
1SCIeNtIfIC REpoRtS |  (2018) 8:8629  | DOI:10.1038/s41598-018-26945-w

www.nature.com/scientificreports

Relay synchronization in multiplex 
networks
I. Leyva  1,2, I. Sendiña-Nadal  1,2, R. Sevilla-Escoboza  3, V. P. Vera-Avila3, P. Chholak4 &  
S. Boccaletti5

Relay (or remote) synchronization between two not directly connected oscillators in a network is an 
important feature allowing distant coordination. In this work, we report a systematic study of this 
phenomenon in multiplex networks, where inter-layer synchronization occurs between distant layers 
mediated by a relay layer that acts as a transmitter. We show that this transmission can be extended 
to higher order relay configurations, provided symmetry conditions are preserved. By first order 
perturbative analysis, we identify the dynamical and topological dependencies of relay synchronization 
in a multiplex. We find that the relay synchronization threshold is considerably reduced in a multiplex 
configuration, and that such synchronous state is mostly supported by the lower degree nodes of 
the outer layers, while hubs can be de-multiplexed without affecting overall coherence. Finally, we 
experimentally validated the analytical and numerical findings by means of a multiplex of three layers 
of electronic circuits.

Synchronization is one of the most important collective phenomena in nature. It can be observed in natural, 
social and technological systems, and it became one of the most active research topics in network science1–3. The 
huge amount of new data collected in the last years has permitted a higher resolution network representation of 
real systems. In particular, the inclusion of new features shaped multi-layer representations, i.e. approaches in 
which the network units are arranged in several layers, each one accounting for a different kind of interactions 
among the nodes4–7. Multi-layer structures determine scenarios where novel forms of synchronization are rele-
vant. Despite an analytical approach has been tackled in just a few particular cases8,9, several synchronization sce-
narios have been already addressed, as unidirectional coordination between layers10, explosive synchronization 
emerging from the interactions between dynamical processes in multiplex networks11,12, complete synchroniza-
tion13,14, cluster synchronization15–21, intra-layer22 or inter-layer23,24 synchronization.

Very recently, relay (RS) and remote synchronization (two very well known phenomena in chains, or small 
motifs, of coupled oscillators) have captured the attention of researchers. This form of synchronization is observed 
when two units of a network (identical or slightly different) synchronize despite not being directly linked, and due 
instead to the intermediation of a relay mismatched unit. The phenomenon has been experimentally detected in 
lasers25 and circuits26,27. In general, the relay units exhibit generalized or delay synchronization with the units they 
actually pace to synchrony28.

RS is of outstanding relevance in the brain: the thalamus acts as a relay between distant cortical areas through 
the thalamo-cortical pathways, playing the role of a coordination hub that maintains the information flow29–32. 
Complex structures and neuronal dynamics are implicated in this process involving not only simple, but higher 
order relay paths, that transfer the information through multiple-step relay chains30,31. Recently, remote syn-
chronization has been addressed in the context of complex networks33, revealing the extremely important role of 
network structural and dynamical symmetries in the appearance of distant synchronization34–36, as it was already 
suggested by the observation of zero-lag delays between mirror areas of the brain37,38. Nevertheless, the interplay 
between symmetry, dynamics and multi-layer structure remains still mostly unexplored.

In this work, we perform a systematic study of inter-layer relay synchronization in a multiplex network, where 
distant layers synchronize their dynamics while their intra-layer motion remains unsynchronized. We con-
sider generic high-order structures where multi-site relay pathways are verified. The dynamical and topological 
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dependencies of the phenomena are studied, using perturbation stability analysis. The robustness of the relay 
synchronization against de-multiplexing the layers is reported, revealing the key role of low degree nodes in 
maintaining the layers coordination. Finally, the findings are experimentally validated in a multiplex network of 
electronic circuits.

