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Semi-Supervised Maximum 
Discriminative Local Margin for 
Gene Selection
Zejun Li1,2, Bo Liao1, Lijun Cai1, Min Chen1,2 & Wenhua Liu2

In the present study, we introduce a novel semi-supervised method called the semi-supervised 
maximum discriminative local margin (semiMM) for gene selection in expression data. The semiMM is 
a “filter” approach that exploits local structure, variance, and mutual information. We first constructed 
a local nearest neighbour graph and divided this information into within-class and between-class local 
nearest neighbour graphs by weighing the edge between the two data points. The semiMM aims to 
discover the most discriminative features for classification via maximizing the local margin between 
the within-class and between-class data, the variance of all data, and the mutual information of 
features with class labels. Experiments on five publicly available gene expression datasets revealed the 
effectiveness of the proposed method compared to three state-of-the-art feature selection algorithms.

Currently, the expression level of hundreds of thousands of genes can be successfully monitored with popular 
high-throughput technology in a single experiment. This technology is widely used in the post-genomic era for 
related disease research1–3. Only a few genes can cause disease4. The gene expression levels of these disease-causing 
genes greatly vary between positive and negative samples5,6. Therefore, the classification of tumour tissue or other 
diseases by analysing differential expression data and identifying disease-causing genes is attractive and prac-
tically meaningful7–9. Curse-of-dimensionality may occur during the classification phase due to a property of 
gene expression data that states that a small sample size has high dimensionality10. Various dimension-reduction 
methods have been developed to avoid this phenomenon.

Feature selection is a dimension-reduction technique that evaluates features using proper optimization cri-
teria11,12, such as variance criteria13, maximum local margin criteria, mutual information criteria14–16, and cor-
relation criteria17. Feature selection methods contain wrapper18 and filter methods19–21. Compared to wrapper 
methods, filter methods are efficient and simple due to their classifier-independent feature selection. In addition, 
manually labelling a positive or negative sample is both time- and labour-consuming. Thus, gene expression 
data lack labelled samples but have abundant unlabelled samples. Current studies have attempt to uncover the 
most discriminative information from all samples. Although some supervised and unsupervised feature selec-
tion methods can perform well, utilizing the information of both labelled and unlabelled data can enhance their 
performance22–24. This point was verified in a series of different environmental settings of the Fisher criterion25–28. 
These three studies showed that the local manifold structure is useful for selecting more informative genes, and 
the discriminative power can be increased in a local semi-supervised manner.

Motivated by the maximum margin projection (MMP)29, Laplacian score (LS)30, and mutual information tech-
nique, we proposed a novel semi-supervised gene selection method called the semi-supervised maximum dis-
criminative local margin (semiMM). The semiMM can be used for tumour classification or analysis of differential 
gene expression levels. This method aims to maximize the local margin between within-class and between-class 
data and simultaneously discover the most closely related class features. The features were evaluated according 
to their contribution to the local margin that preserves power and class discriminative capability. Specifically, the 
maximum local margin is designed to maintain the consistency in local geometrical structure of the same class 
and the separability of different classes. In maximizing the mutual information between classes and features, the 
relationship between class labels and features is considered to achieve increased discriminative power.

The present review is structured as follows. Work-related dimensionality reduction methods are briefly 
reviewed in Section 2. The proposed semiMM algorithm is introduced in Section 3. Experiments on five publicly 
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available gene expression datasets are presented in Section 4. Finally, the conclusions from the present study and 
suggestions for future work are discussed in Section 5.

Related Studies
In this section, we present a brief review of two dimensionality reduction methods, namely, the LS30 and MMP29, 
which are related to the proposed semiMM.

Notations. In the present study, matrix = ∈ ×
X {x , x , , x } R1 2 m

n m refers to the gene expression data, 
where m denotes the number of samples, and n denotes the number of genes, which is the dimensionality num-
ber. = ∈f f ff [ , , , ] Rr r r rm

T n
1 2  is an n dimensional column vector that denotes the rth gene in the gene 

expression data, where fri indicates the rth gene in the ith sample. The matrix is presented by boldface and capital 
letters, whereas the vectors are denoted by boldface and lowercase letters.

