
1SCIEnTIFIC RePoRTS |  (2018) 8:8645  | DOI:10.1038/s41598-018-26994-1

www.nature.com/scientificreports

MHD Flow of Sodium Alginate-
Based Casson Type Nanofluid 
Passing Through A Porous Medium 
With Newtonian Heating
Arshad Khan1, Dolat Khan2, Ilyas Khan3, Farhad Ali4,6, Faizan ul Karim2 & Muhammad Imran5

Casson nanofluid, unsteady flow over an isothermal vertical plate with Newtonian heating (NH) 
is investigated. Sodium alginate (base fluid)is taken as counter example of Casson fluid. MHD and 
porosity effects are considered. Effects of thermal radiation along with heat generation are examined. 
Sodium alginate with Silver, Titanium oxide, Copper and Aluminum oxide are added as nano particles. 
Initial value problem with physical boundary condition is solved by using Laplace transform method. 
Exact results are obtained for temperature and velocity fields. Skin-friction and Nusselt number are 
calculated. The obtained results are analyzed graphically for emerging flow parameters and discussed. 
It is bring into being that temperature and velocity profile are decreasing with increasing nano particles 
volume fraction.

The fluid is a particular kind of matter which have no fixed shape and deforms easily due to external pressure1. 
Fluids are mainly of two type’s i.e Newtonian and non-Newtonian. Non-Newtonian fluids have numerous indus-
trial applications2,3. Furthermore, its application with magnetohydrodynamic (MHD) flow in a porous medium 
can widely be seen in irrigation problem, biological system, petroleum, textile, polymer industries. More investi-
gations have been published on numerous aspects of MHD non-Newtonian fluid passes over a porous medium4–7. 
The entropy analysis for nanofluid with different type of nano particles and water type base fluid for unsteady 
MHD flow was studied by8. The impact of magnetic field on free convection of nanofluid in a porous medium 
is presented by9. The effects of heat transfer on MHD nanofluid in a porous semi annulus has investigated by10 
using numerical methods. Sheikholeslami et al.11 examined the influence of free convection in a semi annulus 
enclosure for ferrofluid flow in the presence of magnetic source with the consideration of thermal radiation. The 
observation of non-uniform magnetic field and variable magnetic field on forced convection heat is investigated 
by12,13. The observation of MHD on fluid flow with heat transfer is studded by14–16. Recently17,18 investigated the 
nanofluid transportation in a in the presence of magnetic source and porous cavity using CuO nano particles. The 
influence of external magnetic field for nanofluid as water is a base fluid of free convection flow is studied in19. 
Sheikholeslami and Ganji20 have investigated the effect of convective heat transfer for the nanofluid by semi ana-
lytical and numerical approaches. The same author has also investigated the influence of heat transfer for nano-
fluid between parallel plates in21. The influence of Lorentz forces and convection nanofluid flow is investigated 
by22–24. Dissimilar types of nano particles with water based fluid are studied by25,26. The influence of melting heat 
for nanofluid is studied by27. The transportation of nanofluid in porous media is investigated by28. The influence 
of magnetic field for nanofluid with entropy generation is analysed by29–31.

Nanotechnology is that kind of technology which provides the materials with size less than 100 nm called 
nanomaterials. On the basis of the structure and their properties, nanomaterials are divided into four categories32. 
Carbon based nano materials, metal based nano materials, Dendrimers and composite. The terminology of 
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nanofluid was first investigated by Choi33. He defined that the fluids occupying the sizes of particles less than 
100 nm is called nanofluid. The categorieswith different attitude of nano particles are particle material, Base fluid, 
size and concentration, of the nanofluid. Suspend these nano particles into any type of conventional fluid like oil, 
water, ethylene glycol to make nanofluids. The reason why nano size particles are preferred over micro size parti-
cles has been explained by34. Nano particles over micro particles, good improvement have seen in thermo physical 
properties. Nanofluids have various applications such as in air conditioning cooling, automotive, power plant 
cooling, improving diesel generator efficiency etc.35. Usually water, ethylene glycol are utilized as heat transfer 
base fluids. Different substances are used for the production of nanoparticles, which are generally divided into 
metallic i.e. copper36, metal-oxide i.e. CuO37, chalcogenides sulphides, selenides and telluride’s, mentioned38 and 
different particles, such like carbon nanotubes39. In literature the size of one particle is in between 20 nm40 and 
100 nm41.