Results
Model. We start by considering 2M + 1 layers (or networks), arranged as shown in Fig. 1. Each layer k, with 

= − … …k M M, , 0, , , is formed by N dynamical systems (each of which being m-dimensional), whose states are 
represented by the column vectors = …U u u u{ , , , }k k k

N
k

1 2 , with ∈ui
k m, i = 1, …, N, and whose intra-layer inter-

actions are encoded through the Laplacian matrices  = { }k
ij
k . The layer stack is symmetric with respect to k = 0 

in such a way that Laplacians k and −k  have the same structure. The dynamical systems are also paired: nodes 
belonging to layers U+k and U−k are identical to each other, and different (in some parameter) from the rest of the 
layers. Consequently, layer k = 0 has no counterpart, and acts as a relay between all layers situated above and 
below it.

Layers are coupled in a multiplex configuration, and the dynamical evolution of the system is described by the 
following equations:
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tions evolving each dynamical unit), are identical for the same |k|. G, H are the m × m matrices representing 
respectively the linear intra- (G) and inter- (H) layer coupling schemes. N is the N × N identity matrix, σk is the 
intra-layer coupling strength within layers k and −k, and λ is the inter-layer coupling strength.

Due to the reflection symmetry of the system under study (i.e. as long as the U+k and U−k layers are identi-
cal for all k), a synchronous inter-layer evolution (with layers evolving in a pairwise synchronized fashion, i.e. 
where U+ = U−k) at all k without necessarily implying Uk = Uk′ for k ≠ k′) is a solution of Eq. (1), independently 
of intra-layer synchronization23 (i.e. independently on whether the state of the systems within each layers are 

Figure 1. Schematic representation of a multiplex of 2M + 1 layers (here M = 2) labeled as k = −M, …, −1, 0, 1, 
…, M where each pair of layers k and −k (painted with the same color) are networks of identical oscillators with 
the same topology k and intra-layer coupling σk and whose dynamical state is described by the variable Uk and 
U−k, respectively. The multiplex is symmetric with respect to the layer k = 0 and the nodes are coupled to their 
replicas in the rest of layers with an inter-layer coupling strength λ.
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synchronized). Let therefore δUk(t) = U+k(t) − U−k(t), with k = 1, …, M be the vector describing the difference 
between the dynamics of the paired layers.

Considering the smallness of δ δ δ δ= …U u u u{ , , , }k k k
N
k

1 2  and expanding around the inter-layer solution up to 
first order, one obtains a set of M linearized vector equations for the perturbations δUk:
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where J denotes the Jacobian operator, δkM is the Kronecker delta accounting for the boundary condition at k = M 
(as the stack end layers U±M are only connected to the previous neighbor layer). The vector =

∼
U u{ }

k
i
k  describes 

the dynamical state of any of the k = 0, …, M layers at the synchronous state Uk = U−k ≠ U0 and, therefore, the 
whole dynamics is reduced to the dynamics of M + 1 layers.

Such evolution at the node level is given by:
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where i = 1 …, N is the node index, k, q = 0, 1, …, M, and g(u) = Gu and h(u) = Hu are the projections of the 
inter- and intra- later coupling operators to the node level. Notice that, since each paired layers k and −k is 
inter-layer synchronized = =

∼ −U U U( )
k k k , each layer acts therefore as a relay to the rest of the stack. The prob-

lem consists now in solving MmN linear equation (2), together with solving in parallel the (M + 1)mN nonlinear 
equation (3) for ui

k. Although the total number of equations to compute is still of the same order as in Eq. (1), that 
is (2M + 1)mN, the fact that MmN of those equations are linear results in a much faster computation of the 
dynamics. Then, calculating the maximum Lyapunov exponent (MLE) transverse to the manifold ∼U

k
 as a function 

of the system parameters actually gives the necessary conditions for the stability of the synchronous solution: 
whenever <MLE 0, perturbations transverse to the manifold will die out, and the multi-relay synchronous solu-
tion will be stable.

