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Influence of the ordering of 
impurities on the appearance of an 
energy gap and on the electrical 
conductance of graphene
S. P. Repetsky1, I. G. Vyshyvana1, S. P. Kruchinin2 & Stefano Bellucci  3

In the one-band model of strong coupling, the influence of substitutional impurity atoms on the energy 
spectrum and electrical conductance of graphene is studied. It is established that the ordering of 
substitutional impurity atoms on nodes of the crystal lattice causes the appearance of a gap in the 
energy spectrum of graphene with width η|δ| centered at the point yδ, where η is the parameter of 
ordering, δ is the difference of the scattering potentials of impurity atoms and carbon atoms, and y is 
the impurity concentration. The maximum value of the parameter of ordering is ,η y y= 2 ≤ 1 2/max

. For 
the complete ordering of impurity atoms, the energy gap width equals y2 δ . If the Fermi level falls in the 
region of the mentioned gap, then the electrical conductance σ 0αα →  at the ordering of graphene, i.e., 
the metal–dielectric transition arises. If the Fermi level is located outside the gap, then the electrical 
conductance increases with the parameter of order η by the relation ( )σ y η~ −αα

2 1
4

2
−1

. At the 

concentration y = 1 2/ , as the ordering of impurity atoms η →1, the electrical conductance of graphene 
→σ ∞αα , i.e., the transition of graphene in the state of ideal electrical conductance arises.

In recent times, a special attention has been paid to the possibility of a targeted modification of graphene with 
the help of purposely introduced impurities, formed defects, and atoms or chemical functional groups deposited 
on a surface. In this case, wide possibilities to change the physical properties of graphene are opened, due to the 
controlled introduction of impurities by the method of ion implantation. In such a way, graphene becomes a 
basic system that generates a new class of functional materials. Sometimes, such materials find unexpected appli-
cations: from nanoelectromechanical systems to hydrogen-accumulating systems. Of course, the main hopes 
are set upon graphene, because it has all possibilities to become, in the nearest future, a substitute of silicon in 
electronic devices, which will allow one to significantly enhance the level of their miniaturization and to increase 
the working frequencies. The quasirelativistic spectrum of charge carriers determines the unique properties of 
graphene and, simultaneously, hampers the use of graphene in field-effect transistors due to the absence of a gap 
in its spectrum. It is known that the impurities can lead to the appearance of such a gap, whose width depends on 
the type of impurities and their concentration.

The recent investigations of the energy spectrum of graphene are based on the density functional theory. It is 
worth to note the advantages of this theory related to the self-consistent meta-generalized gradient approxima-
tion within the projector-augmented-wave method1 which is realized with softwares WASP and GAUSSIAN1. The 
numerical calculations made within the method have demonstrated the appearance of a gap in the energy spec-
trum of graphene caused by the presence of an impurity. However, in order to clarify the nature of this effect, it is 
necessary to supplement the mentioned numerical calculations by analytic studies of the influence of impurities 
on the energy spectrum and properties of graphene.

Recently, new 2D-material nanomeshes based on Moiré graphene/hexagonal boron nitride bilayers were pre-
dicted, on the basis of first-principle calculations within the framework of density functional theory, with stand-
ard norm-conserving pseudo-potentials, flexible numerical LCAO double zeta + polarization orbital basis sets2. 
The energy band gap in the bilayer graphene/hexagonal boron nitride material then increases, due to symmetry 
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breaking in the curvature graphene component and due to the charge transport at the toroidal border of the hole 
compared with a similar graphene mesh2. Also, in earlier work, the complex structure based on the graphene 
monolayer and the twisted BN monolayer was investigated3. The changes in the electronic structure during the 
hydrogen adsorption at low concentration were considered. It was found that the presence of the BN layer did not 
impact significantly on the electronic structure and that only the H-atom adsorption on the boron atoms could 
open the band gap in the layered structuré. An investigation of the dependence of the band gap on the hydrogen 
concentration on the Moire surface was made. Upon increasing the hydrogen concentration, the value of the band 
gap was increased up to 0.5 eV3.

The effects generated by the Moiré superlattice of a van-der-Waals heterostructure of graphene grown on 
ultrathin layers of hexagonal boron nitride (h-BN) were studied in review4. There, the effects of the opening of 
a gap in the energy spectrum, which are connected with the breaking of a symmetry of sublattices due to the 
appearance of internal mechanical stresses, were analyzed. The influence of a magnetic field on the energy spec-
trum of a heterostructure was studied as well4.