Casson fluid model was first presented by Casson in 1959. Casson fluids in tubes was first studied by Oka42. 
Examples of Casson fluids are honey, blood, soup, jelly, stuffs, slurries, artificial fibers etc. Cassonnanofluid flow 
with Newtonian heatingpresented by43. Sarojamma et al.44 investigated Casson nanofluid past over perpendicular 
cylinder in the occurrence of a transverse magnetic field with internal heat generation or absorption.

Khalid et al.45 examined unsteady MHD Casson fluid withfree convection flow in a porous medium. 
Bhattacharyya et al.46 studied systematically magnetohydrodynamic Casson fluid flow over a stretching shrink-
ing sheet with wall mass transfer. Arthur et al.47 studied Casson fluid flow in excess of a perpendicular porous 
surface, chemical reaction in the existence of magnetic field. Recently, Fetecau et al.48 has investigated fractional 
nanofluids for natural convection flow over an isothermal perpendicular plate with thermal radiation. Hussanan 
et al.49 investigates the unsteady heat transfer flow of a non-Newtonian Casson fluid over an oscillating perpen-
dicular plate with Newtonian heating. Recently, Imran et al.50 analyzed the effect of Newtonian heating with slip 
condition on MHD flow of Casson fluid. MHD flow of Casson fluid with heat transfer and Newtonian heating is 
analyzed by Hussanan et al.51. The effect of Newtonian heating for nanofluid is recently investigated by43,52. But 
no work is done until now on heat transfer enhancement in Sodium alginate fluid with additional effects of NH, 
MHD, porosity, heat generation, and thermal radiation. Silver (Ag), Titanium oxide (TiO2), Copper (Cu) and 
Aluminum oxide (Al2O3) are nano particles suspended in base fluid. Problem is solved and interpreted graphi-
cally with some conclusions.

Mathematical Modeling and solution of the Problem
Sodium alginate with Silver (Ag), Titanium oxide (TiO2), Copper (Cu) and Aluminum oxide (Al2O3) nano par-
ticles is considered. Heat transfer, thermal radiation and heat generation are taken. Unsteady flow is over an 
infinite vertical plate (ξ > 0) embedded in a saturated porous medium. MHD effect with uniform magnetic field 
B of strength B0 and small magnetic Reynolds number. Initially both the plate and fluid are at rest with constant 
temperature Θ∞. At time t = 0+ the plate originates oscillation in its plane ξ = 0 according to condition

ω ω= = >u UH t t i U t i t( )cos( ) ; or u sin( ) ; 0 (1)

After some time, plate temperature is raised to Θw. The fluid is electrically conducting. Therefore, by Maxwell 
equations
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By using Ohm’s law
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Equation for an incompressible Casson fluid flow53–55
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where π = eabeab and eab is the (a, b)ah factor of the deformation rate, π is represent the product of the factor of 
deformation rate with itself, πc is represent the critical value of this product based on the non-Newtonian model, 
μη is represent the plastic dynamic viscosity of the non- Newtonian fluid and Pλ is yield stress of fluid. Under these 
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conditions alongside with the assumption that the viscous dissipation term in the energy equation is neglected, 
we get the following system56:

ρ
γ

μ σ
γ

μ ψ
ρβ ξ=






+





−





+





+










+ Θ − Θ >ξξ ∞u u B
k

u g t( ) 1 1 ( ) 1 1 ( ) [ ]; , 0,
(7)

nf t nf nf
nf

nf0
2

ρ
σ

ξΘ =





+

Θ 




+ Θ − Θ >ξξ

∞
∞

⁎

⁎c k
k k

T Q t( ) 1 16
3

( ); , 0,
(8)

p nf t nf
nf

3

0

ξ

ω ω
ξ

ξ

ξ

= Θ = Θ ≥ <

= =
∂Θ
∂

= − Θ ≥ =

→ Θ → Θ → ∞











∞

∞

u t

u UH t t u U t h t

u

0, ; 0, 0

( ) cos( ) or sin( ), ; 0, 0

0, as

,

(9)

s

where k* is absorption coefficient and σ* is Stefan-Boltzmann constant. Where Q0 is the heat generation term, ρnf 
is the density of nanofluids, μnf is the dynamic viscosity, u is the fluid velocity in the x-axis perpendicular direc-
tion, γ is the Casson fluid parameter, ψ(0 < ψ < 1), K > 0, ψ is the porous medium and K is the permeability of 
porous medium, hs is a constant heat transfer coefficient, Θw is the constant plate temperature (Θw < Θ∞, 
Θw > Θ∞ due to the cooled or heated plate, respectively), g is the acceleration due to gravity, and βnf is the thermal 
expansion coefficient of the nanofluid.