Maximum Margin Projection. The MMP is a semi-supervised learning method for dimensionality reduc-
tion. This semi-supervised learning method has two assumptions: smoothness and cluster31. The former indicates 
that if two points are close to each other in a high-density region, then the corresponding projecting outputs 
should also be close. The latter assumes that the points in the same cluster tend to be in the same class. MMP 
obeys these two rules and aims to capture both the geometrical and discriminating structures of the local data 
manifold with both labelled and unlabelled data.

The MMP constructs a k nearest neighbour graph G with a binary weight to depict the geometry of the under-
lying local manifold. G is divided into two subgraphs, that is, the within-class graph Gw and between-class graph 
Gb, to discover the discriminating information of the data manifold. N(xi) denotes the k nearest neighbours of 
arbitrary data point xi and is naturally composed of Nb(xi) and Nw(xi). If the samples are neighbours and have 
different class labels, then they belong to set Nb(xi); otherwise, the remaining neighbours are placed into Nw(xi). 
Wb and Ww are the weight matrices of Gb and Gw, respectively, with the following definitions:
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Semi-supervised graph embedding is similar to locality sensitive discriminant analysis (LSDF), a 
semi-supervised feature selection algorithm proposed in32.

MMP detects a linear transformation based on the following two objective functions to maximize the local 
margin between the within-class graph Gw and between-class graph Gb:
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where a is a projection vector of projection matrix A and A ∈ Rd×n. By performing some algebraic steps and 
imposing a constraint, aTXDwXTa = 1, the objective functions (3) and (4) can be rewritten as (5) and (7), 
respectively:
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Thus, the optimization problem is:
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where α is a tuning constant with 0 ≤ α ≤ 1. The optimal projection vector a is subsequently obtained by solving 
the generalized eigenvalue problem defined in Eq. (9), where γ is the generalized eigenvalue. This linear trans-
formation can optimally and simultaneously preserve the local neighbourhood and discriminatory information.
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Laplacian Score. The LS is an unsupervised feature selection method proposed in30. This method was devel-
oped due to the observation that two data points close to each other are potentially in the same class. The LS 
selects features with more locality preserving power as evaluated by Eq. (10). Moreover, the LS is similar to two 
pop manifold learning methods, namely, Laplacian eigenmaps33 and locality preserving projection34. The LS first 
constructs a k nearest neighbour graph, which is defined in Eq. (11). Given that the variance in the data manifold 
can be calculated by Eq. (12) based on the spectral graph theory35, Eq. (10) can be reformulated as Eq. (13) by 
performing some algebraic steps.

=
∑ −
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DataSet
Num of 
Sample

Num of 
Dim

Num of 
Class

DLBCL 77 5469 2

Prostate_Tumor 102 10509 2

Leukemia2 72 11225 3

SRBCT 83 2308 4

Lung_Cancer 203 12600 5

Table 1. Dataset descriptions, including the sample number, gene dimension and class number.

Figure 1. Performance comparison of average prediction accuracy of binary classification gene expression 
datasets Prostate.



www.nature.com/scientificreports/

4Scientific RePoRTS |  (2018) 8:8619  | DOI:10.1038/s41598-018-26806-6

=L
f Lf

f Df (13)
r

r
T

r

r
T

r

% %

% %

where D is a diagonal matrix with = ∑D Wii j ij, and L is a Laplacian matrix with a definition of L = D − W.
Specifically, a “good” feature indicates more representative power and local structure preserving power. The 

former requires larger variance of a feature, and the latter means that if two data points are very close, then these 
points should have similar features. In an algebraic sense, increased representative power and local structure 
preserving power can be interpreted as maximizing the denominator and minimizing the numerator in Eq. (10). 
Consequently, feature selection with the LS is performed to minimize the objective function in Eq. (10); that is, a 
smaller Lr indicates that better features are selected.

