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Non-linearity correction in NIR 
absorption spectra by grouping 
modeling according to the content 
of analyte
Ai Liu1,2, Gang Li1,2, Zhigang Fu3, Yang Guan3 & Ling Lin  1,2

To correct the non-linearity caused by light scattering in quantitative analysis with near infrared 
absorption spectra, a new modeling analysis method was proposed: grouping modeling according to 
the content of analyte. In this study, we tested the proposed method for non-invasive detection of 
human hemoglobin (Hb) based on dynamic spectrum (DS). We compared the prediction performance 
of the proposed method with non-grouping modeling method. Experimental results showed that 
the root mean square error of the prediction set (RMSEP) by the proposed method was reduced by 
9.96% and relative standard deviation of the prediction set (RSDP) was reduced by 4.73%. The results 
demonstrated that the proposed method could reduce the effects of non-linearity on the composition 
analysis by spectroscopy. This research provides a new method for correcting the non-linearity 
stemming from light scattering. And the proposed method will accelerate the pace of non-invasive 
detection of blood components into clinical application.

The quantitative analysis with absorption spectra has been widely used in medicine1,2, chemical3,4, food5,6, agri-
culture7,8 and other fields, owing to its rapidity, non-destructivity and low cost.

Lambert-Beer’s law is the theoretical basis of quantitative analysis with absorption spectra and it makes the 
assumption that the absorbing medium doesn’t scatter light9. In reality, however, the measured subjects have 
scattering or even strong scattering properties, for example, milk10 and biological tissue11–14 have strong scattering 
properties. Light scattering is a significant factor leading to the non-linear relationship between the absorption 
spectra and the content of analyte9,15, which would seriously decrease measurement accuracy16. Therefore, it 
limits the further improvement and application of quantitative analysis based on NIR absorption spectra. Many 
researchers are devoted to the study concerning scattering properties of measured subjects12,14,17–19 and attempt 
to correct the non-linearity caused by scattering. Geladi proposed multiplicative scatter correction (MSC) to pre-
process the spectra16. Other methods including extended MSC (EMSC)20, piece-wise MSC (PMSC)21, inverted 
signal correction (ISC)22, extended ISC (EISC)23 and so on were derived from MSC subsequently. Their common 
drawback may be that any changes to sample set needs recalibration. Barnes proposed standard normal variate 
(SNV) transformation24 and proved the linear correlativity between SNV and MSC later on25,26. Furthermore, 
comparing with MSC, SNV may be superior because it’s applied to individual spectrum and without any reference 
to the total sample set26, though two methods usually gave almost the same results22,27. Miller and Naes proposed 
a path length correction method (PLC-MC) and demonstrated that better predictions of analyte content were 
obtained with spectra corrected with PLCMC than with MSC when spectral variability from chemical variations 
was very large28. Wold proposed orthogonal signal correction (OSC)29, based on which direct orthogonalization 
(DO)30, orthogonal projections to latent squares (O-PLS)31 and direct orthogonal signal correction (DOSC)32 
and so on were developed; but O. Svensson compared six methods concerning OSC and concluded that these 
methods didn’t lead to significantly improved prediction accuracy and their advantages just lied in enhancing 
interpretability of data and reducing the number of principal components to simplify the model33. Leger proposed 
path length distribution correction (PDC) based on time-of-flight (TOF) distribution and the method gives 

1State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, 
China. 2Tianjin Key Laboratory Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, 300072, 
China. 3Med Examinat Ctr, 254 Hosp Peoples Liberat Army, Tianjin, 300142, China. Correspondence and requests for 
materials should be addressed to L.L. (email: linling@tju.edu.cn)