In work5 in the frame of the density functional theory with the use of the method of pseudopotential, the 
electron structures of an isolated monolayer of graphene, two and three layers of graphene, and graphene grown 
on ultrathin layers of hexagonal boron nitride (h-BN) were calculated. It was shown that, for graphene grown on 
an h-BN monolayer, the energy gap 57 meV in width arises. By an analogous method, graphene with aluminum, 
silicon, phosphorus, and sulfur impurities was studied in work6. It was shown6 that graphene with a 3-% phos-
phorus impurity has a gap 0.67 eV in width.

By using the software QUANTUM-ESPRESSO, the authors of work7 demonstrated the possibility to open a 
gap in the energy spectrum of graphene at the introduction of impurity atoms of boron and nitrogen (gap 0.49 
eV in width), as well as impurity atoms of boron and atoms of lithium adsorbed on the surface (gap 0.166 eV in 
width).

Works8–10 present the theory of reconstruction of the spectrum of graphene, which occurs at a growth in the 
concentration of point-like impurities, and foresee the possibility of the metal–dielectric transition in such a 
system. The course of the reconstruction of the spectrum, which was predicted on the basis of the analytic cal-
culations, was confirmed with the help of a numerical experiment. The latter showed the existence of a quasigap 
filled with localized states and demonstrated the dominating role of the scattering by pairs and triples of impurity 
centers in the localization.

In works11–16, the influence of impurity atoms or atoms adsorbed on the surface on the electron structure 
and electrical conductance of graphene was studied. The numerical calculations were carried out in the frame of 
the quantum-mechanical formalism. In work17, the influence of the ordering of atoms on the energy spectrum 
and the electrical conductance of an alloy was studied analytically in the above-mentioned one-band model. It 
was found17 that, at the long-range ordering of the alloy, a gap appears in the energy spectrum of electrons. Its 
width is equal to the difference of the scattering potentials of the components of the alloy. The appearance of the 
metal–dielectric transition was established in the case where the Fermi level enters into the indicated gap at the 
long-range ordering of atoms in the alloy. However, no explanation about the nature of the influence of the order-
ing of impurities on the appearance of a gap in the energy spectrum of graphene is available until now.

It is worth to note that, at the appearance of a gap in the energy spectrum of graphene in the case where the 
Fermi level enters into the indicated gap, the velocity of an electron on the Fermi level can decrease. This causes 
a decrease in the mobility and electrical conductance of electrons, which can deteriorate the functional charac-
teristics of graphene, which would be used as a material for field-effect transistors instead of the traditional mate-
rials based on silicon and germanium. The influence of disordered impurities on the electrical conductance of 
graphene was investigated in works18,19. In particular, it was established in work18 that the presence of impurities 
can cause a significant decrease in the electrical conductance of graphene.

The authors of the above-indicated works studied the effects related to the appearance of a gap in the energy 
spectrum of a heterostructure of graphene grown on ultrathin layers of hexagonal boron nitride (h-BN)2–5 and 
graphene with an impurity adsorbed on the surface and with a substitutional impurity6–10. In the present work, we 
will demonstrate one more cause for the appearance of a gap in the energy spectrum of graphene that is related to 
the ordering of a substitutional impurity. We will study the influence of the ordering of a substitutional impurity 
on the conductivity of graphene.

In order to clarify the influence of the ordering of substitutional impurities on the energy spectrum and elec-
trical conductance of graphene, we use the Lifshitz simple one-band model.

The Hamiltonian describing the one-electron states of graphene with substitutional impurity atoms can be 
presented in the form17

∑ ∑= + ′ ′
′ ′≠
′≠

′ ′H in v in in h i n ,

(1)
in

in
in i n in
n n n

in i n
,

,

,

where ′ ′hin i n,  is a matrix element (hopping integral) of the Hamiltonian nondiagonal in the Wannier representa-
tion, which is independent of the random distribution of atoms in the accepted approximation of diagonal disor-
der; vin is the diagonal matrix element taking value v A or vB depending on that which atom (A or B) is located at 
the node in; i is the number of a sublattice, and n is the number of a node of the sublattice.

In formula (1), we now add and subtract the translationally invariant operator σ∑ in inin i , where σi is the 
diagonal matrix element of the Hamiltonian of some effective ordered medium (coherent potential), which 
depends on the number of a sublattice. As a result, the Hamiltonian of graphene can be presented in the form
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In Eq. (2), σi are potentials of the effective medium (coherent potentials). The values of coherent potentials will 
be specified in what follows.