Expressions for (ρcp)nf, (ρβ)nf, μnf, ρnf, σnf, knf are given by24:
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where φ the volume fraction of nano particles, ρf and ρs is represent the density of base fluid and particle respec-
tively, and cp is specific heat on constant pressure. knf, kf, and ks are the thermal conductivities of the nanofluid, the 
base-fluid, and the solid particles, respectively. The expressions of Eq. (10) are classified to nano particles57. For 
supplementary nano particles with unlike thermal conductivity, dynamic viscosity, see to Table 158–60.

the dimensionless variables are56,
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Into Eqs (7–9), we get
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where

ρ (kgm−3) cp (kg−1k−1) k (Wm−1k−1) β × 10−5 (k−1)

C6H9NaO7(SA) 989 4175 0.613 0.99

Al2O3 3970 765 40 0.85

Cu 8933 385 401 1.67

TiO2 4250 686.2 8.9528 0.9

Ag 10500 235 429 1.89

Table 1. Thermophysical properties of nanofluids58–60.
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where 
K
1  is permeability of pours medium, M is the magnetic parameter, Gr is thermal Grashof number, Pr is 

Prandtl number, Nr is radiation parameter, and λ is Newtonian heating parameter.

Laplace Transform Solution
Laplace transforms of Eqs (12, 13) gives:
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Eq. (16) using Eq. (17) gives:
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After taking the inverse Laplace of Eq. (18):
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Solution of Eq. (15) is:
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Upon inversion:
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Particular Cases
In order to link our found solutions with published literature, the following particular cases are examined by 
taking some parameters absent.

Making Gr = γ = 0 and Re = 1 in Eq. (22), reduces to:
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which is identical to results of 61, Eq. (24).
Taking = =M 0

k
1  in the above relation, we get:
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Which is in accordance with61, Eq. (25).
Taking = = = =
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Identical to58, Eq. (35).
Skin friction and Nusselt Number

φ γ
ξ
ξ

=
−






+





∂
∂

ξ
.

=

C u t1
(1 )

1 1 ( , ) ,
(30)

f 2 5
0

∫

φ γ

π

π

π

π π

π π

τ π τ
τ τ

=
−






+





×














− − −
−

−

+





+

+
−




















−





+







−










+
+

− −
− 








+





−





×








 −

+ − −








.

τ
τ

−
.

− −

− +

−

+ − −

−
−

( ) ( )

C

e
c t

H w
c

erf t H w

c t
H w

c
erf t H w

A
c t

H
c

erfc Ht

B e
c t

i
c

c c t

H

c

C
c

C
c

t
c erfc c t d

1
2

ie 1
(1 )

1 1

1 e i [ ( i ) ]

e e i [ ( i ) ]

e
( )

e e

2 2

e 1 e [ ]
(31)

f
tw

tw
t H w

tw
t H w

Ht

c
c

c t
c
c H t

c
c

t c t
c t

i
2 5

2i
( i )

2 2

2i
( i )

2 2

2 2

1
4

5

4 2 2

4 2

0

( )

3/2 6
( )

6

c
c

c
c7

6
5

7
6

7

6
7
6

7

6

5
6

2

λ
θ ξ

ξ
= −

∂
∂

ξ=

Nu t( , ) ,
(32)

nf
0

∫λ λ π τ
λ λ τ

τ
τ= −













 −

+ − −





− −










.
τ τ− −

⁎
Nu c

e
t

c e erfc c t

erfc c
d1

2

1
( )

{2 ( )} (33)
nf

t c t c t

4
0

( )
4

( )
4

5

5 6
2

Discussion
In this section different parameters including γ, φ, Gr, M, K, Pr, Nr Figs 2–11 are plotted. Geometry of problem 
is shown in Fig. 1. The influence of γ on u(y, t) which shows oscillatory behavior increasing first then decreasing 
is highlighted in Fig. 2.