Received: 22 September 2017

Accepted: 15 May 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-5696-3071
mailto:linling@tju.edu.cn


www.nature.com/scientificreports/

2SCientifiC REPORTS |  (2018) 8:8564  | DOI:10.1038/s41598-018-26802-w

improved RMSEP by 27%, but it does have an important limitation: a path length distribution has to be assumed 
for each sample, whether it is measured or estimated9. There also have been researchers who use non-linear 
modeling methods including stepwise polynomial PCR (SWP-PCR), stepwise polynomial PLSR (SWP-PLSR) 
and artificial neural networks (ANN) and other methods to correct the non-linearity stemming from light scat-
tering34–36. However, overfitting is easy to occur with respect to the number of principal components37 when using 
SWP-PCR. As for ANN, it suffers from three main drawbacks35,37: (1) the predictive properties of ANNs strongly 
depend on the learning parameters and the topology of the network; (2) the modeling process of ANN tends to 
be computationally intensive and time-consuming; (3) ANNs models are complex and difficult to interpret. So 
far, any ideal methods haven’t come out yet, for correcting the non-linearity in non-invasive detection of human 
blood components with NIR absorption spectra.

It is much more difficult to detect human blood components non-invasively than other analytes, because 
signal-to-noise ratio (SNR) of detecting human blood components is significantly lower38. Although “dynamic 
spectrum” theory could reduce the influence of individual differences and changes of measurement conditions 
on the measurement39 and has made great progress in signal acquisition and processing40,41, dynamic spectrum 
extraction42–44 and modeling45,46, non-linear problem caused by scattering still exists. It severely slows the process 
of clinical application of DS. To correct non-linearity, a new method is proposed in this paper: grouping modeling 
according to the hemoglobin content. This method can improve the non-invasive measurement accuracy of blood 
components based on DS.

Theory
Dynamic spectrum. Dynamic spectrum(DS)39 is a theory and method for the non-invasive measurement 
of human blood components based on photoplethysmography (PPG)47,48. The essence of DS is to derive the dif-
ference between the maximum and minimum absorbance, within one single period of PPG and at each single 
wavelength. Its advantage lies in that individual differences caused by skin, muscle and so on are eliminated in a 
certain degree, by calculating the absorbance difference between arterial systole and diastole39,49. The principal of 
DS is shown as Fig. 1.

Supposing there is an incident light Io
44,45. When the artery filling reaches a minimum state, the incident light 

is not subjected to pulsatile arterial blood. At this time, the output light intensity will be the strongest (referred as 
Imax), which can be regarded as the incident light Io of pulsatile arterial blood. When the artery filling reaches the 
highest state, effects of pulsatile arterial blood have reached the strongest. At this time, the output intensity will be 
the weakest (referred as Imin) and it can be regarded as the minimum output intensity of pulsatile arterial blood. 
Therefore, by recording the absorbance value of both the maximum value in arterial systole and the minimum 
value in arterial diastole, the effect of skin and subcutaneous tissue can be eliminated, whose absorption can be 
supposed to be constant. According to modified Lambert-Beer’s law, the formula of absorbance and absorbance 
difference is as equations (1) and (2). So, the ∆OD at all wavelengths (∆ODλ1, ∆ODλ2, ∆ODλ3, …, ∆ODλn) can 
be regarded as the spectrum of the pulsatile arterial blood and it is named as Dynamic Spectrum (DS for short).

∑ε= = − +λ λ λ λ λOD I I c B l Glog( / )
(1)i

i
i i0

∆ = − =λ λ λ λ λOD OD OD I Ilog( / ) (2)max min max min

OD is the absorbance difference in a cardiac cycle, εi
λ is the molar extinction coefficient of the ith wavelength, ci 

is the content, l is the optical path length and G is the scattering loss.