The retarded Green function of graphene, which is an analytic function of the complex energy z in the upper 
half-plane, reads

= − .−G z z H( ) ( ) (3)1

The Green function satisfies the Dyson equation

= +
∼

 G G GVG, (4)

where

= −
∼ −

G z H( ) (5)1

is the Green function for the effective Hamiltonian ∼H  in formula (2). The T-matrix of the scattering by a random 
potential is determined by the relation17

= +  G G GTG (6)

and satisfies the equation

= +
∼ ∼

T V VGT , (7)

which follows from formulas (4) and (6).
The scattering matrix T takes the form

∑=T T (8)in in

Substituting relation (2) for the scattering potential ∼V  and formulas (8) in (7), we get the T-matrix as an 
infinite series17:
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is scattering operator on the same site, and I is the identity operator. The terms of series (9) describe the processes 
of multiple scattering of electrons by one center and by the clusters of two, three, etc. scattering centers.

Neglecting the contribution of the processes of scattering by the clusters of three and more atoms, which are 
small in some parameter17, we present the density of one-electron states of graphene in the form
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where ελg ( )i0  is conditional partial density of states, ν = 2 is the number of sublattices of graphene.
Using the Kubo—Greenwood formula20 and neglecting the contribution of the processes of scattering by clus-

ters composed of at least three atoms, we get the static electrical conductance of graphene in the form (T = 0)17:
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where  K v G v G( , ) ( ) ( )ss s sε ε ε=
∼

α α′ ′ , εG ( )r  and εG ( )a  are the retarded and advanced Green functions, ελ′
t ( )s

lj  and 
ελ λ′T ( )s

lj i(2) , 0  are scattering operators determined by the Green function εG ( ),s  ssδ ′ is Kronecker’s symbol, µ is Fermi 
level, νΩ = Ω1 0 is the volume of an elementary cell of graphene, and Ω0 is the volume per atom.

In formulas (12) and (13), λP i0  is the probability of the occupation of node 0i of the crystal lattice =i( 1, 2) 
by atoms of the sort λ = A B, :

η η= = + = = − = −P y y P y y P P1
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B B A i B i01
1

02
2

0 0

where y is the concentration of impurity atoms, and η is the parameter of atomic ordering.
In formulas (12) and (13), λ λ′P lj i/ 0  is the probability of the occupation of node lj by an atom of the sort λ′ under 

the condition that an atom of the sort λ occupies node 0i (the parameter of binary interatomic correlations in the 
occupation of nodes of the crystal lattice by impurity atoms).

The coherent potential is determined from the condition =t 0n i1 1 . The brackets mean the averaging over the 
distribution of impurity atoms on nodes of the crystal lattice. The above-mentioned condition yields the equation 
for the coherent potential17:

σ σ ε σ= − − − = − + .v v G v v y v yv( ) ( )( ); (1 ) (15)i i A i i i B i i i A i B0 ,0

Setting =v 0A  in relations (15), we get

δ=v y , (16)i i

where

δ = −v v (17)B A

is the difference of the scattering potentials of components of graphene.
In the analytic description of the energy spectrum and electrical conductance of graphene, we consider only 

the first terms in relations (12) and (13), which give the main contribution to the density of states and to the 
electrical conductance.

The mentioned components can be presented in the form:
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The operator of the α-projection of the velocity of an electron in formula (19) is:


=

∂
∂α

α
′

′k kv h
k

( ) 1 ( ) ,
(20)ii

ii

where ′ kh ( )ii  is the Fourier transform of the hopping integral.
The wave vector in formulas (18) and (19) varies in the limits of the Brillouin zone of graphene.
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We calculated ′ kh ( )ii  in the approximation of nearest neighbors. The Fourier transform of the Green function 
in this approximation takes the form
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In the used model, the main contribution to the energy spectrum of electrons in the middle of the zone is 
given by the values of the wave vector k, which belong to the domains near Dirac points. The Brillouin zone con-
tains two such domains, where