In order to monitor the synchronization error between layers, we define the inter-layer synchronization error 
as,
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where ||·|| stands for the Euclidean norm and q, k are the layers’ indexes, such that E−k,k denotes the inter-layer 
synchronization error of mirror layers. Without lack of generality, In our numerical simulations we consider two 
types of topologies where layers are either (i) Erdös-Renyi39 (ER) or (ii) scale-free (SF, generated by means of the 
Barabási-Albert’s algorithm40), in all cases with N = 500. We classify the layer stacks regarding the topology 
sequence of each layer. For instance, a triplex where the three layers have ER topology will be denoted as EEE, and 
a system where two identical SF layers are mediated by a center ER will be denoted as SES. The nodes are chaotic 
Rössler oscillators41, defined by the m = 3 state vector u = (x, y, z) whose autonomous evolution is given by 

= = − − + . + −− y z x a y z xf u f u( ) ( ) [ , , 0 2 ( 9)]k k k  and the heterogeneity between the layers is introduced 
through the parameter ak, such that each layer develops a different chaotic dynamics. In our case study, the intra- 
and inter- layer coupling functions are set to be = = zg u Gu( ) (0, 0, )T and = = yh u Hu( ) (0, , 0)T respec-
tively. These coupling schemes ensure that intra-layer synchronization is prevented when layers are isolated and 
not multiplexed (class I layers, according to the standard master stability function (MSF) classification established 
in ref.2) whereas multiplexed nodes along the layers can synchronize for a coupling strength λ above a given 
threshold (class II MSF)42.

Layers with identical topology. With the aim of determining whether relay synchronization can be 
achieved in a multiplex configuration let us first consider the multiplex structure defined by Eq. (1) for the case of 
three identical SF layers   = = −0 1 1 and where the parameters a1 = a−1 = 0.2 for the outer layers and a0 = 0.3 
for the relay units of the central layer, although different selections of these parameters and topologies produce a 
similar behavior.

Results are collected in Fig. 2, where the synchronization error between the outer layers E−1,1 is plotted versus 
the inter-layer coupling λ for several values of the intra-layer couplings σ1 and σ0 in the outer and relay layers 
respectively, with σ1 = σ0. In all cases, there is a critical coupling λ⁎ above which complete synchronization 
between layers k = 1 and k = −1 occurs, that is, E−1,1 = 0 is achieved, while the relay layer (k = 0) remains unsyn-
chronized to any of the two outer layers (k = 1, −1) as shown in the inset where >E 00,1  for any parameter choice.

In addition, the calculation of the corresponding MLE given by Eq. (2) (bottom panel of Fig. 2) confirms 
that the relay synchronous solution U−1 = U1 reaches stability (MLE < 0) at the same critical λ* where the error 
between the outer layers is zero, as indicated by the vertical lines. Therefore, one can conclude that inter-layer 
MLE is a useful tool for reducing the system’s dimensionality and use it for evaluation of the critical inter-layer 
coupling λ* from now on.

In order to better understand the different roles played by external and relay layers, we show in Fig. 3 the criti-
cal inter-layer coupling value in the parameter region (σ0, σ1), that is, when the intra-layer coupling σk is different 



www.nature.com/scientificreports/

4SCIeNtIfIC REpoRtS |  (2018) 8:8629  | DOI:10.1038/s41598-018-26945-w

for the relay and outer layers. It can be seen that the system’s ability to synchronize is practically unaltered with σ0, 
while increasing σ1 makes the value of λ* to drop drastically. This therefore reveals that multiplex relay synchroni-
zation is much more sensitive to changes affecting the mirror layers than to those arising in the transmission layer.

Our results can be generalized to any number of layers. As an example, we report also the case M = 2, which 
corresponds to two outer layers above (k = 1, 2) and below (k = −1, −2) the relay layer (k = 0). We choose 
a−1 = a1 = 0.2 and a−2 = a2 = 0.3, and a0 = 0.25 for the central layer. The results stand for any other parameter 
choice. In Fig. 4 we plot the inter-layer synchronization errors E−1,1 (void markers) and E−2,2 (full markers), vs. 
the inter-layer coupling λ for several values of the intra-layer coupling σ. As in the triplex case, the critical λ* at 
which complete inter-layer synchronization is achieved depends on σ, but it is the same for both pairs of layers, 
as E−1,1 and E−2,2 drop to zero simultaneously. In the inset we plot the inter-layer synchronization errors between 
the non-paired layers, E0,1, E1,2 to check that they remain mutually incoherent. Therefore, we have verified that 
relay synchronization also occurs in cascade for arbitrarily high-order multiplex systems, provided a structural 
and dynamical symmetry is conserved.