Semi-Supervised Maximum Discriminative Information for Feature Selection
In this section, we introduce the proposed semiMM from two aspects, including the criterion and algorithm flow 
of the semiMM.

The semiMM is a semi-supervised feature selection method based on manifold learning. The graph embed-
ding originated from the previously described MMP, which is a semi-supervised manifold learning method 
(see Section 2). Thus, the semiMM constructs between-class and within-class neighbour graphs to simultane-
ously characterize the local manifold of the dataset with all samples and the discriminative information from 

Acc labelNum = 2/4/6
Precision 
labelNum = 2/4/6

Recall 
labelNum = 2/4/6

F-score 
labelNum = 2/4/6 AUC labelNum = 2/4/6

semiMM 0.9281/0.9500/0.9563 0.8269/0.8989/0.8865 0.9125/0.9125/0.9500 0.8630/0.9009/0.9144 0.9818/0.9844/0.9833

LSDF 0.9219/0.9344/0.9406 0.8436/0.8903/0.8856 0.8625/0.8500/0.8875 0.8487/0.8634/0.8797 0.9568/0.9802/0.9813

Fishser 0.9094/0.9531/0.9531 0.8340/0.9182/0.8944 0.8250/0.9000/0.9250 0.8193/0.9069/0.9080 0.9573/0.9859/0.9823

Laplacian 0.9438/0.9344/0.9406 0.8791/0.8360/0.8672 0.9125/0.9250/0.9125 0.8893/0.8752/0.8865 0.9865/0.9828/0.9854

Table 2. Comparison of mean evaluation metrics of the DLBCL dataset with the top 150 selected genes by 
varying the value of L.

Figure 2. Performance comparison of average prediction accuracy of binary classification gene expression 
datasets DLBCL.
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the labelled samples. Moreover, the semiMM also considers the variance of features and the mutual informa-
tion between the classes and features. This method aims to maximize the local margin between within-class and 
between-class data and simultaneously discover the most related class features.

Criterion of SemiMM. Based on the two basic assumptions about semi-supervised learning mentioned in 
Section 2, two data points from the same neighbourhood potentially belong to the same class (and vice versa) 
with the name of the local preserving power. A “good” feature possesses more local preserving power and is most 
discriminative in clarifying the data.

Therefore, the within-class and between-class information should be simultaneously minimized and maxi-
mized, respectively, to ensure a maximum local margin. In addition, a good feature for gene selection should be 
genes differentially expressed for samples with different class labels. This difference in gene expression level can 
be characterized by the mutual information between features and class labels, denoted by NMI(fr, c). A larger dif-
ference indicates more mutual information and vice versa. Maximizing the mutual information between features 
and class labels might enhance the discriminative capability. A reasonable criterion of the semiMM is to minimize 
the objective function given as follows:

λ=
∑ − − ∑ −

+ − λ −
= =semiMM

f f W f f W
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NMI f C
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Figure 3. Performance comparison of average prediction accuracy in multi-classification gene expression 
datasets Leukemia2.

Acc
labelNum = 2/4/6

Precision 
labelNum = 2/4/6

Recall 
labelNum = 2/4/6

F-score 
labelNum = 2/4/6

AUC
labelNum = 2/4/6

semiMM 0.8512/0.8951/0.9000 0.8394/0.8849/0.8972 0.8600/0.9050/0.9000 0.8486/0.8941/0.8980 0.9052/0.9390/0.9531

LSDF 0.7780/0.7780/0.7780 0.7671/0.7671/0.7671 0.8000/0.8000/0.8000 0.7799/0.7799/0.7799 0.8407/0.8407/0.8407

Fishser 0.8585/0.8902/0.8927 0.8466/0.9083/0.9010 0.8700/0.8650/0.8800 0.8571/0.8853/0.8888 0.9219/0.9188/0.9474

Laplacian 0.8415/0.8244/0.8244 0.8426/0.8313/0.8277 0.8300/0.8050/0.8100 0.8358/0.8155/0.8180 0.8926/0.8981/0.8850

Table 3. Comparison of the mean evaluation metrics of the Prostate dataset with the top 150 selected genes by 
varying the value of L.
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The first term in Eq. (14) shares the same idea with the LS, which regards variance information as a representative 
power of all data points. The first term in our objective function represents the local margin preserving power. 
The second term characterizes the class-related capability, where λ is a tuning parameter with 0 < λ < 1, and sem-
iMMr denotes the score of the λth feature evaluated by the proposed semiMM.

