. The bottom row shows the total number of vibrations vib

ˆ  created in the system during 
the evolution. Consecutive columns correspond to different local couplings gW = {0.1, 0.75, 1.5}. All calculations 
performed for gJ = 0 and ω0 = 3. Note that for stronger interactions evident stabilization of the excitation density 
profile, along with increasing number of created vibrations, is observed.
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Summary
We show that a system of ultracold Rydberg atoms confined in a one-dimensional optical lattice may serve as a 
dedicated quantum simulator for excitation-vibration dynamics, which is a subclass of polaron dynamics. Since 
effective parameters of the resulting model can be easily tuned, the system can be used to mimic transport of 
excitation in biologically active proteins and to perform full quantum mechanical tests of the semi-classical pre-
dictions. The proposed scheme may serve as a platform to investigate the HSSH bi- and many-polaron system69,70. 
In particular, the character of the bi-polaron interactions can be tuned from repulsive to attractive by the experi-
mental control parameters gW and gJ. Finally, we note that also disorder effects in the HSSH Hamiltonian71 can be 
studied by introducing incommensurate optical lattices.
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