Layers with non-identical topology. So far, we have dealt with multiplexes of pairwise identical layers. 
However, this condition is too strong a limitation to hope that it would capture and properly represent the case of 
many real systems. The next step needed for generalization is studying then the relay synchronization scenario in 

Figure 2. Relay synchronization in a triplex (M = 1) with identical SF layers (SSS configuration). (Main panel) 
Synchronization error between the outer layers (k = −1, and k = 1) E−1,1 (see Eq. 4) as a function of the inter-
layer coupling λ for three different values of the intra-layer coupling σ0 = σ1 (see legend). The inset shows the 
corresponding synchronization errors between the relay and one of the outer layers. (Bottom panel) Maximum 
Lyapunov exponent (MLE) of the relay synchronization manifold U1 = U−1 as a function of λ for the same cases 
as in the main panel. Vertical lines mark the points where the MLE becomes negative. All points are averages 
of 10 network realizations with N = 500 and 〈k〉 = 4. See the main text for the relay and outer layer Rössler 
oscillators specifications.

Figure 3. Relay synchronization in a triplex network with identical SF layers as a function of the intra-layer 
couplings for the relay (σ0) and outer (σ1) layers. (Left) Color map of the inter-layer coupling threshold λ* for the 
relay state (E−1,1 = 0 and E0,1 ≠ 0) in the σ0 − σ1 parameter space. (Right) Inter-layer coupling threshold λ* for the 
relay state as a function of the coupling strength in the relay layer σ0 for a fixed value of σ1 = 1 (red dashed line in 
left panel) and as a function of the coupling strength in the outer layers σ1 for a fixed value of σ0 = 1 (black dashed 
line in left panel). Each point is an average of 10 SF network realizations with N = 500 and 〈k〉 = 8.
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the case in which the topology of the relay layer differs from that of the outer layers. In Fig. 5 we have reported the 
critical inter-layer coupling λ* in two heterogeneous triplex cases: (a) a pair of Erdös-Rényi layers mediated by a 
scale-free relay layer (ESE situation) and (b) the opposite case where SF layers are connected through a ER layer 
(SES). Each case is compared with the topologically homogeneous EEE and SSS structures, respectively. For the 
sake of simplification and of better assessment of the role of the topology, we keep σ0 = σ1.

Figure 5(a) shows that, for a large range of intra-layer couplings, the mediation of a SF relay facilitates the 
synchronization between the paired layers, since λ* in the ESE case (void blue circles) is smaller than the one 
corresponding to the homogeneous case (EEE, full blue circles). On the contrary, a relay ER layer intermediat-
ing between two outer SF layers (Fig. 5(b)) does not determine a significant difference as long as the intra-layer 
coupling strength is low, but increases the threshold λ* for higher σ, as compared to the homogeneous SSS case.

Robustness. In the previous Sections we have addressed the dependence of relay synchronization in a multi-
plex on the dynamical and structural layer heterogeneity, and proved that the phenomenon still holds even when 
the intermediate layer has a completely different structure and dynamics than the mirrored ones. The present 
section is devoted instead to assess the robustness of relay synchronization against structural changes by means of 
a de-multiplexing process of the layers, that is, against performing a progressively shutting down of the inter-layer 
links such that a fraction of nodes in each layer is not linked to their counterparts in the other layers. In addition, 
we also investigated several cases to test the robustness against mismatches in the oscillators parameters to closely 
resemble real experimental conditions.