Given S = Ww − Wb, the objective function can be rewritten as Eq. (15) through some simple algebraic steps, 
where L is the Laplacian matrix with L − D − S, and D is a diagonal matrix with the column or row sum of the 
symmetric matrix Sij being its diagonal entries. The normalized mutual information between features and class 
labels can be calculated by Eq. (16):

= λ + − λ −semiMM f Lf
f Df

(1 )(1 NMI(f , C))
(15)r
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T
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Algorithm flow of SemiMM. In summary, the algorithm flow of the semiMM is presented as follows:

Acc
labelNum = 2/4/6

Precision 
labelNum = 2/4/6

Recall 
labelNum = 2/4/6

F-score 
labelNum = 2/4/6

AUC
labelNum = 2/4/6

semiMM 0.9511/0.9556/0.9533 0.94670.9440/0.9369 0.9028/0.9169/0.9103 0.9201/0.9271/0.9198 0.9774/0.9885/0.9867

LSDF 0.9767/0.9867/0.9678, 0.9718/0.9875/0.9701 0.9625/0.9694/0.9278 0.9653/0.9765/0.9454 0.9974/0.9989/0.9938

Fishser 0.9478/0.9733/0.9711 0.9514/0.9670/0.9646 0.8894/0.9414/0.9392 0.9164/0.9527/0.9498 0.9795/0.9939/0.9895

Laplacian 0.8533/0.8644/0.8511 0.7544/0.7731/0.7492 0.7728/0.7950/0.7789 0.7570/0.7760/0.7605 0.9125/0.9159/0.9003

Table 4. Comparison of mean evaluation metrics in the Leukemia2 dataset with the top 150 selected genes by 
varying the value of L.

Algorithm 1. Semi-Supervised Maximum Discriminative Local Margin Feature Selection Algorithm.

Acc
labelNum = 2/4/6

Precision 
labelNum = 2/4/6

Recall 
labelNum = 2/4/6

F-score 
labelNum = 2/4/6

AUC
labelNum = 2/4/6

semiMM 0.9879/0.9943/0.9971 0.9939/1/1 0.9654/0.9808/0.9917 0.9785/0.9896/0.9953 0.9995/1/0.9998

LSDF 0.9593/0.9850/0.9921 0.9657/0.9864/0.9914 0.8854/0.9654/0.9833 0.9208/0.9746/0.9865 0.9863/0.9980/0.9998

Fishser 0.9921/0.9907/0.9964 1/0.9975/1 0.9708/0.9713/0.9896 0.9843/0.9834/0.9943 1/0.9997/1

Laplacian 0.9886/0.9850/0.9786 0.9942/0.9952/0.9816 0.9706/0.9556/0.9435 0.9808/0.9736/0.9600 0.9993/0.9978/0.9971

Table 5. Comparison of mean evaluation metrics of the SRBCT dataset with the top 15 selected genes by 
varying the value of L.
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Experiments
In this section, we conducted extensive experiments to evaluate the performance of the proposed semiMM 
method in a semi-supervised manner for gene selection. Experiments are conducted on five gene expression 
profile datasets. All datasets are publicly available from GEMS36. The detailed description of the datasets is shown 
in Table 1.

The methods presented in this article were evaluated using five tumour datasets and compared to other meth-
ods. The following is a brief introduction to the five datasets used in this article.

 1) DLBCL: This dataset is a two-class dataset with two subclasses DLBCL (0) and FL (1) (the numbers in 
parentheses indicate the class labels in all datasets). The dataset contains a total of 77 samples, the DLBCL 
and FL sample ratio is 58:19, and the total number of genes is 5469.