Theoretical basis of grouping modeling according to the content of analyte. Quantitative anal-
ysis with absorption spectra is based on a very important premise that Lambert-Beer’s law can be applied. In 
other words, there exists a linear relationship between absorption spectra and the content of analyte. But in 
fact, though light scattering spoiled this linearity, there still exists a monotone non-linear relationship between 
absorption spectra and the content of analyte. In this paper, Partial Least Squares Regression (PLSR) was used 

Figure 1. The principal of dynamic spectrum. A simplified model of tissue is shown and the tissue can be 
regarded as a combination of a pulsatile part and a static part. So, the PPG waveform consists of two parts: AC 
(pulsatile) and DC (baseline)49,54,55. IT represents transmitted light intensity and t represents time.
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as the modeling method, which is one of the most popular methods in NIR multivariate calibration50. It works 
with the whole spectrum, by synthesizing it into a series of linearly-independent variables36. The calculation of 
these variables is based not only on spectral data but also on reference values for the parameter measured in each 
sample. A most valuable feature of PLSR is that it deals very well with the problem of collinearity with overdeter-
mined linear systems50. Its another distinct advantage is that it obviates the need to select wavelengths for model 
development36.

As shown in Fig. 2, the absorbance at each wavelength of interest and the content of analyte constitute a 
multi-dimensional space. The above-mentioned monotone non-linearity can be expressed with a curve line in 
this space, roughly as the solid line in Fig. 2. Because of measurement errors, the actual absorbance and content 
are shown as scatter points in Fig. 2. PLSR is essentially equivalent to using a straight line (as the dotted line in 
Fig. 2) to fit these measuring points in the multi-dimensional space (or more actually, using a straight line to 
fit principal components synthesized with these measurement points). This method will undoubtedly lead to 
great errors owing to the existence of non-linearity. But if we divide samples into two or more groups, in other 
words, two or more straight lines (as lines marked with “+” and “γ” in Fig. 2) are used to perform piecewise 
polyline fitting of a curve, the accuracy must be higher than that with a single straight line. Here, we proposed 
“grouping modeling” to correct the non-linearity between absorption spectra and the content of analyte. The 
above-mentioned content also explains why grouping modeling according to the content of analyte can improve 
measurement accuracy.

In the qualitative analysis based on absorption spectra, absorption spectra are the input variables and con-
tents of analyte are the output variables. So, we are more inclined to the assumption that if grouping is based on 
absorption spectra, we will know which grouping model should be used to predict the content, after getting a new 
spectrum from one sample. But as we all know, the absorption spectrum is a multi-dimensional vector (often 
dozens or even hundreds of dimensions), which make it not so easy to group based on spectra. Consequently, we 
choose grouping based on contents of analyte. However, there still exists a problem: for an unknown sample, we 
don’t know the content of analyte to be predicted, so we can’t determine which grouping model should be used. 
Here, we find a relatively reasonable solution: After establishing grouping models, we establish a non-grouping 
model to get a preliminary prediction of the content. By doing this, we can determine which grouping model 
should be used for each sample to get a second prediction. The detailed steps of grouping modeling are described 
in the following section “Non-grouping modeling and grouping modeling”.

Non-grouping modeling and grouping modeling. Non-grouping modeling. When modeling, most 
researchers don’t divide samples into groups. To be distinguished from the new proposed method “grouping 
modeling”, here we give a name “non-grouping modeling” to the commonly used method, also for convenience 
of description.

There is just one calibration set (named as Total calibration set) and one prediction set (named as Total pre-
diction set) in non-grouping modeling. The steps of non-grouping modeling are listed as follows. Firstly, sort all 
samples according to the content of analyte. Secondly, select the calibration set and prediction set with ensuring 
the content range of analyte in the calibration set covers that in the prediction set46,51, roughly as shown in Fig. 3. 
Finally, establish the calibration model.

Grouping modeling. The detailed steps of grouping modeling are listed as follows:

 (1) Sort all samples according to the content of analyte and select suitable number of samples as the predic-
tion set (Total prediction set). The remaining is the calibration set (Total calibration set) to be grouped. It 

Figure 2. Piecewise polyline fitting of a curve in multi-dimensional space (also schematic of grouping 
modeling).
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should be ensured that the content range of analyte in the calibration set covers that in the prediction set.
 (2) Divide the Total calibration set into a certain number of groups in ascending order of the content of 

analyte. The range of content varies between different groups. Then, establish the grouping model based on 
the calibration set of each group separately, named as grouping model 1, grouping model 2, and so on. The 
number of groups to be divided depends on the number of samples and the range of analyte content.