Structural robustness. To closely check this process, we initially consider a 3-layer multiplex with identical topol-
ogy (EEE or SSS). We choose the inter- and intra-layer couplings to guarantee a relay synchronous state with the 
layers fully multiplexed. Then, we proceed to disconnect one by one the inter-layer links according to the nodes 
degree ranking, both in the ascending and the descending order, and re-evaluate in every step the state of the relay 
synchronization by measuring the E−1,1 error. Figure 6(a) reports the averaged evolution of E−1,1 as a function 
of the number of multiplexed nodes, after having performed the whole de-multiplexing process for 10 different 
network realizations. It can be seen that, starting from a situation with E−1,1 = 0, the EEE multiplex configuration 
(blue void markers) loses the synchronization immediately with just a few of inter-layer links being removed. On 

Figure 4. Relay synchronization in a pentaplex (M = 2) with identical N = 500 ER layers (EEEEE 
configuration). The synchronization error between the two pair of outer layers E−1,1 (empty symbols) and E−2,2 
(full symbols) is shown as a function of λ for three different values of the intra-layer coupling σ, being σ = σk, 
∀k. The inset shows the synchronization errors between each one of the outer layers and the relay layer. The 
results are averaged over 10 different network realizations and initial conditions.

Figure 5. Relay synchronization in a triplex with different layers. Inter-layer coupling threshold λ* vs the intra-
layer couplings σ0 = σ1 for (a) a mixed ER-SF-ER (ESE) and identical (EEE) configurations and (b) a mixed SF-
ER-SF (SES) and identical (SSS) configurations.
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the other hand, relay synchronization is resilient in SSS triplex configurations also when more than 30% of the 
nodes are not multiplexed.

A more detailed view can be obtained from Fig. 6(b), where the number of multiplexed nodes needed to 
support the relay synchronization is represented as a function of the intra-layer coupling σ0 = σ1. As expected, 
when the coupling is weak, all the N nodes need to be linked to preserve relay synchronization. However, as the 
interaction within the layers increases, the intra-layer connectivity helps to maintain a synchronous state despite 
an increasing number of nodes are being de-multiplexed without damaging the coherence between the outer 
layers. In Fig. 6(b), we can see that for both the EEE (blue void markers) and the SSS (black full markers) tri-
plex configurations, removing the links between layers connecting nodes with higher degree (descending degree 
ranking, circle markers) is much more robust than following an ascending degree ranking (square markers). This 
is indeed a very interesting result: relay synchronization in a multiplex network is supported by the low degree 
nodes, while the hubs can be safely disconnected without perturbing the transmission. This is notably evidenced 
in the SSS case (black full squares) where after having removed the 40% of the inter-layer links connecting the 
highest degree nodes, the relay synchronization is still supported by the multiplex structure connected through 
the lowest degree nodes.

Once we have singled out that, from our trial rankings, the descending degree ranking is the most conven-
ient way to de-multiplex part of the network without loosing coherence, we proceed our study by evaluating the 
impact of having a relay layer with different topology from the outer layers, as we did in the previous Section 4. 
In this scenario, we have two possible descending degree rankings, the one dictated by the relay layer and the one 
dictated by the outer layers. The results are summarized in Fig. 7 where we plot, as in Fig. 6(b), the number of 
nodes that need to be linked to maintain synchronization as a function of σ0 = σ1. For the sake of comparison, 
we added the curves for the homogeneous EEE and SSS (full markers) multiplex configurations, together with 
the data for the mixed ESE and SES (void markers) layers. Notice that the chosen inter-layer coupling λ = 0.23 is 
well above threshold for all the cases, as it can be derived from Fig. 5. All the reported evidence indicates that the 
introduction of a relay layer with a topology different from that of the outer layers has little influence on the min-
imum number needed to support the relay synchronization, as long as the first removed inter-layer connections 
correspond to the hubs in the outer layers (blue and back curves). Curiously, the alternative of using the relay 
layer topology to rank the degree of the nodes, destroys the coherence between the outer layers as soon as a tiny 
fraction of links is removed (red curves). Therefore, the relay synchronization in a multiplex is very unstable if just 
a few links connecting nodes which are hubs in the relay layer are removed. Notice that this unlinking criterion is 
equivalent to randomly disconnect the multiplex. Therefore, the robustness of the relay synchrony relies mainly 
in the low degree nodes of the external layers. The relevance of the low degree nodes in controlling the dynamics 
of complex networks has been pointed out in other contexts43,44.

Dynamical robustness. In order to explore a more realistic situation of a multiplex composed of non identical 
oscillators, we have taken further the generalization by introducing some heterogeneity in the node’s parameter 
ak, that is, ak = ak,i. The node values of the outer layers’s were randomly picked from the interval a±1,i = [0.20, 0.21].