 2) Prostate_Tumor: This dataset is also a two-class dataset; the two sub-categories are tumour samples, 
Tumour (0), and normal samples, Normal (1). The dataset contains a total of 102 samples, the Tumour and 
Normal sample ratio is 50:52, and the total number of genes is 10,509.

 3) Leukemia2: This dataset is a three-class dataset, and the three subclasses are AML (0), ALL (1) and MLL 
(2). The dataset contains 72 samples, and the total number of genes is 11,225.

 4) SRBCT: This dataset is a four-class dataset, and the four subclasses are EWS (0), RMS (1), BL (2), and 
NB (3). The dataset contains a total of 83 samples, including EWS, RMS, BL and NB at a sample ratio of 
29:25:11:18, and the total number of genes is 2308.

Acc
labelNum = 2/4/6

Precision 
labelNum = 2/4/6

Recall 
labelNum = 2/4/6

F-score 
labelNum = 2/4/6

AUC
labelNum = 2/4/6

semiMM 0.9660/0.9723/0.9749 0.9326/0.9552/0.9606 0.8561/0.9077/0.9300 0.8811/0.9247/0.9415 0.9878/0.9898/0.9898

LSDF 0.9157/0.9487/0.9494 0.6887/0.9228/0.9254 0.5888/0.8027/0.8044 0.6221/0.8463/0.8454 0.8898/0.9607/0.9623

Fishser 0.9737/0.9720/0.9747 0.9445/0.9550/0.9602 0.8794/0.9055/0.9237 0.8985/0.9235/0.9372 0.9921/0.9909/0.9902

Laplacian 0.9670/0.9680/0.9699 0.9260/0.9270/0.9301 0.8303/0.8449/0.8761 0.8611/0.8722/0.8977 0.9832/0.9833/0.9848

Table 6. Comparison of mean evaluation metrics of the Lung dataset with the top 150 selected genes by varying 
the value of L.

Figure 4. Performance comparison of average prediction accuracy in multi-classification gene expression 
datasets SRBCT.
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 5) Lung_Cancer: This dataset is a five-class dataset, with four subclasses, including Adeno (0), Normal (1), 
Squamous (2), COID (3) and SMCL (4). This dataset contains 203 samples, and the total number of genes 
is 12,600.

Experimental Design. In this experiment, we first pre-processed the five gene expression datasets to obtain 
the prepared data: initial data for feature selection and split data for classification. The optimal values of param-
eters were selected in the proposed method. Three state-of-the-art feature selection methods were selected for 
comparison to better understand the proposed method. The experiments were conducted, and the outputs were 
recorded and analysed.

Data Preparation. Initial Data. In this experiment, we set up a semi-supervised setting to simulate the 
“small sample, high dimension” problem. In a semi-supervised setting for a filtered feature selection, both labelled 
and unlabelled samples must be used during the calculation of the score of each feature, and the feature selec-
tion method is used to rank the features. Here, we selected different numbers of samples per subclass of a gene 
expression dataset, in which the labelled data with stratified random sampling is denoted by L. The values of L 
are 2, 4, and 6. Thus, the number of labelled samples in a certain gene expression dataset is the product of L and 
the number of classes. The remaining data in the dataset are regarded as unlabelled data. The obtained data were 
termed initial data for convenience.

Split Data. During classification, we divided each gene expression dataset into a training and testing set with 
a ratio of 6:4 through stratified random sampling. We conducted the classification with different numbers of 
genes ranging from 5 to 300 with a step of 5. Considering the intrinsic characteristics of semi-supervised feature 
selection, we repeated the experiment 10 times at each step and recorded the average prediction accuracy for 
evaluation.

Compared Methods and Experimental Setup. Laplacian score. The LS is an unsupervised feature 
selection method. In this method, a nearest neighbour graph is constructed to model the local geometric struc-
ture30,37. The LS selects the features with more locality preserving power25.