Figures 3 and 4 show effects of φ on u(ξ, t) and θ(ξ, t).ϕ is take in between 0 ≤ φ ≤ 0.04 due to sedimenta-
tion when the range goes above from 0.08. It is observed in both cases if the nano particles volume fraction φ is 
increased it leads to the decreasing of temperature and velocity profile.

Figure 5 highlights the effect of Gr for Sodium alginate -based, Casson nanofluids on velocity profile. It is 
found that with increasing Gr, velocity increases. Because increasing effect in Gr, due to increase of buoyancy 
forces and decrease of viscous forces. Figure 6 the effect of M = 0, 1, 2 on the velocity profile. u(ξ, t) decreases 
due to increasing dragging force. M = 0, shows absence of MHD. Figure 7 shows K effect of on u(ξ, t). Velocity 
decrease due to decreasing friction. Figure 8 highlights that profile of velocity is increased with increasing radia-
tion parameter Nr. The effect is studied for TiO2 nano particle.
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Figure 3. Effects of nano particles volume fraction parameter ϕ on the velocity profile of Sodium alginate based 
nano fluid when Gr = 0.2, Nr = 0.2 and t = 1.

Figure 1. Geometry of the flow.

Figure 2. Effects of Casson fluid parameter γ on the velocity profile of Sodium alginate based Casson nanofluid 
when Pr = 0.7, Gr = 2 and ϕ = 0.04.
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Figure 4. Effects of nano particles volume fraction parameter ϕ on the temperature profile of Sodium alginate 
based nano fluid when Pr = 5 and t = 1.

Figure 5. Effects of thermal Grashof number Gr on the velocity profile of Sodium alginate based Casson nano 
fluid when Pr = 0.7, Nr = 2, ϕ = 0.04 and t = 1.

Figure 7. Effects of permeability of porous medium k on the velocity profile of Sodium alginate based nano 
fluid when Pr = 10, Gr = 10, Nr = 8, ϕ = 0.04 and t = 1.

Figure 6. Effects of magnetic parameter M on the velocity profile of Sodium alginate based Casson nano fluid 
when Pr = 0.7, Nr = 2, Gr = 10, k = 2 and t = 1.
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Figure 11. Comparison of velocities profiles of Al2O3 and TiO3 for Casson nanofluids when Pr = 0.71, Gr = 10, 
Nr = 2, ϕ = 0.04 and t = 1.

Figure 10. Comparison of velocities profiles of Cu and Ag Casson nanofluids when Pr = 0.71, Gr = 10, Nr = 2, 
ϕ = 0.04 and t = 1.

Figure 9. Comparison of velocities profiles for different types of nano particles for Casson nanofluids when 
Pr = 0.71, Gr = 10, Nr = 2, ϕ = 0.04 and t = 1.

Figure 8. Effects of radiation parameter Nr for TiO2 on the velocity profile of Sodium alginate based nano fluid 
when Pr = 0.7, Gr = 8, ϕ = 0.04 and t = 1.
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The impact of two different types of nano particles (Al2O3 Sodium alginate -based Casson nanofluid and 
Ag-Sodium alginate -based nanofluid) on profile of velocity is studied in Fig. 9. The profile of velocity is greater 
for Al2O3 Sodium alginate -based Casson nanofluid and lower profile velocity for Ag-Sodium alginate -based 
nanofluid is observed.

Figure 10 highlights the comparison of both (Cu Sodium alginate -based Casson nanofluid and Ag-Sodium 
alginate -based nanofluid) on u(ξ, t). Velocity of Ag-Sodium alginate -based nanofluid is lower than copper 
Sodium alginate -based nanofluid. This shows that Cu nano particles have more thermal diffusivity compare to 
Ag which is physically true. Furthermore, the same comparison is study for Al2O3 and TiO2 models in Fig. 11, 
which shows that Aluminum oxide Al2O3 nano particles have high thermal diffusivity as compare to Titanium 
oxide TiO2.

Conclusion
The following remarks are concluded from this work:

•	 u(ξ, t) decreases as γ increases
•	 Temperature and velocity profile are decreasing with increasing nano particles volume

Fraction φ.
•	 Al2O3 nanofluid has higher velocity from TiO2 nanofluid and Cu nanofluid has higher velocity from Ag 

nanofluid.
•	 The pours medium K and MHD Μ show opposite behavior.
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