 (3) Establish a non-grouping model with the Total calibration set. Put samples of Total prediction set into this 
model to get preliminary predictions and then determine which grouping model should be used for these 
samples.

 (4) Put the Total prediction set into corresponding grouping models to get a second prediction and compare 
the prediction results between grouping modeling and non-grouping modeling.

Method
Experimental device. The experimental device is composed of a bromine tungsten lamp, a programmable 
voltage regulator, a near-infrared spectrometer, an optical fiber and a portable computer, as shown in Fig. 4. The 
programmable regulator HSPY-30-05 supplies power to the bromine tungsten lamp with DC voltage of 12 V; 
bromine tungsten lamp scatters light through the fingertip which then received by AvaSpec-HS1024x58TEC 
spectrometer with the wavelength range of 200–1160 nm. 591–1044 nm is used in this work and the spectrometer 
transmits data to the computer via USB.

Samples and measurements. The experiments were carried out in 254 Hosp Peoples Liberat Army. 
Subjects of the experiments were recruited from the people who were going to accept a blood routine examina-
tion in the hospital.

During the experiment, fingertip of each subject completely covered the entrance of optical fiber, with contact 
pressure remaining stable. The integration time of spectrometer was 20 ms and the measurement lasted for 30 s. 
After the experiment, subjects took blood routine examination to obtain Hb contents. The blood samples were 
tested with a fully automated hematology analyzer (ABX Pentra 60, manufactured by HORIBA ABX SAS, Japan) 
in the hospital. Then sampled data by the spectrometer were made to format conversion via Avaspec software 

Figure 3. Schematic of the calibration set selection in non-grouping modeling. Note: n represents the number 
of all samples.

Figure 4. Experimental device.
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(version 76USB2). After eliminating the abnormal samples, 275 samples were used to establish models. All cal-
culations were achieved in MATLAB (version R2016a). Original data of one sample from the spectrometer is 
shown as Fig. 5.

Ethics statement. All the subjects gave their informed consent to the study participation. All these exper-
iments were conducted in compliance with the relevant laws as well as the guidelines issued by the Ethical 
Committee of Tianjin University and 254 Hosp Peoples Liberat Army. The experiments also got the approval of 
the Ethical Committee of Tianjin University and 254 Hosp Peoples Liberat Army.

DS extraction method. Dynamic spectrum was extracted by single-trial estimation52, which performs well 
comprehensively in noise suppression and extraction accuracy of DS. The DS signal extracted from one sample is 
shown in Fig. 6. Then we established the calibration model between DS and Hb content with PLSR.

Data Availability. The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Results and Discussions
The process of grouping modeling is as follows

 (1) All 275 samples were sorted according to the content of Hb, 48 samples were taken out to constitute the 
Total prediction set and the remaining 227 samples worked as the Total calibration set. The range of Hb 
content in the calibration set covered that in the prediction set.

 (2) Samples in the Total calibration set were sorted by Hb content and divided into two groups. The range of Hb 
content is 107–176 g/L in the Total calibration set and it was divided into three parts evenly. Samples in the 
first two parts were taken as the calibration set of group 1, with the Hb content at the range of 107–154 g/L. 
Samples in the last two parts were taken as calibration set of group 2, with the Hb content at the range of 

Figure 5. Original signals sampled by the spectrometer of one subject.

Figure 6. DS signal extracted from one sample.
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130–176 g/L. The number of samples and the range of Hb content are listed in Table 1. The second part is the 
overlapping section between the calibration set of group 1 and the calibration set of group 2, which is applied 
to ensure that each group has enough samples, since limited samples may affect the robustness of models. 
Then, the models were established based on the calibration set of each group separately with PLSR and 
therefore grouping model 1and grouping model 2 were obtained. The distribution of Hb content of the Total 
calibration set, the calibration set of group 1 and group 2 are shown in Fig. 7.