Figure 5. Performance comparison of average prediction accuracy in multi-classification gene expression 
datasets Lung.
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Fisher score. As a supervised feature selection method, the Fisher score seeks features according to their dis-
criminating power32.

LSDF. As a semi-supervised feature selection algorithm, the LSDF utilizes both labelled and unlabelled data and 
determines the discriminative structure and geometrical structure of the data. Features that can maximize the 
margin between the within-class and between-class graphs are selected by the LSDF.

In the proposed semiMM, the tuning parameter lambda can be searched from the grid {0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 0.9}. The number of nearest neighbours, k, is empirically assumed to be 5 because the k nearest 
neighbours are adopted to model the local manifold structure of the data. The weight in the whole experiment is 
determined by binary similarity, and the alpha is set as 100, similar to LSDF. By conducting many experiments 
to select the proper value of parameters in the proposed algorithm, we determined that the proposed method 
can robustly detect changes of the parameters, whereas the LSDF is sensitive to k and alpha. Thus, k and alpha 
are set at 5 and 100, respectively, to ensure that the LSDF can still perform well in the experiments, and a better 
comparison between LSDF and the proposed semiMM can be obtained. In this experiment, the top 300 genes 
were selected as the feature subset for classification, and each gene was normalized to achieve zero mean and unit 
variance for further assessment.

Evaluation Metrics. In this evaluation framework, five evaluation metrics, including accuracy, precision, 
recall, f-score, and area under the receiver operating characteristic curve (AUC), were used to assess the perfor-
mance. These metrics were determined by the following equations:

=
+

+ + +
accuracy TP TN

TP TN FN FP (18)

=
+

precision TP
TP FP (19)

=
+

recall TP
TP FN (20)

− =
∗ ∗

+
f score precision recall

precision recall
2

(21)

where true positives and true negatives refer to the number of samples that are correctly classified into their class 
group in the ground truth; i.e., positive samples are predicted to be positive, and negative samples are classified 
into the negative group. The same logic is applied to understand false negatives (FN) and false positives (FP). The 
tumour dataset Lung is an unbalanced multiclass dataset. As stated in32, a larger AUC indicates better perfor-
mance. Thus, the AUC score is applied to assess the prediction performance of classification to properly evaluate 
FPs and FNs for cancer classification.

The proposed semiMM can manage both binary classification and multi-classification datasets. The 
gene expression datasets used in the present study include two binary classification datasets and three 
multi-classification datasets. To perform the multi-classification experiment, we devised a one-against-rest 
approach for each class and thus constructed c binary classifiers, where c denotes the number of classes in each 
dataset. The average results over the c binary classifiers are shown as the final result of multi-classification.

Experimental Results. In this subsection, classification is performed via SVM on the training set with a 
chosen feature subset (the top 300 genes) in the five gene expression datasets to evaluate the performance of 
the proposed semiMM method and compare it with three other methods. Figure 1 shows the curves of average 
prediction accuracy versus gene dimension for the four methods with different labelled samples on two binary 
classification datasets.

All filter methods achieve high average prediction accuracy with an increased number of selected genes in 
most cases. Figures 1 and 2 shows that the performance of the supervised Fisher score method is improved when 
the number of labelled samples per subclass L increases from 2 to 6. In contrast, the performance of the unsuper-
vised LS method has degraded. A larger L value indicates that fewer unlabelled samples remained in each dataset. 
Thus, the observation is reasonable. However, the semiMM and LSDF methods perform better with a larger L.

The semiMM method performs best and converges fastest to the optimal point when less than 100 genes are 
selected. This finding might indicate that the proposed semiMM method has better ability to utilize the label 
information than LSDF, i.e., the semiMM has more discriminating power than the LSDF method. Roughly speak-
ing, the semiMM and LSDF show stable performance with varying values of L because the shapes of their curves 
are almost unchanged. This finding can be explained by the semi-supervised properties of the semiMM and 
LSDF; these methods simultaneously select features from both labelled and unlabelled samples.