We prepared three different setups depending on how the parameter setting is introduced in the outer layers: 
i) a1,i = a−1,i but ≠a ai j1, 1, , that is, oscillators are not identical within each external layer but the two external 
layers are symmetric; ii) a1,i = a1,j but a1,i ≠ a−1,i, that is, layers are composed of identical oscillators but there is a 
mismatch between oscillators in layer k = 1 and their corresponding replicas in layer k = −1; and iii) 

Figure 6. Structural robustness of the network relay synchronization for identical layers. (a) Synchronization 
error between the outer layers E−1,1 vs the decreasing number of connected relay lines for identical ER (blue 
empty symbols) and SF (black solid symbols) layers. Relay lines are disconnected following a descending 
(circle symbols) or ascending (square symbols) node degree ranking of the outer layers (seed legend in (b)). 
Parameter values are N = 500, 〈k〉 = 8, λ = 0.23 and σ0 = σ1 = 0.8. (b) Number of multiplexed relay lines needed 
to support a relay network state as a function of the intra-layer coupling strength σ0 = σ1 while keeping constant 
λ = 0.23. The different curves are explained in the legend. All the results are averaged over 10 different network 
realizations.
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a1,i ≠ a1,j ≠ a−1,i, that is, combining cases i) and ii), a fully random case, not preserving the symmetry neither the 
parameter homogeneity in each layer.

Results are summarized in Fig. 8, where the synchronization error between the outer layers is plotted vs the 
inter-layer coupling λ. For comparison, the perfectly homogenous case with all layers having identical oscilla-
tors (red circles) is also included. In the inset, a zoom of the main figure, it is clear that breaking the symmetry 
between the outer layers slightly deteriorates the synchronization, as it occurs in cases i) (green squares) and iii) 
(purple diamonds). However, introducing some heterogeneity in the ak parameter (full cyan circles) in the layer’s 
oscillators does not modify the synchronization threshold at all, as long as each oscillator in one outer layer is 
identical to its replica in the mirrored layer. We will actually show that our experimental results can be framed 
within this latter case.

Experimental validation
Finally, we report experimental evidence of relay synchronization in a multiplex of nonlinear electronic circuits, 
with the setup sketched in Fig. 9 (left). The array is made of 21 Rössler-like circuits arranged in three layers of 7 
nodes, with the relay layer having different topology as the outer layers. Each layer has two different electronic 
couplers, one for the coupling among nodes in the same layer (σe) and the second for the interaction of each node 
with its replica in the other layers (λe). The chaotic dynamics of the circuits is well approximated by the three 
variables (v1, v2, v3) obeying23:

Figure 7. Structural robustness of the network relay synchronization for non identical layers. Number of 
multiplexed relay lines needed to support a relay network state as a function of the intra-layer coupling strength 
σ0 = σ1 while keeping constant the inter-layer coupling strength λ = 0.23 for mixed ER (ESE, empty circles) and 
mixed SF (SES, empty squares) layer configurations. The relay lines are disconnected following a descending 
order of the outer node degrees and for comparison the corresponding values for identical layers -see Fig. 6(b) 
are plotted in solid symbols. The red solid (ESE) and empty (SES) triangles show the behavior when the relay 
lines are disconnected following the degree ranking of the relay layer.

Figure 8. Dynamical robustness of the network relay synchronization as a function of the heterogeneity in the 
ak parameter. Synchronization error between the outer layers E−1,1 vs the inter-layer coupling λ for the three 
cases reported in the main text with = . .±a [0 20, 0 21]i1, : i) mismatched layers with oscillators within the outer 
layers being identical but mismatched with their replicas (green squares); ii) symmetrical outer layers with 
nonidentical oscillators within the layers (full cyan circles); and iii) not symmetrical layers with nonidentical 
oscillators (purple diamonds). Inset is a zoom of the main plot. Simulations have been conducted with SF layers 
of identical topology with N = 500 and 〈k〉 = 8.