 (3) A non-grouping model was established with the Total calibration set by PLSR. Samples of the Total predic-
tion set were put into this model to get preliminary predictions of Hb content and then we could determine 
which grouping models should be used for these samples. A scatter plot of true value and predicted value 
of Hb content is shown in Fig. 8.

 (4) Then, samples in the Total prediction set should be predicted for a second time with grouping model 1 
or grouping model 2. Firstly, we need to decide which grouping model work better for each sample in the 
Total prediction set, especially for the samples within the range of 130–154 g/L. Here, we define a certain 
value of Hb content as the threshold content. When Hb content of samples is lower than the threshold, 
the samples should be predicted by grouping model 1, when higher, by grouping model 2. To find the 
threshold content, we calculated the Total RMSEP of two groups with different thresholds of Hb content, 
from 130 g/L to 154 g/L. The content which makes the Total RMSEP of two groups smallest is chosen as the 

Total
calibration set

Calibration set
of group 1

Calibration set
of group 2

Total
prediction set

Prediction set
of group 1

Prediction set
of group 2

Content range (g/L) 107–176 107–154 130–176 112–169 112–139 121–169

Number of samples 227 182 192 48 9 39

Table 1. The number of samples and content range in the Total calibration set, Total prediction set, calibration 
set of group 1 and group 2, prediction set of group 1 and group 2.

Figure 7. Distribution of Hb content of the Total calibration set, the calibration set of group 1 and group 2.

Figure 8. Scatter plot of true value and predicted value of Hb content by non-grouping modeling. (a) Total 
calibration set. (b) Total prediction set.
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threshold content, namely 133 g/L. Samples whose prediction results by the non-grouping modeling were 
lower than 133 g/L were predicted again by grouping model 1, and the remaining by grouping model 2. The 
distribution of Hb content of the Total prediction set, the prediction set of group 1 and group 2 are shown 
in Fig. 9. A scatter plot of true value and predicted value of Hb content in group 1 and group 2 is shown in 
Fig. 10.

 (5) The root mean square error of the calibration set (RMSEC), relative standard deviation of the calibration 
set (RSDC), root mean square error of the prediction set (RMSEP), relative standard deviation of the 
prediction set (RSDP) were used as the indexes to evaluate the performances of the developed calibration 
models, as shown in equations (3) and (4).

∑= −
=

ˆRMSE
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(3)i

N
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2

Figure 9. Distribution of Hb content of the Total prediction set, the prediction set of group 1 and group 2.

Figure 10. Scatter plot of true value and predicted value of Hb content by grouping modeling. (a) Calibration 
set of group 1. (b) Prediction set of group 1. (c) Calibration set of group 2. (d) Prediction set of group 2.



www.nature.com/scientificreports/

8SCientifiC REPORTS |  (2018) 8:8564  | DOI:10.1038/s41598-018-26802-w

=
∑ − ∑

∑
×

= =

=

ˆ ˆ
RSD

y y

y

( )
100%

(4)

N i
N

i N i
N

i

N i
N

i

1
1

1
1

2

1
1

where N denotes the number of samples, yi denotes the true value of Hb content and ŷi denotes the prediction 
value of Hb content.

Meanwhile, relative standard error (RSD) of the reference method (a fully automated hematology analyzer–
ABX Pentra 60) is smaller than 1%53, which also acts as an evaluating indicator. The evaluation results are shown 
in Table 2.