= =k kh h v k( ) ( ) , (22)F12 21


=

γ
vF

a3

2
1 0  is the velocity of the electron on the Fermi level, and γ π= pp a( ) and1 0 are the hopping integral21 and 

the distance between the nearest neighbors, respectively.
Substituting formulas (21) and (22) in (18) and passing from the summation over the wave vectors k to the 

integration, we get
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where γ=w 3 1  is the half-width of the energy band of pure graphene, and = aS 3 3 /21 0
2  is the area of an ele-

mentary cell of graphene.
Let us consider the influence of the ordering of atoms on the energy spectrum of electrons of graphene with a 

substitutional impurity in the limiting case of weak scattering where δ w/ 1.
In this case, the solution of the system of equations (15), (23) is as follows:
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where ε σ ε σ− ′ = − ′ .sign( ) sign( )1 2
In Eqs (24–27), σ′i and σ″i are the real and imaginary parts of the coherent potentials σi, =i 1, 2.
The analysis of formulas (24 and 25) shows that, at the ordering of impurity atoms, the gap η δ  in width cen-

tered at the point δy  arises in the energy spectrum of graphene. The energies ε corresponding to the energy gap 
edges are determined from the equations: ε σ− ′ = 01 , ε σ− ′ = 02 . In the considered approximation of weak 
scattering δ w/ 1, the second terms in the formulas for σ′1 and σ′2 can be neglected. Relation (14) implies that 
the maximum value of the parameter of ordering equals η = ≤y y2 , 1/2max . For the complete ordering of impu-
rity atoms, the energy gap width is equal to δy2 , i.e., it is proportional to the concentration of an impurity y and 
to the modulus of the difference of the scattering potentials for components of graphene δ. For =y 1/2, the gap 
width takes the maximum value equal to δ . For δ > 0 and δ < 0, the energy gaps lie, respectively, to the right and 
to the left from the Dirac point on the energy scale. As is seen from formulas (18) and (24 and 25), the density of 
electron states in the approximation of coherent potential reads ε =g( ) 0 for this energy region.

Formulas (18) and (26 and 27) imply that, at the energies outside the region of the gap, the density of electron 
states reads


ε

ε σ σ
π

=
Ω − ′ + ′g

v
( ) [ ( )/2] ,

(28)F

1 1 2
2 2

where σ′1, σ′2 are given by formula (27).
If the Fermi level is located in the gap, then the number of free charge carriers is equal to zero. The qualitative 

reasoning implies that the electrical conductance of graphene is also zero in this case. This follows also from for-
mula (19) for the electrical conductance σαα. If the Fermi level falls in the region of the gap, then, as follows from 
formulas (19) and (24 and 25), the electrical conductance σ →αα 0 at the ordering of graphene, i.e., the metal–die-
lectric transition arises.

Let us study the electrical conductance of graphene in the case where the Fermi level is located outside the gap. 
Substituting formulas (20)–(22) and (27) in formula (19) and passing from the summation over the wave vectors 
k to the integration, we obtain

σ
π η δ

=
−

αα ( )
e v

a d y

2 ,
(29)

F
2 2

2
0
2 2 1

4
2 2



where d is the thickness of graphene.
It is worth to note that the factor d in the denominator on the right-hand side of formula (29) can be omitted, 

because it is cancelled in the expression for the electrical resistance of graphene.
Thus, the above-presented results imply that the appearance of a gap in the energy spectrum of graphene is 

related to the ordering of substitutional impurity atoms.
We have shown that, at the ordering of impurity atoms, a gap η δ  in width centered at the point δy  arises in the 

energy spectrum of graphene. The maximum value of the parameter of ordering is η = ≤y y2 , 1/2max . For the 
complete ordering of impurity atoms, the energy gap width equals δy2 , i.e., it is proportional to the impurity 
concentration y and to the modulus of the difference of the scattering potentials for components of graphene δ. 
For =y 1/2, the gap width takes the maximum value equal to δ . For the complete ordering of impurity atoms, 
the different components of graphene are located on different sublattices. In the approximation of coherent poten-
tial, this is described by a step potential, whose value depends on the impurity concentration y and the difference 
of the scattering potentials for components δ. The symmetry of graphene with an ordered substitutional impurity 
is lower than the symmetry of pure graphene, which is the cause for the appearance of the energy gap.

If the Fermi level falls in the region of such a gap, then the electrical conductance σ →αα 0 at the ordering of 
graphene, i.e., the metal–dielectric transition arises.

If the Fermi level is located outside the gap, then, as is seen from formula (29), the electrical conductance 
increases with the parameter of order η according to the relation

σ η


 −



 .αα

−

~ y 1
4 (30)

2 2
1

At the concentration =y 1/2, as the ordering of impurity atoms η → 1, the electrical conductance of 
graphene σ → ∞αα , i.e., graphene transits in the state of ideal electrical conductance.
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