The multiclass classification performance of three publicly available datasets is shown in Figs 3–5. The perfor-
mance of the LS is unchanged in all three multiclass datasets, and its average prediction accuracy decreases when 
additional labelled samples are selected. The Fisher score performance improves with a larger L on the Leukemia2 
and SRBCT datasets but degrades slightly on the Lung dataset under the same condition. Thus, not all labelled 
samples are useful for category recognition. Overall, the proposed semiMM method converges faster and achieves 
slightly higher optimal average classification accuracy when L increases in all three multiclass datasets. When L 



www.nature.com/scientificreports/

1 0Scientific RePoRTS |  (2018) 8:8619  | DOI:10.1038/s41598-018-26806-6

equals 2, the semiMM outperforms the supervised Fisher score method when the number of selected genes is less 
than 50 for multiclass datasets. The performance of the other semi-supervised method, LSDF, is slightly different; 
its average classification accuracy is poor when L increases in the Leukemia2 dataset but is totally different on the 
SRBCT and Lung datasets. In addition, its performance is not comparable to that of the other methods in most 
cases.

Therefore, the semiMM performs well irrespective of the dataset itself, whereas its competitors are sensitive 
to the dataset. The semiMM is effective for tackling “small sample” problems. The good and stable performance 
of this method is due to its simple and efficient idea to discover both geometrical and discriminating information 
with labelled and unlabelled samples together. Although no method outperforms the other three algorithms in all 
circumstances, with regard to robustness of the dataset and good prediction accuracy, and the proposed semiMM 
is a good choice for gene selection with small and limited numbers of labelled samples.

Considering that all four methods show a stable and promising performance when the number of selected 
genes is 150, we listed the corresponding classification results with different values of L in Tables 2–6. For a given 
L, the highest values are shown in bold-faced forms. The parameter λ is set as 0.6 in the proposed semiMM in 
all experiments. From the binary datasets, i.e., Tables 2 and 3, and the following three multiclass datasets, the 
semiMM and Fisher score achieve the highest values in most cases. In the cases where the semiMM is not the best 
method, its performance remains higher and better than that of the other two. This finding verifies the conclusion 
from the analysis of Figs 1 and 2. The proposed semiMM is an effective feature selection method with good and 
stable performance irrespective of the dataset itself.

Conclusion and Future Work
In the present study, we introduced a novel semi-supervised method called the semiMM that is based on spectral 
graph and mutual information theories and is used for gene selection. The semiMM method is a “filter” approach 
that simultaneously exploits local structure, variance, and mutual information. In the first step, we constructed 
a local nearest neighbour graph and subsequently divided this information into within-class and between-class 
local nearest neighbour graphs by weighing the edge between two data points. This method aims to discover 
the most discriminative features for classification by maximizing the local margin between within-class and 
between-class data, the variance of all data, and the mutual information of features with class labels.

In contrast to three state-of-the-art methods, i.e., the Fisher score, LS, and LSDF methods, the experimen-
tal results show that the semiMM method perfectly balances the use of both labelled and unlabelled samples. 
Regardless of whether the dataset is binary-class or multiclass, the proposed semiMM can always achieve a good 
performance. The performance of the semiMM is comparable to that of the Fisher score and even outperforms 
the Fisher score when the number of labelled samples equals 2, and the number of selected genes is less than 50. 
Both the Fisher score and semiMM are superior to the LS and LSDF in most cases.

The following issues should be addressed in future research:
No theoretical selection is established for the controlling parameter lambda, which tunes the weight between 

the first and second terms of the present criterion.
The semiMM considers only the discriminating information of class labels as features and between-labels. If 

this method can delete these redundant features, then a compact feature subset that is maximally discriminative 
and minimally redundant can be obtained.

The second term, which is the mutual information between class label and features, can be time-consuming 
when dealing with datasets with many subclasses. This factor makes the proposed semiMM method less compet-
itive for multi-classification problems with limited time.

The analysis of single cell data has become a hot topic at present, and it is very interesting to extend the sem-
iMM method to be used in the analysis of single cell data.
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