In Table 2, we can see that RMSEC of group 1 and group 2 are both smaller than that of non-grouping mod-
eling. Total RMSEC of two groups (6.148 g/L) is smaller than that of non-grouping modeling (7.454 g/L) by 
17.52%, which means that grouping modeling makes the regression between dynamic spectra and Hb contents 
better in comparison with non-grouping modeling. This result is consistent with the theoretical analysis about 
why grouping modeling can improve accuracy in the section “Theoretical basis of grouping modeling according 
to the content of analyte”. Given that relative standard deviation (RSD) can reflect the credibility of measure-
ment better, we compare RSDC between grouping modeling and non-grouping modeling: RSDC of group 1 and 
group 2 both are smaller than that of non-grouping modeling and total RSDC of two groups (6.283%) is smaller 
than that of non-grouping modeling (7.162%) by 12.27%. Therefore, it can be concluded that grouping modeling 
method, namely dividing the calibration set into groups, we can correct the non-linearity between dynamic spec-
tra and Hb contents in a certain degree.

Table 2 also indicates that RMSEP of group 1 and group 2 are smaller than that of non-grouping modeling by 
39.73% and 4.40% respectively. Total RMSEP of two groups (9.420 g/L) is smaller than that of non-grouping mod-
eling (10.462 g/L) by 9.96%. As above-mentioned, grouping modeling makes the regression between dynamic 
spectra and Hb contents better in comparison with non-grouping modeling, which naturally leads to improved 
prediction accuracy. And the total RSDP of two groups (6.942%) is smaller than that of non-grouping modeling 
(7.287%) by 4.73% and RSDP of group 1 and group 2 are both smaller than that of the non-grouping method 
remarkably. We can also see that, compared to non-grouping modeling method, grouping modeling method are 
closer to the reference method in RSD.

If we observe the results carefully, we can see that grouping model 1 is better than grouping model 2, whether 
from the calibration or the prediction. We try to explain and find that dynamic spectra are not so smooth and 
have many burrs when Hb contents are high, as shown in Fig. 11. We can see that, though grouping modeling 
improves the prediction accuracy of high content range of Hb not so remarkably, it makes the overall prediction 
accuracy improved greatly.

Method PC Rc RMSEC (g/L) RSDC Rp RMSEP (g/L) RSDP

Non-grouping modeling 8 0.808 7.454 7.162% 0.706 10.462 7.287%

Grouping modeling x x 6.148 6.283% x 9.420 6.942%

Group 1 8 0.817 5.817 5.958% 0.645 6.305 3.305%

Group 2 8 0.774 6.447 5.385% 0.610 10.002 4.225%

Table 2. Results comparison between non-grouping modeling and grouping modeling. Note: PC: number of 
principal components; Rc: correlation coefficient of calibration set, Rp: correlation coefficient of prediction set.

Figure 11. Dynamic spectra from randomly selected samples with different Hb contents. (a) Normal Hb 
contents. (b) High Hb contents.
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In this paper, RSD of the non-invasive detection of Hb content is all smaller than 8%, though it can’t meet 
the standard for clinical application. Its main reason is that the non-invasive detection is interfered with human 
tissue (such as skin, muscle, fat)38. The new proposed method has pushed the accuracy closer to the gold standard, 
which demonstrated the effectiveness of grouping modeling sufficiently.

Conclusions
Lambert-Beer’s law is the basis of quantitative analysis with absorption spectra and one important condition for 
its establishment is that the absorbing medium doesn’t scatter light. In non-invasive spectral detection of blood 
components, the strong scattering properties of blood result in the non-linear relationship between Hb content 
and dynamic spectrum. Therefore, a new method was proposed to decrease the influence of light scattering on the 
prediction accuracy of Hb: grouping modeling according to the content of Hb. Experimental results showed that 
the total RMSEP of two groups is smaller than that of the non-grouping modeling by 9.96% and RSDP smaller 
by 4.73% respectively. So, grouping modeling performs better in prediction accuracy of Hb than non-grouping 
modeling. This demonstrated that grouping modeling according to Hb content could correct non-linearity in a 
certain degree, thus improving the non-invasive prediction accuracy of Hb based on dynamic spectrum. This 
paper provides a new method and thinking of correcting the non-linearity caused by light scattering for the quan-
titative analysis with NIR absorption spectra.
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