www.nature.com/scientificreports/

8SCIeNtIfIC REpoRtS |  (2018) 8:8629  | DOI:10.1038/s41598-018-26945-w

∑

∑

σ

λ

= −





+ +





− −

= −





− +









−














−





−







= −




− +






=

=−

=







( )

v
R C

v R
R

v R
R

v

R C
R
R

a v v

v
R C

R R
R R

v R R
R R

v

R C
R
R

v v

v
R C

R
R

G v v

1

1

1 1

1

1
( )

(5)

i
k

i
k

i
k

i
k

e
j

N

ij
k

j
k

i
k

i
k

i
k

c
k i

k

e
q

q

i
q

i
k

i
k

i
k

i
k

1
1 1

1
1

2
2

1

4
3

1 1

1

15 1
1 1

2
6 2

6 8

9 7
1

6 8

7
2

6 2

6

16 1

1

2 2

3
10 3

10

11
1 3

where Gv i1
 is a nonlinear gain function given by:

=











≤





+





+

− −





+





>





+





+

G v
if v I R

R
V R

R

R
R

v VeeR
R

I R
R

R
R

if v I R
R

V R
R

( )
0, 1

, 1
i

i d ee

i d i d ee

1

1
14

13

14

13

12

14
1

12

13

12

13

12

14
1

14

13

14

13

where the parameter values are gathered in Table 1. The reader is referred to ref.45 for a detailed description of the 
experimental implementation of the Rössler-like circuit in the networks, and refs9,23,24,46 for previous realizations 
in different network configurations. Both the intra-layer σe and the inter-layer λe are set by means of the digital 
potentiometers X9C103, that working as voltage divisor for the maximum resistance (10k Ω), σe and λe is set to 
zero, this potentiometers are controlled through the digital ports (P0.0, P0.1, P0.2, P0.3) of a DAQ card. First that 
all we send all the coupling value to zero, after 500 ms takes the sample of the time series of each networks, all the 
variables v2i of each oscillator enter to the DAQ card through the analogue ports (AI0, AI1, …, AI20) and saved in 

Figure 9. (Left) Schematic representation of the experimental arrangement of three layers of electronic circuits. 
The bidirectional coupling is adjusted by means of three strips of digital potentiometers X9C103 (XDCP), the 
resistance is controlled through digital pulses sent by a DAQ (NI USB 6363). (Right) Graph structure used for 
the upper and lower layers (top) and for the relay layer (bottom).

C1 = 1 nF C2 = 1 nF C3 = 1 nF σe,λe = [0−0.6]

R1 = 2MΩ R2 = 200kΩ R3 = 10kΩ R4 = 100kΩ

R5 = 50kΩ R6 = 5MΩ R7 = 100kΩ R8 = 10kΩ

R9 = 10kΩ R10 = 100kΩ R11 = 100kΩ R12 = 150kΩ

R13 = 68kΩ R14 = 10kΩ R15 = 75kΩ R16 = 120kΩ

= ΩR k50c
0 = ΩR k35c

1 Id = 0.7 Vee = 15

Table 1. Parameter values of the chaotic dynamics of one Rössler like circuit as described in Eq. (5).



www.nature.com/scientificreports/

9SCIeNtIfIC REpoRtS |  (2018) 8:8629  | DOI:10.1038/s41598-018-26945-w

the PC for further analysis. Next, the coupling between the inter-layer (λe) increases one step (0.01), digital pulses 
are sent to the potentiometers corresponding to that coupling and decreases the resistance in 100Ω each time it 
passes through this state, until the maximum value of λe is reached (Ω in potentiometers). When the entire run 
is finished, σe is increased by one step, and another cycle of λ is initiated. The whole procedure is repeated until 
each coupling reached its maximum value. The experiment is controlled from a PC with the LabVIEW software.

The experimental results are summarized in Fig. 10. The top panels represent the averaged experimental 
inter-layer synchronization error for the outer layers E−1,1 (left) and between the relay and one of the outer layers 
E0,1 (right), for all the experimental range of intra-layer σe = [0, 0.6] and inter-layers λe = [0, 0.6] couplings. Even 
though the system is unavoidably affected by noise and parameter mismatch in the electronic components, for 
high enough λe the value of E−1,1 is well below E0,1 and therefore the inter-layer relay synchronization is verified 
in our experimental setup. Superimposed to the colormaps, we also have drawn the isoline for E = 0.12 in both 
panels (white lines), showing that the threshold λ ⁎

e  value for which E−1,1 and E0,1 are below the value of the isoline 
is always smaller in the E−1,1 case. The fact that the perfect synchronization between the two outer layers is never 
achieved agrees with our numerical predictions reported in the dynamical robustness section and cleary visual-
ized in Fig. 8.

For a clearer view, in the bottom left panel we have just plotted E−1,1 and E0,1 as a function of λe for a fixed 
intra-layer coupling σe = 0.5 (corresponding to the blue and black dashed lines in the respective colormap panels 
in the upper part of Fig. 10), showing that E−1,1 monotonically goes to zero and is always below E0,1.

Finally, in the bottom-right panel of Fig. 10 we plot both errors, E−1,1 and E0,1, as a function of σe for a fixed 
value of the intra-layer coupling λe = 0.5 (vertical cuts in red and magenta in the colormap plots). That is done in 
order to show the effect of increasing the interaction in the intra-layer connectivity. Similarly to what observed 
in Fig. 5, promoting the topological difference between layers as σe increases rises the synchronization threshold.

Figure 10. Experimental results of relay synchronization in a triplex network with non-identical layers, as a 
function of the intra-layer (σe) and inter-layer (λe) couplings. (Top) Colormap of the inter-layer synchronization 
errors between the outer layers E−1,1 (left) and between one outer layer and the relay layer E0,1 (right) in the 
σe − λe parameter space. The white contour line in each panel indicates the isoline for E−1,1 and E0,1 respectively 
equal to 0.12, error value taken as a reference. (Bottom) Inter-layer E−1,1, E0,1 synchronization errors as a 
function of (left) λe for fixed σe = 0.5 (vertical continuous lines in the above panels) and (right) σe for fixed 
λe = 0.5 (horizontal dashed lines).
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Discussion
The synchronous behavior of groups of units in a complex system is often a signature of a common functional 
involvement. Theoretically, this has been studied in the framework of modular networks47, where nodes densely 
connected among them in the same mesoscale structure usually share similar functions48–55, or in the context 
of cluster synchronization associated to the existence of network symmetries and where modularity is not rele-
vant35,56. However, most of these studies disregard the possible different nature of the involved nodes and links, 
a common feature in real systems. For instance, in the brain coherence is observed involving different cell types 
and electrical/chemical synapses.

In addition, cluster and modular synchronization requires the direct connection between the synchro-
nizing nodes. However, long distance coherence between complex mirrored structures mediated through 
non-synchronous differentiated ones plays a key role in the functioning of several real-world systems. Zero-lag 
synchronization has been indeed observed between distant areas of the cortex37,38, with the thalamus acting as a 
coordinator, and the transcendental role of symmetry in its dynamics has been lately pointed out in other contexts 
like in the evolution of complex developmental systems57,58.

In this work, we have overcame these limitations by using a multilayer description in the study of distant 
synchronization in heterogeneous ensembles. Within this framework we have accounted for, besides considering 
different coupling functions between the dynamical units, the impact of having topologically different layers and 
heterogeneity in the node dynamics. We have implemented the concept of relay synchronization to the case of 
a multiplex network, showing that the intermediation of a relay layer can lead to inter-layer synchronization of 
a set of paired layers, both topologically and dynamically different from the transmitter. The phenomenon can 
be extended to indefinitely higher order relay configurations, provided a mirror symmetry is preserved in the 
multiplex. The coherent state is very robust to changes in the dynamics, topology, and even to strong multiplex 
disconnection. In this latter scenario, we show that the lower degree nodes in the synchronized outer layers are 
responsible for resilience of the synchronous state, while hubs can be safely de-mutiplexed. Finally, we experi-
mentally validated our results in a multiplex network of three layers of electronic oscillators. Our results provide a 
new path for starting the study of the role of symmetries in setting long distance coherence in real systems.
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